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Abstract— Recently several algorithms for clustering large
data sets or streaming data sets have been proposed. Most
of them address the crisp case of clustering, which cannot be
easily generalized to the fuzzy case. In this paper, we propose a
simple single pass (through the data) fuzzy ¢ means algorithm
that neither uses any complicated data structure nor any
complicated data compression techniques, yet produces data
partitions comparable to fuzzy c¢ means. We also show our
simple single pass fuzzy ¢ means clustering algorithm when
compared to fuzzy ¢ means produces excellent speed-ups in
clustering and thus can be used even if the data can be fully
loaded in memory. Experimental results using five real data sets
are provided.

I. INTRODUCTION

Recently various algorithms for clustering large data sets
and streaming data sets have been proposed [2], [4], [5], [6],
[71, [8], [12], [13]. The focus has been primarily either on
sampling [2], [7], [8], [10], [22] or incrementally loading
partial data, as much as can fit into memory at one time.
The incremental approach [5], [6], [12], [13] generally keeps
sufficient statistics or past knowledge of clusters from a
previous run of a clustering algorithm in some data structures
and uses them in improving the model for the future. Various
algorithms [1], [3], [9], [15], [19] for speeding up clustering
have also been proposed. While many algorithms have been
proposed for large and very large data sets for the crisp
case, not as much work has been done for the fuzzy case.
As pointed out in [10], the crisp case may not be easily
generalized for fuzzy clustering. This is due to the fact
that in fuzzy methods an example does not belong to a
cluster completely but has partial membership values in most
clusters. More about clustering algorithms can be found in
[23].

Clustering large amounts of data takes a long time. Further,
new unlabeled data sets which will not fit in memory are
becoming available. To cluster them, either sub sampling is
required to fit the data in memory or the time will be greatly
affected by disk accesses making clustering an unattractive
choice for data analysis. Another source of large data sets
is streaming data where you do not store all the data, but
process it and delete it. There are some very large data sets
for which a little labeled data is available and the rest of
the data is unlabeled i.e. for example, computer intrusion
detection. Semi-supervised clustering might be applied to this
type of data [11]. We do not address this specifically in this
paper, but the approach here could be adapted. In general,
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clustering algorithms which can process very large data sets
are becoming increasingly important.

In this paper we propose a modified fuzzy ¢ means algo-
rithm for large or very large data sets, which will produce a
final clustering in a single pass through the data with limited
memory allocated. We neither keep any complicated data
structures nor use any complicated compression techniques.
We will show that our simple single pass fuzzy c¢ means
algorithm (SP) will provide almost similar clustering quality
(by loading as little as 1% of the data) as that of clustering
all the data at once using fuzzy ¢ means (FCM). Moreover,
we will also show our single pass fuzzy ¢ means algorithm
provides significant speed up when compared with clustering
a complete data set, which is less than the size of the memory.

II. RELATED WORK

In [1], a multistage random sampling method was pro-
posed to speedup fuzzy c¢ means. There were two phases
in the method. In the first phase, random sampling was
used to obtain an estimate of centroids and then fuzzy c
means (FCM) was run on the full data with these centroids
initialized. A speed-up of 2-3 times was reported. In [9],
speed up is obtained by taking a random sample of the data
and clustering it. The centroids obtained then were used to
initialize the entire data set. This method is similar to that in
[1]; the difference is they used one random sample where in
[1] they may use multiple random samples. In [2], another
method based on sampling for clustering large image data
was proposed, where the samples were chosen by the chi-
square or divergence hypothesis test. It was shown that they
achieved an average speed-up of 4.2 times on image data
while providing a good final partition using 24% of the total
data.

Another speed up technique for image data was proposed
in [3]. In this method FCM convergence is obtained by
using a data reduction method. Data reduction is done by
quantization and speed-up by aggregating similar examples,
which were then represented by a single weighted exemplar.
The objective function of the FCM algorithm was modified
to take into account the weights of the exemplars. However,
the presence of similar examples might not be common in all
data sets. They showed that it performs well on image data.
In summary, the above algorithms attempt to speed up fuzzy
¢ means either by reducing the number of examples through
sampling or by data reduction techniques or by providing
good initialization points to reduce the number of iterations.
However, the above algorithms do not seem to address the
issue of clustering large or very large data sets under the con-
straint of limited memory. Moreover, some of them address
the speed up issues for image data only where the range of



features may be limited. Some work on parallel/distributed
approaches has been done, where multiple processors could
be used in parallel to speed up fuzzy c¢ means [17], [20].
In [21] a parallel version of the adaptive fuzzy Leader
clustering algorithm has been discussed, whereas, in [18] an
efficient variant of the conventional Leader algorithm known
as ARFL (Adaptive rough fuzzy leader) clustering algorithm
was proposed.

There has been research on clustering large or very large
data sets [4], [5], [6], [7], [8]. Birch [4] is a data clustering
method for large data sets. It loads the entire data into
memory by building a CF (Clustering Feature) tree, which
is a compact representation of the data using the available
memory. Then the leaf entries of the CF tree can be clustered
to produce a partition. A hierarchical clustering algorithm
was used in their paper. It provides an optional cluster
refining step in which quality can be further improved by
additional passes over the dataset. However, the accuracy of
data summarization depends on available memory. It was
pointed out in [5] that depending on the size of the data,
memory usage can increase significantly as the implementa-
tion of Birch has no notion of an allocated memory buffer.
In [5], a single pass hard ¢ means clustering algorithm is
proposed under the assumption of a limited memory buffer.
They used various data compression techniques to obtain a
compact representation of data. In [6], another single pass
scalable hard ¢ means algorithm was proposed. This is a
simpler implementation of Bradley’s single pass algorithm
[5], where no data compression techniques have been used.
They showed that complicated data compression techniques
do not improve cluster quality much while the overhead
and book-keeping of data compression techniques slow the
algorithm down. Bradley’s algorithm compresses data using a
primary compression and secondary compression algorithm.
In primary compression, data points which are unlikely to
change membership were put into a discarded set. The
remaining points were then over clustered with a large
number of clusters compared to the actual number of clusters.
This phase is known as secondary compression and its
objective is to save more buffer space by representing closely
packed points by their clusters. A tightness criterion was
used to detect clusters which can be used to represent points.
These sub-clusters were further joined by an agglomerative
clustering algorithm provided after merging they are still
tightly packed. So, in summary Bradley’s implementation has
various data compression schemes which involve overhead
and book-keeping operations. Farnstorm’s single pass [6]
algorithm is basically a special case of Bradley’s where
after clustering, all data in memory is put into a discard
set. A discard set is associated with every cluster, and it
contains the sufficient statistics of data points in it. The
discarded set is then treated as a weighted point in subsequent
clustering. Other relevant single pass algorithms for the crisp
case can be found in [12] and [13]. Compressing data was
also studied in [26], where the number of templates needed
by the probalistic neural network (PNN) was reduced by

compressing training examples with exemplar. This was done
by estimating the probability density functions for the PNN
with Gaussian models.

Recently in [10], a sampling based method has been
proposed for extending fuzzy and probabilistic clustering
to large or very large data sets. The approach is based on
progressive sampling and is an extension of eFFCM [2]
to geFFCM, which can handle non-image data. However,
the termination criteria for progressive sampling could be
complicated as it depends upon the features of the data
set. They used 4 acceptance strategies to control progressive
sampling based on the features of the data. The first strategy
(SS1) is to accept the sampled data when a particular feature
signals termination. The second one (SS2) is to accept
when any one of the features signals termination. The third
one (SS3) is to accept when all the features sequentially
signal termination and the last one accepts (SS4) when all
the features simultaneously signal termination. However, the
method could be complicated for a large number of features
and the sample size could grow large also.

In [24], two methods of scaling EM [23] to large data sets
have been proposed by reducing time spent in E step. The
first method, incremental EM, is similar to [28], in which data
is partitioned into blocks and then incrementally updating the
log-likelihoods. In the second method, lazy EM, at scheduled
iterations the algorithm performs partial E and M steps on
a subset of data. In [25], EM was scaled in a similar way
as they scaled k-means in [5]. In [27], data is incrementally
loaded and modelled using gaussians. At the first stage the
gaussians models are allowed to overfit the data and then
later reduced at a second stage to output the final models. The
methods used to scale EM may not generalize to FCM as they
are different algorithms with different objective functions.

In [13], a streaming algorithm for hard-c-means was pro-
posed in which data was assumed to arrive in chunks. Each
chunk was clustered using a LOCALSEARCH algorithm
and the memory was freed by summarizing the clustering
result by weighted centroids. This is similar to the method
of creating discard set in the single pass hard ¢ means
algorithm [6]. Finally, the weighted centroids were clustered
to obtain the clustering for the entire stream. We also
summarize clustering results in a similar way. The difference
between [13], [6] and our approach is in the fact that in
fuzzy clustering an example may not completely belong to
a particular cluster. Our method of summarizing clustering
results involves a fuzzy membership matrix, which does not
exist for the crisp cases.

Thus some work has been done for the crisp cases (hard-c-
means or hierarchical clustering) and the EM algorithm, but
as stated earlier the crisp case may not be easily generalized
to fuzzy clustering and to our knowledge no single pass fuzzy
¢ means algorithm has been proposed that takes into account
the membership degrees, which describes the fuzziness of
each example.



III. SINGLE PASS FUuzzYy C MEANS ALGORITHM

Suppose we intend to cluster a large or very large data set
present on a disk. We assume for large or very large data
sets the data set size exceeds the memory size. As in [6], we
assumed the data set is randomly scrambled on the disk. We
can only load a certain percentage of the data based on the
available memory allocation. If we load 1% of the data into
memory at a time then we have to do it 100 times to scan
through the entire data set. We call each such data access
a partial data access (PDA). The number of partial data
accesses will depend on how much data we load each time.
In our approach, after the first PDA, data is clustered into
¢ partitions using fuzzy c means. Then the data in memory
is condensed into ¢ weighted points and clustered with new
points loaded in the next PDA. We call them “weighted”
points because they are associated with weights, which are
calculated by summing the membership of examples in a
cluster. This is the key difference from the crisp clustering
case [6], where a fuzzy membership matrix is not present.
In each PDA new singleton points are loaded into memory
and clustered along with the past ¢ weighted points obtained
from the previous clustering. We will call this partial data
clustering (PDC). After clustering these new singleton points
along with the past ¢ weighted points, they are condensed
again into ¢ new higher weighted points and clustered with
examples loaded in the next PDA. This continues until all
the data has been scanned once. The objective function of
fuzzy ¢ means was modified in a fashion similar to that in
[3] to accommodate the effect of weights. We will discuss
the calculation of weighted points and the modification of
the objective function of fuzzy ¢ means in detail later.

As an example, consider a large or very large data set
of n examples. If n; examples are fetched in the first PDA
and clustered into c partitions then all these n; examples
in memory are condensed into ¢ weighted points, whose
weights will sum up to n;. Condensation of n; examples into
c weighted points frees the buffer. Next no examples are then
loaded into memory in the next PDA. These new n, examples
are then clustered along with the ¢ weighted points. So, after
the second PDA there will be ns + ¢ examples in memory
for clustering, out of which ¢ are weighted points and ns
examples have weight one (singletons). We will call the new
fuzzy ¢ means which takes into account the weights of c
weighted points the weighted fuzzy ¢ means (WFCM). After
clustering these ny + ¢ examples in memory using WFCM
they are condensed again into ¢ new weighted points. This
time the weight of the ¢ points sum up to n; + ny and thus
they have more weight than before. This is because there
were already ¢ weighted points, summed up to n;, present
when n2 new singleton examples were loaded in the second
PDA. Similarly, after completion of clustering in the third
PDA, the weight of the new condensed ¢ points will sum
up to ny + n2 + ng. This means after the mth PDA there
will be n,, singleton points loaded in the memory along
with ¢ weighted points from a previous PDC, whose weights
sum up to ny +n2 + ng + ... + ny,—1. So, if the last PDA

loads n; examples, it essentially clusters the whole data set,
where n — n; examples remain as ¢ condensed weighted
points and n; as singleton points. Thus, our simple single
pass fuzzy ¢ means will partition the whole data in a single
pass through the whole data set. To speed up clustering, we
initialize each PDC with the final centroids obtained from
the previous PDC. This knowledge propagation allows for
faster convergence.

A. Weighted point calculation

The objective function (.J,,,) minimized by FCM is defined
as follows:
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U;p, : is the membership value of the kth example, zg, in
the it" cluster.

v; : is the it" cluster centroid.

n : is the number of examples

c: is the number of clusters

Dyt (zi,vi) = ||z, — vil|®
the Euclidean distance.

We will discuss weighted point calculation in this sec-
tion. We will assume we have a weighted FCM algorithm
(WFCM) that takes into account the weights of examples
and clusters data into ¢ partitions. The details of WFCM
will be discussed in the next section.

Consider ngy examples which are loaded in memory in the
d*" PDA.

1) Casel: d=1: If d is equal to one i.e. the first PDA, there
will be no previous weighted points. In this case WFCM
will be the same as FCM. After applying clustering, let
v; be the cluster centroids obtained, where 1 < ¢ < ¢
Let u;; be the membership values, where 1 < ¢ < ¢ and
1 <5 <ng Let W be the weights of the points in memory.
In this case all ng points have weight 1 because no weighted
points from previous PDC exist. Now, memory is freed by
condensing the clustering result into ¢ weighted points, which
are represented by the ¢ cluster centroids v;, where 1 <17 < ¢
and their weights are computed as follows:

’ ndg
w; = Zj:l (uij) wy,

1<i<eg,

: is the norm. We have used

’u}j:].,V].Sjgnd.

The weight of the c points, after condensing the clustering
results, in memory is as follows:

’

w; =w;, 1<i<ec



It should be noted that when n4 new singleton points (weight
one) are loaded in all subsequent PDA (d>1), their indices
associated with @ will begin at ¢+ 1 and end at ng + c i.e.

wj =1,Ve<j<ng+ec.

2) Case2: d>1: In this case, clustering will be applied
on singleton points freshly loaded in the d* PDA along
with ¢ weighted points obtained after condensation from the
(d— l)th PDC. So, there will be n4+ ¢ points in the memory
for clustering using WFCM. The new ng4 singleton points
have weight one. After clustering, the data in memory (both
singletons and weighted points) is condensed into ¢ new
weighted points. The new weighted points are represented
by the c cluster centroids v;, where 1 < ¢ < ¢ and their
weights are computed as follows:

’ nqg+c
wy =Y " (ug) wy,

1< <e.
j=1
Then memory is freed up and the weight of the condensed

clustering results in memory is updated as follows:

wi:w;, 1<i<e.

B. Weighted FCM (WFCM)

We modified the objective function of FCM (similar to [3])
to take into effect the weighted points. It must be noted that
except for the first PDC all subsequent clustering will have ¢
weighted points along with freshly loaded examples. Let us
consider that ny examples (weight one) are loaded from the
disk in the d** PDA and there are c weighted points obtained
from condensation of examples after the previous PDC and
their union constitutes the set X . The cluster centroids and
membership matrix for the WFCM are calculated as:

ng+c ,

lej(uij)mwj

J= . ’ ’
]:

J
The weight of each of the ng examples loaded will be 1. The
c weighted points have weight calculated from condensation
after the previous PDC.

e o\ TET] T
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J<ng+tec.

The modification of objective function does not change the
convergence property of FCM because a weighted point can
be thought of as many singleton points of identical value. It
should be noted that if we have enough memory to load
all the data then our simple single pass fuzzy clustering
algorithm will reduce to FCM.

Vi =

IV. DATA SETS

There were five real data sets used. They are Iris, ISO-
LET®6, Pen Digits, and two magnetic resonance image data
sets (MRI-1 and MRI-2).

The Iris plant data set consists of 150 examples each
with 4 numeric attributes [14] and 3 classes of 50 examples

each. One class is linearly separable from the other two. We
clustered this data set into 3 clusters.

The ISOLET6 Data set is a subset of the ISOLET spoken
letter recognition training set and has been prepared in the
same way as done in [17]. Six classes out of 26 were
randomly chosen and it consists of 1440 instances with 617
features [14]. We clustered this data set into 6 clusters.

The Pen-Based Recognition of Handwritten Digits Data
set (Pen Digits) consists of 3498 examples, 16 features, and
10 classes [14]. The classes are pen-based handwritten digits
with ten digits 0 to 9. We clustered this data set into 10
clusters.

The MRI-1 data set was created by concatenating 45 slices
of MR images of the human brain of size 256X256 from
modalities T1, PD, and T2. The magnetic field strength was
3 Tesla. After air was removed, there are slightly above
1 million examples (1,132,545 examples, 3 features). We
clustered this data set into 9 clusters.

The MRI-2 data set was created by concatenating 2
Volumes of human brain MRI data. Each Volume consists of
144 slices of MR images of size 512X512 from modalities
T1, PD, and T2. The magnetic strength is 1.5 Tesla. For this
data set air was not removed and the total size of data set is
slightly above 75 million (75,497,472 examples, 3 features).
We clustered this data set into 10 clusters..

The values of m used for fuzzy clustering were m=2 for
Iris, MRI-1, and MRI-2, m=1.2 for ISOLET6, and m=1.5 for
the pen digits data set. The different values enabled reliable
partitions with the full data to be obtained.

V. EXPERIMENTAL SETUP

In [16], a reformulated optimization criteria R,, , which
is mathematically equivalent to .J,, (equation 1) was given.

n c (1—m)

Ru(V)=Y" (Z Dy (mk,vi)(l—%> )
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The new formulation has the advantage that it does not

require the U matrix and can be directly computed from the

final cluster centroids. For large data sets, where the whole

data cannot be loaded into memory, R,, can be computed

by incrementally loading examples from the disk.

Each experiment (except MRI-2 data set) was conducted
with 50 random initializations. Both FCM and SP were ini-
tialized with the same centroids. Each data set was clustered
using FCM, loading all the data into memory, and single pass
fuzzy c means (SP), loading a chosen percentage of data into
memory. For measuring quality, we compute the mean R,,
value of FCM and SP. Generally this is the criteria minimized
in FCM. In single pass hard ¢ means ([6]), a similar metric
was used to compute quality, that is, sum of squared distance
between each example and the cluster centroid it belongs.
This criteria is minimized in hard ¢ means. Both for SP
and FCM, the R,, value of the data set can be computed
using the final V matrix (equation 4). We compare quality
by computing the difference between the mean R, value
of FCM and SP and then expressing it as a percentage. For



example, if we denote the mean R,, value of experiments
of FCM as m; and mean R,, value of experiments of SP as
msy then

Difference in Quality (DQ) is:

DQ = (M) 100 )
my

So, a positive value means average value of R,, of FCM

is better (lower) while negative value means R,, of SP is

better.

We also compare the speed-up obtained by SP compared
with FCM. For FCM, as stated earlier, we load the entire
data set into memory before clustering. Thus the speed-up
reported in this paper is the minimum speed up SP can
achieve compared to FCM. This is because for very large
data sets the time required by FCM will become more and
more due to disk accesses per iteration. Thus we will show
that even if we have enough memory to load all the data SP
will be significantly faster than FCM while providing almost
the same quality partition.

All experiments were run on UltraSPARC-III with 8
processors each of 750 MHz. There was 32GB of main
memory. None of the programs were multithreaded, so each
program used only one processor at a time.

VI. RESULTS AND DISCUSSION

In a single pass experiment, if we load n% of the data in
each PDA, it is denoted by SPn. Experimental results on 4
real data sets are shown in Table I. For small data sets i.e.
Iris, Pen digits, and Isolet6 with SP10 (10% data loaded), we
got excellent quality partitions over all 50 experiments with
different random initializations i.e. on average the difference
in quality from FCM is 0.05%, 0.24%, 0.28% for Iris,
Pen Digits, and Isolet6 respectively. We also performed
experiments on these small data sets under a more stringent
condition i.e. loading as little as 5% (loading only 8 of 150
examples each time) for Iris and 1% for Pen digits (loading
only 35 of 3498 examples each time) and Isolet6 (loading
only 15 of 1440 examples each time). As seen in Table 1 for
Pen Digits and Isolet6 we observed on average acceptable
differences in quality of 4.80% and 3.18% respectively from
FCM over 50 experiments. For Iris with 5% (SP5) data
loaded, the difference in quality compared to FCM is a
little higher. After we examined the distribution of extrema,
we found that out of 50 random experiments 42 (84%) are
excellent partitions whose difference in quality with mean
R, value of FCM is only 0.09% and the other 8 got stuck
in some not so good extrema whose R,, value is high. We
show this in Figure 1 and Figure 2, which shows the extrema
distribution both for FCM (Figure 1) and SP5 (Figure 2) on
the Iris data set over the 50 random experiments. In Figure 1
and Figure 2, the x-axis indicates the experiment number
and y-axis the R,, value. It clearly shows that FCM in all
50 experiments got one type of extremum whose R,, value
is near 60, while SP5 found 8 poorer partitions (R,,value
near 105) and the other 42 were very similar R, (about 60)
values compared to FCM. In Figure 3, we have visualized

this poorer partition using 2 out of the 4 features of Iris. The
two features used were petal length and petal width as they
contain most of the information about the classes. It looks
from Figure 3 that the two overlapped classes of Iris came
out as a single cluster and the separable one got split into 2
clusters.

SP appears quite stable even under stringent conditions,
which are not very realistic. However, it can break if a
“too small” percentage is loaded. In summary, on small data
sets with 10% data loaded we got excellent partitions, with
average quality almost the same as FCM, on all data sets and
generally acceptable partitions under stringent conditions.

As our single pass fuzzy ¢ means algorithm is mainly
meant for large or very large data sets, results on the
magnetic resonance image data set MRI-1, which contains
1,132,545 examples will help us better assess our algorithm.
The results (Table I) show that SP achieved excellent parti-
tions whose average quality difference with FCM on all the
50 experiments with different random initializations was only
0.12% and 0 .02% respectively for 1% (SP1) and 10% (SP10)
data loaded. So, we believe for medium/large data sets 1%
data loaded may be enough to get an excellent partition, that
is, with average quality almost the same as FCM.

Table II indicates the average speed-up of SP compared to
FCM on the data sets. We excluded Iris as it is quite small.
Although, SP is meant for large scale data we reported speed-
up for Pen Digits and Isolet6 also. Similar to [6], it seems
in general loading and clustering 1% of the data (SP1) is
faster than loading 10% of the data (SP10) in each PDA.
As shown in Table II, MRI-1 achieved an excellent speed-up
(above 43 times with SP1). On the small data sets, the speed
up achieved was also significant. It should be noted that FCM
loaded all data in memory, so the speed-up reported here for
SP is the minimum. For large data sets (assuming it won’t
fit in memory), FCM will require multiple disk accesses
making it slower. The results indicate that SP can be used
for speeding up fuzzy ¢ means even if the data can be loaded
fully into memory.

The MRI-2 experiment consists of 75,497,472 examples
and it takes about 4 to 5 days for FCM to complete each
experiment. We clustered the whole data 10 times using
FCM. So, we compare it with the first 10 experiments of SP
and thus the average results are computed on 10 experiments
only. On this data set we loaded only 1% of the data for SP.
The average quality difference of FCM with SP1 is 0.0053%.
FCM on average took 102.72 hours, above 4 days, to partition
the whole data set, while SP took only 1.47 hours. Thus, the
speed up obtained is 69.87 times. The quality difference and
speed up obtained on this 75 million example data set were
also excellent.

In summary, fuzzy ¢ means is widely used in image seg-
mentation and for other data partitioning purposes. Looking
at the excellent quality and speed-up achieved by SP, besides
using it for clustering large generic data sets, it can also be
used to accurately segment, compared to FCM, large volumes
of image data quickly. For example MRI-1, which is an entire



volume of MRI data of the human brain, is segmented into
9 clusters accurately in less than a minute on average with
our not so fast processor. So, our SP algorithm could help
segment the huge amounts of data involved in 3D modeling.
For example, to our knowledge segmenting the whole volume
of MRI at once using multiple features (generally it is done
slice by slice) is done rarely, if ever, but with our SP this
can be explored/studied.

TABLE 1
DIFFERENCE IN QUALITY OF FCM WITH SP. ALL VALUES EXPRESSED
IN PERCENTAGES

Data Sets Quality Difference
Iris(SP5) 11.96 %
Iris(SP10) 0.05 %

Pen Digits(SP1) 4.80 %

Pen Digits(SP10) 0.24 %
Isolet6(SP1) 3.18 %
Isolet6(SP10) 0.28 %
MRI-1(SP1) 0.12 %
MRI-1(SP10) 0.02 %
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Fig. 1. Extrema distribution of FCM on the Iris data set
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Fig. 2. Extrema distribution of SP5 on the Iris data set

VII. COMPLEXITY ANALYSIS

In [6], time, memory, and disk input/output complexity
of single pass hard c-means and the hard-c-means algorithm
were discussed. Similarly, we discuss the time, memory, and
disk input/output complexity of our single pass fuzzy ¢ means
and FCM algorithm. We use the following notation in our
discussion.

¢ number of iterations of FCM over the full data set

i average number of iterations of SP in each PDC

n number of examples/data points

256 X 4

Petal width
o
L

FPetal lenth

Fig. 3. Plotting of the poor extrema obtained on Iris with SP5 using
the dimensions petal length and petal width. Symbols “0”, “*”, and “+”
represent the three clusters.

TABLE 11
SPEED UP (SU) OF SP COMPARED TO GC. TIME COMPUTED IN SECONDS
Global SP10 SP1 SU SU
Time(S) Time(S) Time(S) (SP10) (SP1)
Pen 10.38 1.60 0.81 6.48 12.81
Digits
Isolet6 7.06 2.12 1.47 3.33 4.80
MRI-1 2408.60 181.84 54.93 13.24 43.48

f number of dimensions

p fraction of data loaded in each PDA

d number of PDAs required by SP

¢ number of clusters

The time complexity of FCM is O (nfc%). For the SP,

time complexity in each PDC will be O (pn fc2il). As
there will be d PDCs, the time complexity to cluster the
whole data set is O (pnfc?'i'd) . Because d = %, it reduces

to O (nfczi’ . As stated in [6], we also found i to be
smaller compared to ¢ because after the first PDC we get
an approximate model (centroids), and as we pass this
knowledge to subsequent PDCs by initializing with previous
cluster centroids, the clustering of freshly loaded singleton
points along with past weighted points converges quickly. It
has been shown before that initializing with “good” centroids
helps FCM converge quickly [1].

The memory complexity of FCM is O (nf + nc), where
nf is the size of data set and nc the size of U matrix. For
SP, the memory complexity is O (pnf + pnc). As p < 1, the
memory complexity of SP is less than FCM.

For data sets which cannot be loaded into memory, FCM
will have disk accesses every iteration. Thus the disk input
output complexity will be O (nfi). It is likely that for those
data sets the U matrix cannot be kept in memory too. Thus,
it will increase the disk input/output complexity further. In
case of SP, input/output complexity in each PDA is O (pnf).
Thus overall complexity for clustering the whole data set is
O (pnfd), which is O (nf).



VIII. CONCLUSIONS

In this paper we have proposed a single pass fuzzy ¢ means
algorithm for large or very large data sets, which will produce
a final clustering in a single pass through the data with lim-
ited memory allocated. We neither keep any complicated data
structures nor use any complicated compression techniques,
yet achieved excellent quality partitions, with an average
quality almost the same as FCM, by loading as little as 1%
of the data for medium/large data sets and 10% for small
data sets. Moreover, our simple single pass fuzzy ¢ means
algorithm provides significant speed up even when compared
to clustering all the data at once in memory. So, besides
using it for clustering large data sets it can also be used for
speed up purposes even for data that can be fully loaded into
memory. As SP would enable segmenting/partitioning a large
amount of data accurately and quickly, it might open new
opportunities for fuzzy 3D modeling/segmentation. Future
work could be done by adapting it for fuzzy clustering of
streaming data. In the future, we also plan to compute quality
difference of single pass hard ¢ means from regular hard c
means on all these data sets, and compare with the quality
difference we reported here.

IX. ACKNOWLEDGEMENTS

This research was partially supported by the National
Institutes of Health under grant number 1 ROl EB00822-
01 and by the Department of Energy through the ASCI
PPPE Data Discovery Program, Contract number: DE-AC04-
76D000789.

REFERENCES

[1] Tai Wai Cheng, Dmitry B. Goldgof, and Lawrence O. Hall, Fast Fuzzy
clustering, Fuzzy Sets and Systems, V. 93, pp. 49-56, 1998.

[2] Nikhil R. Pal and James C. Bezdek, Complexity Reduction for “Large
Image” Processing, IEEE Transactions on Systems, Man, and Cyber-
netics, Part B 32(5):pp. 598-611, 2002.

[3] Steven Eschrich, Jingwei Ke, Lawrence O. Hall and Dmitry B.
Goldgof, Fast Accurate Fuzzy Clustering through Data Reduction,
IEEE Transactions on Fuzzy Systems, V. 11, 2, pp. 262-270, 2003.

[4] Zhang Raghu Ramakrishnan Miron Livny, BIRCH: An Efficient Data
Clustering Method for Very Large Databases, Tian ACM SIGMOD
International Conference on Management of Data, pp. 103-114, 1996.

[5] P.S. Bradley, Usama Fayyad, and Cory Reina, Scaling Clustering Algo-
rithms to Large Databases, In Proceedings of the Fourth International
Conference on Knowledge Discovery and Data Mining, KDD-1998,
pp., 9-15, 1998.

[6] Fredrik Farnstrom, James Lewis, and Charles Elkan, Scalability for
Clustering Algorithms Revisited, ACM SIGKDD Explorations, V. 2,
pp. 51-57, 2000.

[7]1 Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim, CURE: An
Efficient Clustering Algorithm for Large Databases, In Proceedings
of ACM SIGMOD International Conference on Management of Data,
pp. 73-84, 1998.

[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

Raymond T. Ng and Jiawei Han, CLARANS: A Method for Clustering
Objects for Spatial Data Mining, IEEE Transactions on Knowledge
and Data Engineering, 14(5): pp. 1003-1016, 2002.

David Altman, Efficient Fuzzy Clustering of Multi-spectral Images,
FUZZ-IEEE , 1999

Richard J. Hathaway and James C. Bezdek, Extending Fuzzy and Prob-
abilistic Clustering to Very Large Data Sets, Journal of Computational
Statistics and Data Analysis, 2006, accepted.

A. Bensaid, J. Bezdek, L.O. Hall, and L.P. Clarke, Partially Supervised
Clustering for Image Segmentation, Pattern Recognition, V. 29, No. 5,
pp- 859-871, 1996.

Chetan Gupta, Robert Grossman, Genlc: A Single Pass Generalized
Incremental Algorithm for Clustering, Proceedings of the Fourth
{SIAM} International Conference on Data Mining (SDM 04), pp. 22—
24, 2004.

L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, andR. Motwani,
Streaming-Data Algorithms for High-Quality Clustering, Proceedings
of IEEE International Conference on Data Engineering, March 2002.
CJ. Merz and PM. Murphy. UCI Repository of Machine
Learning Databases Univ. of CA. Dept. of CIS, Irvine, CA,
http://www.ics.uci.edu/~mlearn/MLRepository.html

John F. Kolen and Tim Hutcheson, Reducing the Time Complexity of
the Fuzzy C-Means Algorithm, IEEE Transactions on Fuzzy Systems.
V. 10, pp. 263-267, 2002.

Richard J. Hathaway and James C. Bezdek, Optimization of Clustering
Criteria by Reformulation, IEEE Transactions on Fuzzy Systems, V.
3, pp. 241-245, 1995.

Prodip Hore, Lawrence Hall, and Dmitry Goldgof, A Cluster Ensemble
Framework for Large Data sets, IEEE International Conference on
Systems, Man and Cybernetics, 2006, accepted.

S. Asharaf, M. Narasimha Murty, An adaptive rough fuzzy single pass
algorithm for clustering large data sets, Pattern Recognition, V.36,
2003.

Christian Borgelt and Rudolf Kruse, Speeding Up Fuzzy Clustering
with Neural Network Techniques, Fuzzy Systems, V. 2, pp. 852—
856,2003.

S. Rahmi, M. Zargham, A. Thakre, D. Chhillar, A Parallel Fuzzy C-
Mean Algorithm for Image Segmentation, Fuzzy Information, V. 1, pp.
234-237,2004.

Alfredo Petrosino and Mauro Verde, P-AFLC: a parallel scalable fuzzy
clustering algorithm, ICPR , V. 1, pp. 809-812, 2004.

Domingos, P. and Hulten, G.,A General Method for Scaling Up
Machine Learning Algorithms and its Application to Clustering,Proc.
Eighteenth Int’l. Conf. on Machine Learning, pp. 106-113, 2001.
AK Jain and RC Dubes, Algorithms for Clustering Data. Prentice
Hall, Englewood Cliffs NJ, USA, 1988.

Bo Thiesson, Christopher Meek, and David Heckerman, Accelerating
EM for Large Databases, Machine Learning Journal, V. 45, pp. 279—
299, 2001.

Bradley, P.S., Fayyad, U.M., and Reina, C.A., Clustering very large
databases using EM mixture models, ICPR, vol 2, pp. 76-80, 2000.
Traven, H. G. C., A neural network approach to statistical pattern
classification by semiparametric estimation of probability density
functions, IEEE Transcations on Neural Networks, V. 2, pp. 366—
377, 1991.

Karkkainen and Franti, Gradual model generator for single-pass
clustering, ICDM , pp. 681-684, 2005.

R. Neal and G. Hinton, A View of the EM Algorithm that Justifies In-
cremental, Sparse, and other Variants, Learning in Graphical Models,
pp. 355-368, 1998.



