
1

PUF-Kyber: Design of a PUF-Based Kyber
Architecture Benchmarked on Diverse ARM

Processors
Saeed Aghapour, Kasra Ahmadi, Mila Anastasova, Mehran Mozaffari Kermani, Senior Member, IEEE, and Reza

Azarderakhsh, Member, IEEE

Abstract—It is well-studied that quantum computing breaks
the security of the current worldwide implemented public key
cryptosystems. This forces us toward post quantum cryptography
(PQC) whose security remains solid even against adversaries
having access to quantum computers. For this matter, National
Institute of Standards and Technology (NIST) announced four
winners in 2022. Among them, CRYSTALS-Kyber which is
the only KEM/PKE algorithm, is the aim of this paper. In
this paper, through using physical unclonable functions (PUF)
and true random number generators (TRNG), we improve the
overall security of Kyber and provide physical security to it. Our
implementation results on ARMv7 and ARMv8 architectures,
indicate significant speedup, compared to the reference work. For
example, for the CCA.KEM-KeyGen() algorithm, we achieved
roughly 26%, 13%, and 10% speedup at security levels of 512,
768, and 1024 on ARMv7 implementation, and 25%, 12%, and
10% for ARMv8 implementation. Comparing the implementation
results of our design with the reference work indicates that both
the security and the system performance are improved.

Index Terms—CRYSTALS-Kyber, physical unclonable func-
tions (PUF), post quantum cryptography (PQC).

I. INTRODUCTION

Although, as of today, the existence of a practical quantum
computer is a matter of debate among researchers, their advent
in near future is unquestionable. If eventually, a quantum com-
puter emerges, current classic public key cryptography, will be
broken in polynomial time by Shor’s algorithm [1]. Therefore,
the need for fully transitioning to new cryptosystems that are
secure even against quantum computing, is eminent. In order to
facilitate the process of the transition to PQC, NIST concluded
a standardization competition in 2022 by announcing four win-
ner algorithms named CRYSTALS-Kyber [2], CRYSTALS-
Dilithium [3], Falcon [4], and SPHINCS+ [5]. Among these
four algorithms, except CRYSTALS-Kyber which is a key
encapsulation mechanism (KEM), the other three are signature
schemes. Now, as the competition concluded, further analysis
such as resistance against physical and side-channel attacks
and performance evaluation on different platforms, needs to
be scrutinized for these algorithms.

S. Aghapour, K. Ahmadi, and M. Mozaffari-Kermani are with the De-
partment of Computer Science and Engineering, University of South Florida,
Tampa, FL 33620, USA. e-mails: {aghapour, ahmadi1, mehran2}@usf.edu.

M. Anastasova and R. Azarderakhsh are with the Department of Computer
and Electrical Engineering and Computer Science, Florida Atlantic Univer-
sity, Boca Raton, FL 33431, USA. e-mails: {manastasova2017, razarder-
akhsh}@fau.edu.

A. Related Work

The research is mainly divided into two divisions of side-
channel analysis and optimized implementation. Side-channel
analysis itself divides into two categories. The first is to
perform various side-channel attacks on Kyber and evaluate
its results while the second category is to implement Kyber
in a side-channel secure manner. In [6], a configurable and
side-channel resistant implementation of Kyber is introduced
which reported an increase of around 5% to the overhead of the
original design. In [7], the impact of electromagnetic chosen
ciphertext side-channel attack on Kyber is investigated. In [8],
a side-channel message recovery attack based on deep learning
on the Cortex-M4 implementation of Kyber is provided.

The Kyber resources are primarily dominated by the number
theoretic transform (NTT) and Keccak modules. Keccak oper-
ations are employed for hashing and sampling, whereas NTT
handles polynomial operations. In software implementation,
Keccak operations consume more than half of the total clock
cycles [9]. Additionally, as demonstrated in our prior work
[10], around 32% and 25% of the area is related to NTT
and Keccak modules over ASIC platform. Moreover, in the
FPGA implementation in [11], SHAKE-256 utilizes 15,704
LUTs and 7,592 FFs, while NTT component uses 1,107
LUTs, 1,407 FFs, 28 DSPs, and 3.5 BRAMs. Additionally, in
another FPGA implementation [12], hash and Keccak modules
consume 62% of the total resources. In summary, for software
implementations, Keccak accounts for more than half of the
total clock cycles. Nevertheless, in hardware implementations,
although Keccak operations can be accelerated, they still
occupy 25% of the total area [13].

In [14] and [15], the authors provided the results of their
pure hardware implementation of Kyber on the AMD/Xilinx
Artix-7 FPGA in detail. By utilizing hiding and masking
techniques, the work in [16] presented a hardware implemen-
tation of Kyber that is secure against simple and differential
power analysis side-channel attacks. In [17], the authors pre-
sented a highly area-time efficient implementation of Kyber on
AMD/Xilinx Artix-7 and Zynq-UltraScale+ FPGA families.

On the software implementation side, the work of [18]
implemented Kyber on ARM Cortex-M4. By improving the
NTT computations, they improved the overall speed of the
system by around 18%. In [19], a configurable ASIC processor
is introduced that can handle several lattice-based algorithms

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3399669

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of South Florida. Downloaded on June 10,2024 at 16:42:27 UTC from IEEE Xplore. Restrictions apply.

2

such as Kyber and Dilithium for a RISC-V architecture.
Furthermore, by aiming at ARMv8 architecture, the authors of
[20] provided an optimized implementation of Kyber, NTRU,
and Saber by using NEON instructions. The work in [21]
presented a new extension to the instruction set for RISC-V
finite field arithmetic which efficiently reduced code and data
size and improved the polynomial arithmetic by up to 85%.

B. Major Contributions

While various PUF-TRNG-based designs have been intro-
duced for different cryptographic objectives, their application
to the new standardized NIST schemes remains unexplored.
With Kyber being chosen as the sole KEM scheme to replace
the classical cryptography, a comprehensive investigation of its
various aspects becomes crucial prior to practical implementa-
tion. One of the paramount considerations for a cryptosystem
in network environments such as IoT, WSN, and smart grids
is its resilience against physical attacks. Hence, our goal is to
leverage PUF technology to enhance the physical security of
Kyber, which, as the only standardized KEM scheme to date.

To the best of our knowledge, the only work that utilizes
PUF in PQC schemes is [22] which mainly focuses on the
management of public key infrastructure (PKI). To cover a
broad range of applications, we implemented our design on
ARMv7 and ARMv8 architectures and compared them with
the reference work. For ARMv7, we chose ARM Cortex-M4
processor which is a low-power processor suited for embedded
systems. For ARMv8, which acts as a mediator between
Cortex-M4 and power-hungry platforms such as AMD64,
we implemented our design on both ARM Cortex-A72 and
Apple M1 processors. Our result shows that not only did we
enhance the overall security of the scheme, but also the total
performance of the system improved significantly.

Our contributions of this paper are summarized as follows:
1) We provide physical security to the original Kyber

scheme, making it suitable for different applications like
IoT or smart grid networks where the involved devices
are prone to be captured physically.

2) Because of using PUF, there is no need to store the seed
or keys, hence the storage burden is reduced.

3) This work also enhances the entropy of the secret keys
because of the true randomness of PUFs and TRNGs.

4) We implemented our designs on 2 architectures and pro-
vided a detailed comparison with the original designs.
Our results indicate a performance improvement in both
architectures especially at lower security levels.

II. PRELIMINARIES

In this section, we provide a brief description of Kyber
algorithms and basics of PUFs and TRNGs.

A. CRYSTALS-Kyber

CRYSTALS-Kyber has been introduced in 2018 and been
revised and improved three times since its introduction, on
last version of which we focus [23]. Kyber has a PKE and a
KEM scheme. Algorithms 1 and 2 depict KeyGen() and Enc()
algorithms of the Kyber CPA.PKE scheme.

Algorithm 1 Kyber.CPA.PKE.KeyGen()

Output: Secret key sk ∈ B12.k.n/8

Output: Public key pk ∈ B12.k.n/8+32

1: d← B32

2: (ρ, σ) := G(d)
3: N := 0
4: for i = 0 to k − 1 do
5: for j = 0 to k − 1 do
6: Â[i][j] := Parse(XOF (ρ, j, i))
7: end for
8: end for
9: for i = 0 to k − 1 do
10: s[i] := CBDη1(PRF (σ,N))
11: N := N + 1
12: end for
13: for i = 0 to k − 1 do
14: e[i] := CBDη1

(PRF (σ,N))
15: N := N + 1
16: end for
17: ŝ := NTT (s)
18: ê := NTT (e)
19: t̂ := Â ◦ ŝ+ ê
20: pk := (E12(t̂mod+q)

f
ρ)

21: sk := E12(ŝmod+q)
22: return (pk, sk)

By taking advantage of the FO transform [24], Kyber
CCA.KEM scheme results directly from Kyber CPA.PKE
scheme. A typical KEM scheme consists of three algorithms of
KeyGen(), Encapsulation(), and Decapsulation(). Furthermore,
there are two variants of Kyber scheme named Kyber and
Kyber 90s which are similar in algorithms and only differ in
their functions instantiation. In the original scheme, PRF is
instantiated with SHAKE-256 or AES-256, while in our case,
it is instantiated by PUF and TRNG. Please refer to [23] for
further details, omitted here for the sake of brevity.

B. True Random Number Generators (TRNG)

While pseudo-random number generators (PRNG) use a
deterministic algorithm to create sequences of random num-
bers, TRNGs use the unpredictable intrinsic features of their
environment (a physical process) to do that. In cryptography,
TRNGs are usually used in seed creation because of their high
entropy, and then the seed is used in a PRNG to obtain a
sequence of arbitrary length. There are various sources to im-
plement TRNGs in practice, such as thermal noise, clock drift,
photon arrival times, and the like [25]. Nonetheless, the most
practical and inexpensive methods for cryptography purposes
are based on delay, noise, phase jitter, and memory. Moreover,
TRNGs can be implemented through FPGA components.

C. Physical Unclonable Functions (PUF)

A typical PUF is an object that takes advantage of the
unwanted inherent random variations that are created in its
manufacturing processes, to create unique values [26]. In
general, PUFs are modeled as deterministic one-way math-
ematical functions that take a challenge as input and output a

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3399669

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of South Florida. Downloaded on June 10,2024 at 16:42:27 UTC from IEEE Xplore. Restrictions apply.

3

Algorithm 2 Kyber.CPA.PKE.Enc(pk,m, r)

Input Public key pk ∈ B12.k.n/8+32

Input Message m ∈ B32

Input Random coins r ∈ B32

Output: Ciphertext c ∈ Bdu.k.n/8+dv.n/8

1: N := 0
2: t̂ := D12(pk)
3: ρ := pk + 12.k.n/8
4: for i = 0 to k − 1 do
5: for j = 0 to k − 1 do
6: ÂT [i][j] := Parse(XOF (ρ, i, j))
7: end for
8: end for
9: for i = 0 to k − 1 do
10: r[i] := CBDη1

(PRF (r,N))
11: N := N + 1
12: end for
13: for i = 0 to k − 1 do
14: e1[i] := CBDη2(PRF (r,N))
15: N := N + 1
16: end for
17: e2 := CBDη2

(PRF (r,N))
18: r̂ := NTT (r)
19: u := NTT−1(ÂT ◦ r̂) + e1
20: v := NTT−1(t̂T ◦ r̂) + e2 +DCq(D1(m), 1)
21: c1 := Edu

(Cq(u, du))
22: c2 := Edv

(Cq(v, dv))
23: return (c1

f
c2)

random, unpredictable, and yet repeatable response. Similar
to TRNG, PUFs can also be instantiated by FPGA fabric
components without additional hardware. PUFs can be imple-
mented through various methods; however, the most important
families of PUFs in cryptography are delay and memory based
silicon PUFs. Furthermore, for evaluating PUFs’ performance,
several metrics including reliability, uniqueness, uniformity,
unpredictability, tamper-evident, are considered [27].

Generally, physical attacks encompass a wide range of
threats, including memory attacks and the complete physical
capture of a device. PUFs are primarily effective at mitigating
memory-related physical attacks, as they do not rely on
memory, making it impossible for adversaries to probe for
sensitive information. Furthermore, most PUFs are tamper-
evident, meaning that any attempt to probe or modify the de-
vice can disrupt the PUF’s original functionality, rendering its
responses unreliable. Consequently, adversaries cannot extract
the PUF from the device for separate use.

III. THE PROPOSED PUF-KYBER ARCHITECTURE

In this section, we target both of the Kyber schemes. In
[23], it is stated that the choice of a random generator is a
local decision and could be platform dependent. In original
paper, PRF is instantiated with SHAKE-256 and AES-256
for Kyber and Kyber 90s, respectively. For our design, we
instantiate PRF with a PUF and a TRNG in KeyGen() and
Enc() algorithms. We divide this section into three parts. In
parts A and B, we propose our new designs while in part C,
we discuss our gains and advantages over the original design.

Algorithm 3 OurKyber.CPA.PKE.KeyGen()

Output: Secret key sk ∈ B12.k.n/8

Output: Public key pk ∈ B12.k.n/8+32

1: ρ← B32

2: for i = 0 to k − 1 do
3: for j = 0 to k − 1 do
4: Â[i][j] := Parse(XOF (ρ, j, i))
5: end for
6: ai := PUF (ρ)
7: ρ = ρ << 1
8: bi := PUF (ρ)
9: ρ = ρ << 1
10: s[i] := CBDη1(ai)
11: e[i] := CBDη1(bi)
12: end for
13: ŝ := NTT (s)
14: ê := NTT (e)
15: t̂ := Â ◦ ŝ+ ê
16: pk := (E12(t̂mod+q)

f
ρ)

17: sk := E12(ŝmod+q)
18: return (pk, sk)

A. New CPA.PKE Scheme

In Kyber CPA.PKE scheme, according to Algorithm 1, d
is chosen randomly (Step 1). Then, this d is hashed and the
result will be used as the seed of the PRF function alongside
a counter (Steps 10 and 11) to create the secret key. As a
result, the security of the secret key is directly dependent on d.
Similarly, in Algorithm 2, the value r is chosen randomly. With
these in mind, although the original paper did not mention this
specifically, to have high entropy and randomness for d and r,
these values should be created through a true random generator
source. Our idea is to extend the application of the existing
true random source to additional functionalities, to prevent
introducing excessive hardware complexity to the design.

In our CPA.PKE.KeyGen() algorithm, we instantiate PRF
with a PUF to use the reproducibility feature of PUFs
and create the secret keys whenever needed without storing
them. The KeyGen() algorithm of our design is provided in
Algorithm 3. For CPA.PKE.Enc(), (see Algorithm 2), PRF
is used to create noise and error polynomials r, e1, and e2.
Unlike the secret keys, noise polynomials have one-time usage.
Therefore, the reproducibility feature of PUFs is not required
here. For this reason, in this algorithm, we instantiate PRF
with a TRNG whose role is to create one-time true random
noise polynomials with higher entropy in comparison with
PRNG. The new Enc() algorithm is proposed in Algorithm 4.
CPA.PKE.Dec() algorithm of our design remains unchanged.

B. New CCA.KEM Scheme

Similar to Kyber CPA.PKE, we assume that Kyber
CCA.KEM also requires some sort of true randomness
in its design. The random variables in this scheme are
z, m, and d. For our new CCA.KEM.KeyGen() algorithm,
as it performs CPA.PKE.KeyGen(), by modifying the latter
as we did in Subsection III-A (Algorithm 3), we modify the
CCA.KEM.KeyGen() algorithm. However, a similar strategy is

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3399669

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of South Florida. Downloaded on June 10,2024 at 16:42:27 UTC from IEEE Xplore. Restrictions apply.

4

Algorithm 4 OurKyber.CPA.PKE.Enc(pk,m)

Input Public key pk ∈ B12.k.n/8+32

Input Message m ∈ B32

Output: Ciphertext c ∈ Bdu.k.n/8+dv.n/8

1: t̂ := D12(pk)
2: ρ := pk + 12.k.n/8
3: (a0

f
...

f
ak−1

f
b0

f
...

f
bk−1

f
c)← TRNG(.)

4: for i = 0 to k − 1 do
5: for j = 0 to k − 1 do
6: ÂT [i][j] := Parse(XOF (ρ, i, j))
7: end for
8: r[i] := CBDη1(ai)
9: e1[i] := CBDη2(bi)
10: end for
11: e2 := CBDη2

(c)
12: r̂ := NTT (r)
13: u := NTT−1(ÂT ◦ r̂) + e1
14: v := NTT−1(t̂T ◦ r̂) + e2 +DCq(D1(m), 1)
15: c1 := Edu(Cq(u, du))
16: c2 := Edv

(Cq(v, dv))
17: return (c1

f
c2)

not applicable for encapsulation algorithm. With more details,
as Kyber KEM scheme is created by applying FO transform
on its PKE version, there is one step in the decapsulation algo-
rithm to actively check the validity of the received message.
In that step, the receiver encrypts the message himself and
compare it with the received ciphertext (Step 6 of Algorithm
9 in [23]). This means that the receiver must be able to
successfully perform the CPA.PKE.Enc() algorithm on the
message. This process is straightforward in the original paper
as the PRF is instantiated with either SHAKE-256 or AES-
256 which can be done by knowing the seed. However, as in
our design, Enc() algorithm is not deterministic, the receiver
cannot compute the same result as the sender did. Thus, in our
CCA.KEM scheme, only the KeyGen() algorithm is changed.

C. Security Analysis

It is well established that the entropy of random sequences
that are created by a TRNG source is significantly higher than
those created by a PRNG source. Hence, the secret keys of
our design have higher entropy and security compared to the
original design. Besides that, in the original design, the value
d is hashed to create a secret seed value σ, which is then used
to create the secret key. This means that either the secret key
or the value d must be stored in the memory of the device.
In applications where storage burden is not an issue while the
computational cost is, it is better to store the whole secret key
to eliminate the extra computation of the secret key from the
seed. On the other hand, in applications with limited storage
space, only the seed value d is stored and the secret key will
be computed from that every time it is needed. In either case,
if an adversary captures the users physically and access their
memories, they can obtain the secret value d and compute
σ, and eventually the secret key s. On the other hand, in our
design, the seed value ρ is not secret and is part of the public
key. Meaning that even by having ρ, the adversary cannot

Table I
THE RANDOM BYTES NEEDED IN DIFFERENT SECURITY LEVELS OF KYBER

k η1 η2 BPUF BTRNG

Kyber-512 2 3 2 768 768

Kyber-768 3 2 2 768 896

Kyber-1024 4 2 2 1024 1152

compute the secret key without having the PUF. This provides
physical security for our design.

Similarly, based on Algorithm 2, the value r is responsible
for the creation of noise polynomials and eventually the
ciphertext. If r gets leaked, the corresponding message of
that communication can be obtained. However, in our design,
the randomness for the noise polynomials comes from a true
random generator source which has much higher entropy in
comparison with the original design. In summary, compared
to the reference work, our design provides the security advan-
tages of (i) higher entropy for secret keys, (ii) physical security,
and (iii) more resistance against side-channel attacks.

IV. IMPLEMENTATION BENCHMARKS AND COMPARISON

In this section, after choosing a suitable PUF and TRNG
for our design, we present the thorough details of our im-
plementation and compare it with the original design. One
of the performance advantages of our work over the original
paper is omitting one hash function computation in KeyGen()
algorithm. As seen in Algorithm 1, the seed value σ is created
by applying the hash function G on d, while because of the
intrinsic randomness of PUF, our design does not need this
step, leading to lower computational cost.

As mentioned earlier, in the original design, at least the
seed value d must be stored in each user’s memory as a
secret value. Conversely, in our design, by having the public
value ρ, secret key can be computed but only by the user
possessing the specific PUF. Now, since ρ is public, there
is no need for users to store it in their memories. Thus,
our design provides more flexibility in applications that have
limited memory storage capacity. Overall, our performance
gains over the original designs are summarized as follows:
(i) improving computational cost and (ii) eliminating the need
for secure storage.

A. Choosing PUF and TRNG

In the original designs, the output of each PRF function
is given as an input of the CBDηi

function which its role
is to output a polynomial deterministically from 64ηi bytes
of input. This yields that we require 64ηi random bytes for
each CBDηi

call. Table I shows the exact number of required
bytes for each Kyber scheme. BPUF and BTRNG refer to the
number of needed bytes to be generated from PUF and TRNG
modules, respectively.

Since TRNG is used to create one time random numbers,
reliability is not a concern there, but it is vital to obtain
the same response from PUF in different environmental con-
ditions. Therefore, in order to be used in KeyGen, a PUF
must provide high reliability and robustness to environmental

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3399669

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of South Florida. Downloaded on June 10,2024 at 16:42:27 UTC from IEEE Xplore. Restrictions apply.

5

changes. For these reasons, we chose [28] as our TRNG. This
work, proposes an SRAM based TRNG, offering 100 MBps
throughput on Virtex-II Pro and utilizes 369 slices, while
passing all NIST statistical randomness tests with high scores.

It is worth noting to mention that, the choice of PUF is
not universal and could be based on the designated applica-
tion. However, several criteria must be met before selecting
a PUF. The most crucial one is that the PUF must offer
100% reliability (error probability of less than 10−9). That
being said, while SRAM PUFs are relatively fast and easy
to implement, they require error correction codes (ECC) to
achieve 100% reliability. Error correction methods involve
helper data, increasing not only storage overhead but also
introducing potential security issues. Additionally, the length
of the helper data is proportional to the number of reliable
bits required from the PUF. Consequently, ECC is suitable
for applications where the PUF is employed for creating a
small seed. However, based on Table I, we require up to 1024
reliable bytes, demonstrating the impracticality of ECC in our
work. Therefore, our best choice is self-error correction PUFs
that do not necessitate error correction methods. To that end,
we selected [29], which introduces a PUF providing 100%
reliability without requiring error correction codes.

This PUF is an arbiter PUF that removes any unstable bits in
predicted environmental conditions that would probably cause
unreliability issues later. As a result, the responses will be
100% reliable in the predicted environment. Furthermore, this
PUF exhibits almost 100% reliability (error probability of less
than 10−9), 52.43% uniformity, and 48.82% uniqueness in
tests conducted across a temperature range of 0-80 C. The
implementation of this PUF on Spartan 6 FPGA utilizes only
104 LUTs and 38 FFs. From a performance perspective, to
generate 128 bits of a reliable key, it requires 8200 clock cycles
on Spartan 6 FPGA with a clock frequency of 100 MHz.

From security standpoint, when dealing with a PUF, its
security against machine learning and side-channel attacks
becomes a concern. In machine learning-based attacks, adver-
saries gather numerous challenge-response pairs (CRPs) and
attempt to simulate or clone the PUF. The objective of this
attack is to create a function that replicates the same physical
functionality as those of the PUF without having the physical
access to it. However, as previously mentioned, this attack
necessitates access to a large number of challenge-response
pairs. In applications where PUF is utilized for authentication,
this attack could be applicable, as PUF responses are not kept
secret. On the contrary, in applications where PUF responses
are confidential and directly used as keys, collecting a high
number of CRPs is not feasible. Consequently, this attack is
not practical in key generation applications of PUFs [27].

Moreover, when addressing side-channel attacks on PUFs,
it is crucial to recognize that numerous attacks aim to exploit
sensitive information about the PUF response derived from the
helper data employed for error correction [30]. In our case,
the deployed PUF stands out as it eliminates the necessity
for both helper data and ECC, rendering these specific attacks
and their corresponding countermeasures, inapplicable [31].
However, it is imperative to acknowledge that even though
the chosen PUF configuration does not rely on helper data

and ECC, there remains a potential for the deployed PUF to
inadvertently leak sensitive information if its implementation
is not executed with due diligence. Therefore, comprehensive
and ongoing studies are warranted, focusing on the inherent
security aspects of the deployed PUF itself.

B. Methodology and Implementation Results

To gain insight on the area overhead of our design, we need
to delve into the hardware specifics of the original research.
In our prior study [13], conducted on an Artix 7 FPGA,
we executed the Kyber-1024 algorithm using 16k LUTs, 6k
FFs, 5k slices, 12 DSPs, and 17 BRAMs. Consequently, the
additional area utilization amounts to 0.34% when integrating
PUF and 7.38% when incorporating TRNG. Moreover, in
practical scenarios, the original design already necessitates a
TRNG for seed generation, which has not been considered in
most prior studies. Thus, the new PUF/TRNG module will
replace the existing one further reducing the area overhead.

Furthermore, as PUF and TRNG run parallel to the software
entities, in theory the overall performance of the system will
be bound by the slowest part. Hence, by choosing a high
performance PUF and TRNG, we can obtain their results
by the time they are required by the software entities of
the algorithm without causing any delay, meaning the overall
performance will be limited by the software entities.

To benchmark the software entities of our design, we
implemented it on two different architectures of ARMv7
and ARMv8. For ARMv7, we used STM32F407G discovery
board featuring the widely deployed Cortex-M4 processor and
the pqm4 library1. The pqm4 library provides a framework
for performance evaluation of the emerging post quantum
cryptographic primitives, targeting the SMT32F407VG - Dis-
covery Board. Despite the effort of different cryptographic
engineering in optimizing the design of PQC schemes, a trade-
off between latency and stack usage is required. That is the
reason for the two different designs of the Kyber contained in
the pqm4 library named stack and speed designs. Speed design
ensures minimal execution time while stack design relaxes the
stack usage. The main difference between them is the creation
of the matrix, forming part of the public key value, and the
execution flow when operating on it.

Table II represents our benchmark on the ARM Cortex-M4
platform and compares it to the reference work in two different
frequencies and two different implementation designs. Cortex-
M series is well-suited for resource-constrained usage models
like IoT devices. Thanks to their low power consumption and
high efficiency, the Cortex-M4, for example, can effectively
manage even demanding tasks such as PQC within its limited
and constrained resource environment. Moreover, regardless of
the application or available computational power, the looming
threat of quantum computing on classical cryptography ne-
cessitates a transition to PQC for every device in the future.
Kyber, as the only standardized KEM scheme up to this date,
and notably the most efficient one in terms of computational
cost among the remaining NIST Round 4 candidates, is well-
positioned to likely replace classical cryptography, particularly

1Available at https://github.com/mupq/pqm4.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3399669

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of South Florida. Downloaded on June 10,2024 at 16:42:27 UTC from IEEE Xplore. Restrictions apply.

6

Table II
ARM CORTEX-M4 IMPLEMENTATION RESULTS BASED ON NUMBER OF CLOCK CYCLES

Frequency Scheme Security Level
Speed Implementation Stack Implementation

CPA.PKE CCA.KEM CPA.PKE CCA.KEM
KeyGen() Enc() KeyGen() KeyGen() Enc() KeyGen()

24 Mhz

This work
Kyber-512 241,759 247,531 319,813 241,539 249,257 319,560
Kyber-768 496,585 501,486 612,436 498,018 519,086 613,810
Kyber-1024 847,964 851,421 1,003,037 852,192 859,755 1,019,193

Kyber
Kyber-512 356,125 287,307 433,708 355,938 339,770 433,890
Kyber-768 588,632 594,256 704,423 602,938 611,853 706,866
Kyber-1024 967,366 970,696 1,122,664 971,140 979,023 1,126,112

Speedup1
Kyber-512 (32.1%) (13.8%) (26.2%) (32.1%) (26.6%) (26.3%)
Kyber-768 (15.6%) (15.6%) (13.1%) (17.4%) (15.1%) (13.1%)
Kyber-1024 (12.3%) (12.2%) (10.6%) (12.2%) (12.1%) (9.4%)

This work (90s)
Kyber-512 214,004 219,354 248,918 214,644 222,348 249,207
Kyber-768 434,963 439,432 479,740 437,388 445,359 487,728
Kyber-1024 734,833 732,800 798,576 744,282 752,395 809,528

Kyber (90s)
Kyber-512 334,695 280,492 365,220 335,775 339,227 370,112
Kyber-768 566,047 582,045 607,037 568,659 587,970 619,049
Kyber-1024 902,444 916,159 976,099 917,466 935,746 982,636

Speedup (90s)1
Kyber-512 (36.1%) (21.7%) (31.8%) (36.1%) (34.4%) (32.6%)
Kyber-768 (23.1%) (24.5%) (20.9%) (23.1%) (24.2%) (21.2%)
Kyber-1024 (18.5%) (20.1%) (18.1%) (18.8%) (19.5%) (17.6%)

168 Mhz

This work
Kyber-512 264,539 266,833 349,293 264,709 269,589 349,570
Kyber-768 540,268 541,679 666,221 543,062 547,629 669,240
Kyber-1024 920,072 932,513 1,089,159 926,792 928,603 1,093,898

Kyber
Kyber-512 388,422 310,179 473,562 389,104 368,273 473,810
Kyber-768 641,447 642,896 767,758 643,760 648,820 769,083
Kyber-1024 1,064,821 1,062,554 1,218,593 1,055,863 1,058,650 1,223,259

Speedup1
Kyber-512 (31.8%) (13.9%) (26.2%) (31.9%) (26.7%) (26.2%)
Kyber-768 (15.7%) (15.7%) (13.2%) (15.6%) (15.5%) (12.9%)
Kyber-1024 (13.5%) (12.2%) (10.6%) (12.2%) (12.2%) (10.5%)

This work (90s)
Kyber-512 260,555 263,438 300,758 261,649 266,649 300,948
Kyber-768 532,248 533,107 587,093 537,585 542,102 592,124
Kyber-1024 906,978 904,148 980,638 917,580 912,584 988,457

Kyber (90s)
Kyber-512 406,746 337,906 446,144 407,966 408,332 447,014
Kyber-768 693,217 706,953 748,234 698,627 715,921 748,067
Kyber-1024 1,117,672 1,127,613 1,191,304 1,121,077 1,136,063 1,199,222

Speedup (90s)1
Kyber-512 (35.9%) (22.1%) (32.5%) (35.8%) (34.6%) (32.6%)
Kyber-768 (23.2%) (24.5%) (21.5%) (23.1%) (24.2%) (20.8%)
Kyber-1024 (18.8%) (19.8%) (17.6%) (18.1%) (19.6%) (17.5%)

1Speedup = Kyber −This work
Kyber × 100 and Speedup (90s) = Kyber (90s)− This work (90s)

Kyber (90s) × 100.

in resource-constrained devices. Therefore, the results pre-
sented in Table II provide valuable insights into how these
devices perform in real-world IoT applications.

For performance evaluation on the high-end ARMv8 archi-
tecture devices, we used the widely deployed Performance Ap-
plication Programming Interface (PAPI) [32], which measures
the elapsed time for an event. The library is used in [20] and
since it offers APIs on different target platforms, such as the
ARM Cortex-A72 and Apple M1 processors, it is also adapted
to our design. Besides the implementation on Apple-M1, we
also implemented our design on Raspberry Pi 4 which utilizes
four 1.5 GHz ARM Cortex-A72 cores. To provide a further
comparison, we implemented a pure C code and an optimized
NEON instruction set C code from [20]. Table III provides the
results of our implementation in ARMv8 architecture.

C. Comparison
In this subsection, we compare our work with related efforts,

considering hardware and software overhead. Table IV pro-
vides a concise overview, showcasing a fair comparison with

the current state of the art. Specifically, the table highlights
the KeyGen() algorithm’s overhead in CCA-Kyber-1024. Our
design, as depicted in Table IV, brings a slight increase in area
overhead while simultaneously removing the need for secure
storage and enhancing security against memory attacks.

D. Further Discussion
According to Tables II and III, we achieved the best

improvement at the 512 security level, regardless of the
architecture and platform, since the ratio of our improvement
to the total computational cost, is higher at lower security
levels. Thus, our design is most suitable in networks with
computational and memory restrictions that are prone to phys-
ical attacks. Although our design offers several advantages
compared to the reference work, it also has its drawbacks.

One notable disadvantage is the increase in overall com-
plexity of the design. Given this complexity, it becomes crucial
to implement the design with extreme care, as even a small
mistake could lead to the complete exposure of the secret
key, posing a significant security risk. Furthermore, despite

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3399669

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of South Florida. Downloaded on June 10,2024 at 16:42:27 UTC from IEEE Xplore. Restrictions apply.

7

Table III
ARMV8 IMPLEMENTATION RESULTS BASED ON NUMBER OF CLOCK CYCLES

Platform Scheme Security Level
Pure C NEON Instructions

CPA.PKE CCA.KEM CPA.PKE CCA.KEM
KeyGen() Enc() KeyGen() KeyGen() Enc() KeyGen()

Cortex-A72

This work
Kyber-512 109,331 144,699 120,223 42,834 52,851 53,604
Kyber-768 207,350 248,890 222,238 84,592 98,475 100,423
Kyber-1024 322,459 367,675 343,044 145,566 157,792 166,250

Kyber
Kyber-512 126,354 157,348 137,286 60,680 67,245 71,410
Kyber-768 223,107 263,740 239,033 98,528 112,951 114,415
Kyber-1024 344,183 387,816 364,835 163,623 176,452 184,264

Speedup
Kyber-512 (13.4%) (8.1%) (12.4%) (29.4%) (21.4%) (24.9%)
Kyber-768 (7.1%) (5.6%) (7.1%) (14.1%) (12.8%) (12.2%)
Kyber-1024 (6.3%) (5.2%) (5.9%) (11.1%) (10.5%) (9.7%)

This work (90s)
Kyber-512 181,494 222,820 195,097
Kyber-768 376,332 424,132 395,461
Kyber-1024 628,563 682,470 654,490

Kyber (90s)
Kyber-512 230,763 265,434 244,423
Kyber-768 433,840 480,697 454,377 N/A1

Kyber-1024 706,423 757,977 732,872

Speedup (90s)
Kyber-512 (21.3%) (16.1%) (20.1%)
Kyber-768 (13.2%) (11.7%) (12.9%)
Kyber-1024 (11.1%) (9.9%) (10.7%)

Apple-M1

This work
Kyber-512 70,246 96,195 77,775 12,122 14,126 17,281
Kyber-768 134,746 162,844 145,867 24,569 27,331 31,730
Kyber-1024 216,967 243,097 230,482 40,833 43,633 50,003

Kyber
Kyber-512 81,559 104,489 89,191 17,709 18,857 22,867
Kyber-768 145,993 172,730 157,122 29,083 32,083 36,254
Kyber-1024 231,471 256,230 245,031 46,510 49,577 55,682

Speedup
Kyber-512 (13.8%) (7.9%) (12.8%) (31.5%) (25.0%) (24.4%)
Kyber-768 (7.7%) (5.7%) (7.1%) (15.5%) (14.8%) (12.4%)
Kyber-1024 (6.2%) (5.1%) (5.9%) (12.2%) (11.9%) (10.2%)

This work (90s)
Kyber-512 86,248 101,251 94,302
Kyber-768 181,638 194,866 193,218
Kyber-1024 307,482 316,423 322,747

Kyber (90s)
Kyber-512 111,431 123,024 119,491
Kyber-768 210,607 223,076 222,396 N/A1

Kyber-1024 346,102 353,956 361,065

Speedup (90s)
Kyber-512 (22.6%) (17.6%) (21.0%)
Kyber-768 (13.7%) (12.6%) (13.1%)
Kyber-1024 (11.1%) (10.6%) (10.6%)

1There is no NEON instruction set optimized codes for 90s variant of Kyber in [20].

the fast and theoretically parallel operation of PUFs and
TRNGs alongside software components, inadequate synchro-
nization could lead to potential delays. To address this concern,
System-on-Chip (SoC) boards are suggested. These boards
facilitate the hardware/software co-design in which the FPGA
is used for PUF and TRNG functionalities, while the algorithm
execution is handled by the microprocessor.

In addition to the security claims and proofs of a proposed
PUF, it is crucial to conduct more detailed analysis before
employing them in PQC applications. Quantum computing has
the potential to significantly reduce the search space of PUFs
in machine learning-based attacks, rendering many existing
PUFs unsuitable for PQC. To tackle this issue, dedicated
research has been focused on proposing quantum-secure PUFs
[33] and [34], but these designs still lack the performance
efficiency required for high-demand applications.

Furthermore, the proposed methodology could be adopted
to other schemes, including CRYSTALS-Dilithium. Dilithium,
being a lattice-based standard signature scheme from the same
team as Kyber, shares many characteristics with it. Particularly,

the KeyGen algorithms exhibit significant similarities between
the two schemes. Initial results from implementing our method
on Dilithium show promising improvements in terms of perfor-
mance obtaining up to 30% improvement in number of clock
cycles on Cortex-M4 platform.

Overall, the primary goal of this paper has been to highlight
the advantages of incorporating PUFs and TRNGs in PQC
schemes. However, further analysis might be needed to address
the remaining pressing issues detailed above.

V. CONCLUSION

As the NIST competition has been concluded, improving
and implementing a standardized PQC scheme has gained
more interest compared to proposing a new one. Hence,
in this paper, we improved the security of CRYSTALS-
Kyber, the only PKE/KEM standardized scheme among the
NIST winners. We replaced the pseudo-randomness of the
original scheme with true randomness through using PUFs
and TRNGs. Our analysis indicates significant improvements
in performance and security over the reference work. From

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3399669

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of South Florida. Downloaded on June 10,2024 at 16:42:27 UTC from IEEE Xplore. Restrictions apply.

8

Table IV
COMPREHENSIVE COMPARISON WITH RELATED WORKS FOR KYBER-1024

Overhead

Method Features HW SW

Platform Freq (MHz) Area CC1 Secure Storage Platform CC1

[35] HW —— Artix-7 159 7.9K LUTs- 3.9K FFs 7.8 32 MB —— ——

[6] HW SCA Resistance Artix-7 250 5.2K LUTs- 2.4K FFs 1148 32 MB —— ——Artix-7 258 7.1K LUTs- 3.7K FFs 43.8

[14] HW —— Artix-7 161 7.4K LUTs- 4.6K FFs 9.4 32 MB —— ——

[13] HW —— Artix-7 112 16K LUTs- 6K FFs 10 32 MB —— ——

[21] HW —— Artix-7 59 1.8K LUTs- 1.6K FFs 2203 32 MB —— ——

[20] SW —— —— —— —— —— 32 MB Cortex-A72 (NEON) 184.2
Apple-M1 (NEON) 55.6

[36] SW —— —— —— —— —— 32 MB Cortex-A75 228

[37] SW —— —— —— —— —— 32 MB Cortex-M4 1138

[23] SW —— 32 MB
Cortex-M4 1122.6

—— —— —— —— Cortex-A72 364.8
Apple-M1 245

Ours HW/SW + 104 LUTs- 38 FFs + 520 0

Cortex-M4 1003

Memory Attacks Cortex-A72 343
Spartan 6 100 Apple-M1 230.4

Resistance Cortex-A72 (NEON) 166.2
Apple-M1 (NEON) 50

1 Number of clock cycles for KeyGen algorithm of CCA-Kyber-1024 based on kilo cycles.

security aspects, we provided physical security to the original
work. While from performance aspect, not only did we elimi-
nate the need for secure storage, but also we reduced the total
computational cost of the scheme in software while mildly
increasing the area overhead.

To have a broad comparison, we implemented our design
in two architectures of ARMv7 and ARMv8 on three different
processors of ARM Cortex-M4, ARM Cortex-A72, and Apple-
M1. Our implementation results conclude that our best results
were achieved at lower security levels making our design
suitable especially in applications with resource-constrained
devices, (computational and memory) with the possibility of
physical attacks. However, despite the security and perfor-
mance advantages of our design it still requires further analysis
with more focus on side-channel analysis.

ACKNOWLEDGEMENTS

This work was supported by the US National Science
Foundation (NSF) through the award SaTC-1801488.

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proc. 35th Annu. Symp. Found. Comput. Sci., 1994.

[2] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehle, “Crystals - Kyber: A CCA-secure
module-lattice-based KEM,” in Proc. 2018 IEEE Eur. Symp. Secur.
Privacy (EuroS&P), London, U. K., Apr. pp. 353-367, 2018.

[3] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler,
and D. Stehl, “Crystals-Dilithium: A lattice-based digital signature
scheme,” in Proc. IACR Trans. Hardw. Embedded Syst., 2018.

[4] P. A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T.
Prest, T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang, “Falcon: Fast-
Fourier lattice-based compact signatures over NTRU,” Submission to
NIST, 36(5). 2018.

[5] D. J. Bernstein, A. Hlsing, S. Klbl, R. Niederhagen, J. Rijneveld, and
P. Schwabe, “The SPHINCS + signature framework,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., pp. 2129–2146, 2019.

[6] A. Jati, N. Gupta, A. Chattopadhyay, and S. K. Sanadhya, “A config-
urable CRYSTALS-Kyber hardware implementation with side-channel
protection,” ACM Trans. Embedded Comput. Syst., 2023.

[7] Z. Xu, O. Pemberton, S. Roy, D. Oswald, W. Yao, and Z. Zheng,
“Magnifying side-channel leakage of lattice-based cryptosystems with
chosen ciphertexts: The case study of kyber,” IEEE Trans. Comp. 2021.

[8] E. Dubrova, K. Ngo, and J. Grtner “Breaking a Fifth-Order Masked
Implementation of CRYSTALS-Kyber by Copy-Paste,” IACR Cryptol.
ePrint Arch, 2022.

[9] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen, “pqm4:
Testing and benchmarking NIST PQC on ARM Cortex-M4,” IACR,
USA, Tech. Rep. 2019/844, 2019.

[10] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani, “A
monolithic hardware implementation of Kyber: Comparing apples to
apples in PQC candidates,” in Proc. Int. Conf. Cryptol. Inf. Secur, 2021.

[11] S. Ricci, P. Jedlicka, P. Cbik, P. Dzurenda, L. Malina, and J. Hajny,
“Towards CRYSTALS-Kyber VHDL implementation,” in Proc. 18th Int.
Conf. Secur. Cryptogr. (SECRYPT), 2021, pp. 760–765.

[12] W. Guo, S. Li, and L. Kong, “An efficient implementation of KYBER,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, no. 3, pp. 1562–1566, 2022.

[13] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani,
“Instruction-set accelerated implementation of CRYSTALS-Kyber,”
IEEE Trans. Circuits Syst. I, vol. 68, no. 11, pp. 4648–4659, 2021.

[14] Y. Xing and S. Li, “A compact hardware implementation of CCA-Secure
Key Exchange Mechanism CRYSTALS-Kyber on FPGA,” in Proc. IACR
Trans on Cryptograph. Hardw. Embedded Syst, pp. 328–356, 2021.

[15] Y. Huang, M. Huang, Z. Lei, and J. Wu, “A pure hardware implemen-
tation of CRYSTALS-Kyber PQC algorithm through Resource Reuse,”
IEICE Electron. Exp., vol. 17, no. 17, Art. no. 20200234, 2020.

[16] T. Kamucheka, A. Nelson, D. Andrews, and M. Huang, “A masked
pure-hardware implementation of Kyber cryptographic algorithm,” in
Proc 2022 Int. Conf. on Field-Program. Techn. (ICFPT), 2022.

[17] Z. Ni, A. Khalid, M. O’Neill, and W. Liu, “Efficient Pipelining Explo-
ration for a High-performance CRYSTALS-Kyber Accelerator,” IACR
Cryptol. ePrint Arch, 2022.

[18] L. Botros, M. J. Kannwischer, and P. Schwabe, “Memory-efficient high-
speed implementation of Kyber on Cortex-M4,” in Proc. 11th Int. Conf.
Cryptol., Rabat, Morocco, pp. 209-228, 2019.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3399669

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of South Florida. Downloaded on June 10,2024 at 16:42:27 UTC from IEEE Xplore. Restrictions apply.

9

[19] U. Banerjee, T. S. Ukyab, and A. P. Chandrakasan, “Sapphire: A con-
figurable crypto-processor for Post-Quantum lattice-based protocols,” in
Proc. IACR, p. 1140, 2019.

[20] D. T. Nguyen and K. Gaj, “Optimized software implementations of
CRYSTALS-Kyber, NTRU, and Saber using NEON-based special in-
structions of ARMv8,” in Proc. NIST 3rd PQC Conf., 2021.

[21] E. Alkim, H. Evkan, N. Lahr, R. Niederhagen, and R. Petri, “ISA
extensions for finite field arithmetic accelerating Kyber and NewHope
on RISC-V,” in Proc. IACR, vol. 3, pp. 219–242, 2020.

[22] B. Cambou, M. Gowanlock, B. Yildiz, D. Ghanaimiandoab, K. Lee, S.
Nelson, C. Philabaum, A. Stenberg, and J. Wright, “Post Quantum cryp-
tographic keys generated with physical unclonable functions,” Applied
Sciences, vol. 11, no. 6, p. 2801, 2021.

[23] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P.
Schwabe, G. Seiler, and D. Stehle, “CRYSTALS-kyber–algorithm speci-
fications and supporting documentation,” v 3.02, 2021. Accessed: April.
10, 2024. [Online]. Available: https://pq-crystals.org/kyber/data/kyber-
specification-round3-20210804.pdf.

[24] E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and
symmetric encryption schemes,” in Proc. Int. Cryptol. Conf., 1999.

[25] M. Stipčević and C. K. Koc, “True random number generators,” in Open
Problems in Mathematics and Computational Science, C. K. Koc, Ed.
Cham, Switzerland: Springer, pp. 275–315, 2014.

[26] Y. Gao, S. F. Al-Sarawi, and D. Abbott, “Physical unclonable functions,”
Nature Electron., vol. 3, pp. 81–91, 2020.

[27] N. N. Anandakumar, M. S. Hashmi, and M. Tehranipoor, “FPGA-based
physical unclonable functions: A comprehensive overview of theory and
architectures,” Integration, vol. 81, pp. 175–194, 2021.

[28] D. Li, Z. Lu, X. Zou, and L. Zhenglin, “PUFKEY: A high-security
and high-throughput hardware true random number generator for sensor
networks,” Sensors, vol. 15, pp. 26251–26266, Oct. 2015.

[29] M. Kaveh, M. R. Mosavi, D. Martin, and S. Aghapour. "An efficient
authentication protocol for smart grid communication based on on-chip-
error-correcting physical unclonable function." Sustain. Energy Grids
Netw., vol 36, ISSN 2352-4677, 2023.

[30] A. Alipour, F. Afghah, D. Hely, V. Beroulle, G. Di-Natale, A. Ko-
renda, and B. Cambou, “Helper data masking for physically unclonable
function-based key generation algorithms,” IEEE ACCESS, vol. 10, pp.
40150-40164, 2022.

[31] M. Hiller and A. Gurur, “Hiding secrecy leakage in leaky helper data,”
in Proc. Int. Conf. Cryptograph. Hardw. Embedded Syst. vol 10529.
Springer, 2017, pp 601–619.

[32] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting per-
formance data with PAPI-C,” in Proc. Tools for High Performance
Computing. Springer, 2010.

[33] Y. Wang, X. Xi, and M. Orshansky, “Lattice PUF: A strong physical
unclonable function provably secure against machine learning attacks,”
in Proc. IEEE Int. Symp. Hardware Oriented Secur. Trust, 2020.

[34] X. Xi, G. Li, Y. Wang, and M. Orshansky. "A provably secure strong puf
based on lwe: Construction and implementation," IEEE Trans. Comput.,
vol 72, no. 2, pp. 346-359, 2023.

[35] W. Guo, S. Li and L. Kong, "An efficient implementation of KYBER,"
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 69, no. 3, Mar. 2022.

[36] P. Sanal, E. Karagoz, H. Seo, R. Azarderakhsh, and M. Mozaffari-
Kermani, “Kyber on ARM64: Compact implementations of kyber on
64-Bit ARM cortex-A processors,” in Proc. Int. Conf. Secur. Privacy
Commun. Syst., 2021, pp. 424–440.

[37] A. Abdulrahman, V. Hwang, M. J. Kannwischer, and A. Sprenkels,
“Faster kyber and dilithium on the Cortex-m4,” in Proc. 20th Int. Conf.
Appl. Cryptogr. Netw. Secur., 2022, pp. 853–871.

Saeed Aghapour received his B.Sc. degree in
Electrical Engineering, from Babol Noshirvani Uni-
versity of Technology, Babol, Iran in 2014 and
his M.Sc. in Communication Cryptology from the
Electrical Engineering department of Sharif Uni-
versity of technology, Tehran, Iran in 2016. He is
currently a Ph.D. student at the University of South
Florida with the Department of Computer Science
and Engineering, Tampa, FL. His current research
interests include applied cryptography, post-quantum
cryptography, hardware security, and fault detection.

Kasra Ahmadi received a B.Sc. degree in Computer
Engineering from Isfahan University of Technology,
Isfahan, Iran and an M.Sc. degree in Information
Technology from AmirKabir University of Tech-
nology, Tehran, Iran. He is currently pursuing a
Ph.D. program at the Computer Science and Engi-
neering Department of University of South Florida.
His current research interests include fault detection
on elliptic curves, post-quantum cryptography, op-
timized implementation of cryptographic schemes,
side-channel attacks and applied cryptography.

Mila Anastasova graduated in 2019 from the Uni-
versity Carlos III of Madrid, Spain, with a degree in
Computer Science and Engineering. She earned her
MS in Computer Engineering from Florida Atlantic
University, United States, where she is currently
pursuing her Ph.D. in Computer Engineering with
the Institute for Sensing and Embedded Network
Systems Engineering (I-SENSE). Her research in-
terests include emerging security primitives for real-
time IoT systems, classical and post-quantum public
key cryptography schemes, as well as their optimum

and SCA resistant implementation on low-end devices and incorporation into
network protocols.

Mehran Mozaffari Kermani (S’00-M’11-SM’16)
received the B.Sc. degree from the University of
Tehran, Tehran, Iran, in 2005, and the M.E.Sc. and
Ph.D. degrees from University of Western Ontario,
London, Canada, in 2007 and 2011, respectively.

He joined the Advanced Micro Devices as a se-
nior ASIC/layout designer, integrating sophisticated
security/cryptographic capabilities into accelerated
processing. In 2012, he joined the Electrical En-
gineering Department, Princeton University, New
Jersey, as an NSERC post-doctoral research fellow.

From 2013-2017 he was a faculty with Rochester Institute of Technology and
starting 2017, he is an Associate Professor with the Computer Science and
Engineering Department of University of South Florida.

Currently, he is serving as an Associate Editor for the IEEE Transactions
on VLSI Systems, the ACM Transactions on Embedded Computing Systems,
and the IEEE Transactions on Circuits and Systems. He has been the TPC
member for HOST (Publications Chair), CCS (Publications Chair), DAC,
DATE, RFIDSec, LightSec, WAIFI, FDTC, and DFT. He was a recipient
of the prestigious Natural Sciences and Engineering Research Council of
Canada Post-Doctoral Research Fellowship in 2011 and the Texas Instruments
Faculty Award (Douglas Harvey) in 2014. He is also the awardee for USF
2021 Faculty Outstanding Research Achievement Award, and USF College of
Engineering’s 2018 Outstanding Junior Research Achievement Award. He is
a Senior Member of the IEEE.

Reza Azarderakhsh received the Ph.D. degree in
electrical and computer engineering from Western
University in 2011. He was a recipient of the
NSERC Post-Doctoral Research Fellowship working
in the Center for Applied Cryptographic Research
and the Department of Combinatorics and Opti-
mization, University of Waterloo. Currently, he is
a Professor at Florida Atlantic University. He was
the Guest Editor for the IEEE Transactions on
Dependable and Secure Computing for the special
issue of Emerging Embedded and Cyber Physical

System Security Challenges and Innovations (2016 and 2017). He was also
the Guest Editor for the IEEE/ACM Transactions on Computational Biology
and Bioinformatics for special issue on security. He is serving as an Associate
Editor of IEEE Transactions on Circuits and Systems (TCAS-I).

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3399669

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of South Florida. Downloaded on June 10,2024 at 16:42:27 UTC from IEEE Xplore. Restrictions apply.

