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Abstract— Elliptic curve scalar multiplication (ECSM) is a fundamen-
tal element of public key cryptography. The ECSM implementations on
deeply embedded architectures and Internet-of-nano-Things have been
vulnerable to both permanent and transient errors, as well as fault
attacks. Consequently, error detection is crucial. In this work, we present
a novel algorithm-level error detection scheme on Montgomery Ladder
often used for a number of elliptic curves featuring highly efficient
point arithmetic, known as Montgomery curves. Our error detection
simulations achieve high error coverage on loop abort and scalar bit
flipping fault model using binary tree data structure. Assuming n is the
size of the private key, the overhead of our error detection scheme is O(n).
Finally, we conduct a benchmark of our proposed error detection scheme
on both ARMv8 and field-programmable gate array (FPGA) platforms
to illustrate the implementation and resource utilization. Deployed on
Cortex-A72 processors, our proposed error detection scheme maintains
a clock cycle overhead of less than 5.2%. In addition, integrating
our error detection approach into FPGAs, including AMD/Xilinx Zynq
Ultrascale+ and Artix Ultrascale+, results in a comparable throughput
and less than 2% increase in area compared with the original hardware
implementation. We note that we envision using adoptions of the proposed
architectures in the postquantum cryptography (PQC) based on elliptic
curves.

Index Terms— ARM processor, fault detection, field-
programmable gate array (FPGA), Montgomery Ladder,
reliability.

I. INTRODUCTION

In 1985, Neal Koblitz and Victor Miller introduced the utilization
of elliptic curves within the domain of cryptography [1], [2]. Elliptic
curve cryptography (ECC) has attracted considerable interest in the
public key cryptographic algorithms because of its ability to use
shorter key lengths. Cryptosystems, including those that depend on
elliptic curves, have encountered weaknesses and vulnerabilities,
making them prone to attacks. As part of ensuring security for
ECC implementations, several standards were developed [3], [4],
[5], and [6]. Curve25519 and Curve448 [7] have been proposed as
viable alternative derivatives of the National Institute of Standards and
Technology (NIST) curves [8], as researchers have raised concerns
about potential flaws [9].

A. Related Works

Several research works have highlighted the importance of crypto-
graphic applications having resistance to side-channel analysis [10],
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[11], [12], and [28]. Boneh et al. [14] introduced fault analysis attack
which garnered significant attention. This attack relies on inducing
transient faults within cryptosystems to disclose sensitive information,
e.g., private key. Biehl et al. [15] expanded the application of
fault-based attacks to cryptographic systems using elliptic curves.
To defend against the mentioned attacks, one can easily confirm
that the output lies on a legitimate elliptic curve. Fouque et al. [16]
introduced a fault attack targeting the Montgomery Ladder elliptic
curve scalar multiplication implementation.

Different operations within finite fields, such as multiplication,
addition, inversion, and squaring, can be susceptible to error detection
methods. While fault detection techniques have been investigated
for cryptographic systems [17], [18], [19], [20], [21], [22], [23],
there has been relatively little research dedicated to fault detection
specifically at the algorithmic level of Montgomery Ladder elliptic
curve scalar multiplication (ECSM). Dominguez-Oviedo and Hasan
[24] presented fault detection schemes at the algorithm level for
Montgomery Ladder and double-and-add-always scalar multiplica-
tion. They considered PV and coherency check (CC) for their
proposed error detection scheme. They proposed error detection
scheme resist attacks such as safe error (SE) [25] and [26] and sign
change fault (SCF) attacks [27].

B. Major Contribution

We have proposed an algorithm-level error detection scheme for
Montgomery Ladder in the presence of scalar blinding. The proposed
scheme achieves near-perfect fault coverage with minimal hardware
and software overhead. This scheme is envisioned for postquantum
cryptography (PQC) variants based on elliptic curves with relevant
modifications. We implemented the proposed approach on ARMv8
(Cortex-A72) and two field-programmable gate arrays (FPGAs), i.e.,
Zynq Ultrascale+ and Artix Ultrascale+, using Curve448 parameters.
It achieves close to 100% error coverage with low overhead (5.2%
clock cycles on ARMv8 and about 2% on FPGAs).

II. PRELIMINARIES

The Montgomery Ladder was first introduced as a scalar multipli-
cation algorithm for a specific type of elliptic curves known for their
highly efficient point arithmetic referred to as Montgomery curves.
The Montgomery approach also achieves additional acceleration by
exclusively calculating projective coordinates (X, Z) of intermediate
points. This optimization is feasible because the Montgomery Ladder
incorporates a technique called differential addition, which computes
the sum of two points with a known difference. The central concept
of the algorithm is to simultaneously compute two values that have
a P difference. This algorithm is resistant against timing [10] and
SPA attacks [11]. The Montgomery Ladder ECSM is described in
Algorithm 1.

A. Scalar Blinding

To enhance security against differential power analysis (DPA), it is
necessary to incorporate supplementary techniques such as base-point
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Algorithm 1 Montgomery Ladder ECSM

randomization and scalar blinding. Scalar blinding can be achieved
by adding multiple group order to k such that kr = k + r × #E
where G F(p) is finite field, E is the elliptic curve over G F(p),
P ∈ E(G F(p)), and #E is the cardinality of the group of points
E(G F(p)). Based on Hesse’s theorem, #E is close to p and bounded
by (

√
p − 1)2

≤ #E ≤ (
√

p + 1)2. To generate a random value r ,
linear feedback shift registers (LFSRs) can be used in simple and
resource-constrained applications. For enhanced security purposes,
physical unclonable functions (PUFs) are more suitable [28]. The
correctness of the approach can be proven as follows:

kr · P = (k + r × #E) · P = k · P + r · O = k · P.

III. ERROR DETECTION IN MONTGOMERY LADDER

In this section, we describe the proposed error detection scheme
in Montgomery Ladder ECSM that is described in Algorithm 2.

A binary tree based on the private key (kbits) is created in
Line 1 of Algorithm 2. Another binary tree (k′) will be created
during Montgomery Ladder Algorithm (Lines 6, 7, 11, and 12). It is
important to note that each node in the binary tree has only one unique
path from the root. Using this guidance, we have assurance that the
primary loop of the Montgomery Ladder adheres to the structure of
its scalar value.

Our presented error detection scheme relies on the construction and
comparison of two binary trees: One generated prior to executing the
Montgomery Ladder algorithm, and the other generated during its
execution. The primary reason for using the phrase “binary tree” in
this context is to illustrate the concept of having two choices, either
0 or 1, at every stage of the process. To simplify matters, we used
a binary string instead of binary tree for evaluating the chosen
path in the implementation. The arrangement of the binary string is
determined by the scalar bit in each stage of the Montgomery Ladder
algorithm. Architecture of Error_detection module at Line 15 in
Algorithm 2 is depicted in Fig. 1.

As our presented error detection scheme is based on the scalar
k, to apply our presented error detection scheme effectively in
scenarios involving scalar blinding, we need to incorporate modular
reduction based on #E before comparing k′ with k within our scheme.
To enhance security in ECC using a specialized prime field like the
Solinas prime, it is advised to use larger blinding factors r , which
should be at least half the size of the field. Consequently, as our field
size is 448-bit, a blinding factor r with a length of 224 bits results
in a kr factor of 672 bits. Our presented error detection scheme is
presented in Fig. 1.

A. Fault Model

To the best of our knowledge, any fault injection or error occur-
rence over P will get covered with the help of PV and specified CC

Algorithm 2 Proposed Error Detection Scheme in Montgomery
Ladder ECSM

Fig. 1. Proposed error detection module based on Barret reduction.

function [24]. However, the Montgomery Ladder ECSM calculation
in Algorithm 2 may face a rather critical compromise which is the
occurrence of random or burst errors over scalar (k) or the loop
counter. Prior error detection schemes were incapable of identifying
errors related to early or extended loop termination or the flipping of
scalar bits, which is the focus of our fault model.

B. Practical Scenario

The following example provides details of the proposed fault
detection scheme. For simplicity, let the scalar in Algorithm 2 be
k = (1, 0, 1)2. In Line 1 of Algorithm 2, the binary tree associated
with the scalar value is created. The generated binary tree is depicted
in Fig. 2. Another binary tree with the same node generation policy
will get produced during the main loop of Algorithm 2. Two binary
trees will get compared in the Error_detection function (Line 15) of
Algorithm 2 (Fig. 1).

1) Faulty Scalar: Given that our genuine scalar is kgenuine =

(1, 0, 1)2, and our faulty scalar is kfaulty = (1, 0, 0)2, the destination
nodes of both the binary trees are different. By comparing these
destinations, our error detection method can identify the occurrence
of an error during Montgomery Ladder ECSM. Fig. 2 depicts
the generated nonfaulty and faulty binary trees from faulty scalar,
respectively.

2) Extended or Early Loop Termination: In situations where
extended or early loop termination occurs, the depths of the two
binary trees are not equal, and their respective destination nodes vary.
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Fig. 2. Binary tree which shows a nonfaulty path using the secret
key kgenuine = (1, 0, 1)2 and faulty path using a faulty secret key,
kfaulty = (1, 0, 0)2. The nonfaulty path has successfully reached node 12 as
its endpoint, while the faulty path, generated using a faulty secret key, reached
at node 11.

Through comparison of these destination nodes, our error detection
approach can identify the occurrence of an error during the execution
of Montgomery Ladder in ECSM architectures. Fig. 3 depicts the
generated faulty binary tree from early loop termination.

C. Effectiveness Against Fault Attacks

While previous work has protected against fault attack on changing
the public point P , our presented error detection scheme can protect
the Montgomery Ladder algorithm from any fault attack which
focuses on scalar altering. Our presented error detection scheme can
protect from [30] which could achieve the least or most significant
bits of the secret scalar by performing differential fault attacks with
scalar randomization.

IV. FPGA AND ARM IMPLEMENTATION BENCHMARKS

To show the efficiency and overhead of our proposed error detec-
tion method, we assessed its performance by applying our presented
error detection scheme to Curve448, which is currently integrated into
TLS 1.3. We used projective coordinates formula for point doubling
and point addition on ECC curves due to less computational overhead
on both hardware and software.

We conducted a benchmark test using the Cortex-A72 processor
for software implementation and two different FPGAs, namely, Zynq
Ultrascale+ and Artix Ultrascale+, for hardware implementation to
assess the additional load introduced by our approach. This analysis
demonstrates that our approaches maintain an appropriate overhead
while effectively attaining a high error coverage.

By applying our design to ARMv8 and FPGA architectures,
we acquired valuable insights into the effectiveness of our schemes
on a variety of platforms. The baseline and the proposed error
detection scheme used identical optimization and clock settings. The
baseline work lacks any error detection scheme. Table I displays the
clock overhead of the proposed error detection scheme on software.
Table II presents the area, timing, power, and energy derivations of
our proposed error detection scheme on two different AMD/Xilinx
FPGAs. Our error detection scheme and the baseline work have been
synthesized and executed using Xilinx Vivado 2023.1. The provided
results are obtained after post place-and-route. In the Vivado synthesis
tool context, the notion of area encompasses a combination of Slices
and DSPs, with an equivalence ratio of one DSP being equivalent
to 100 CLBs.

A. Software Implementation

For software implementation, we selected the Raspberry Pi 4 as
our platform for the ARMv8 architecture, featuring four Cortex-A72

Fig. 3. Binary tree which shows faulty path generated from early loop
termination. The binary tree has reached node 5 as its destination from early
loop termination. However, nonfaulty destination is node 12.

TABLE I
ARMV8 IMPLEMENTATION RESULTS

cores running at 1.5 GHz each. To assess performance on the
ARMv8 architecture, we used the Performance Application Program-
ming Interface (PAPI), a widely recognized framework designed
for gauging system performance. We used the GMP library in the
C programming language to enable the handling of big integers.
The clock overhead of the proposed error detection is about 5% in
software.

B. Hardware Implementation

In this section, we discuss hardware design of Montgomery Ladder
on Curve448. Hardware implementation code written in SystemVer-
ilog is available in our GitHub account.1 A crucial requirement
in elliptic curve systems is the effective execution of finite field
arithmetic. Curve448 over G F(p) is defined by y2

+ x2
≡ 1 −

39081x2 y2 mod p where p = 2448
− 2224

− 1. The proposed
Baseline Montgomery Ladder over Curve448 is shown in Fig. 4.
The design includes modular multiplication, data bus, modular addi-
tion/subtraction, controller, and RAM in the top-level architecture.
As operands in Curve448 are 448 bits, due to IO buffer limitation
on our chosen FPGA boards we chose the data bus of width 56 bits
which needs eight clock cycles to load each operand.

1) Modular Multiplication: Based on the fact that 2448
≡ 2224

+

1 mod p, we used 224-bit multiplication for modular multiplication
as follows:

c = a · b = (a1φ + a0) · (b1φ + b0)

= (a1b1 + a0b0) + (a1b0 + a0b1 + a0b0) φ (mod p)

where φ = 2224 and a, b, c ∈ G F(p). We converted the
448 × 448-bit multiplication to three 224 × 224-bit multiplications
respecting the carry. The multiplication postprocess module in Fig. 4
uses interleaved fast reduction for p based on [29].

1github.com/KasraAhmadi/Montgomery_Curve448_error_detection

Authorized licensed use limited to: University of South Florida. Downloaded on November 25,2024 at 15:02:00 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2024 2157

TABLE II
AMD/XILINX ZYNQ ULTRASCALE+ AND AMD/XILINX ARTIX ULTRASCALE+ FPGA IMPLEMENTATION RESULTS

Fig. 4. Baseline Montgomery Ladder over Curve448.

2) Modular Addition/Subtraction: Addition/subtraction module is
implemented by two 112-bit data using pipeline addition/subtraction.
This module calculates c = a ± b ± p. The sddition postprocess
module in Fig. 4 calculates c = r ± p based on the comparison
between r and p.

3) Error Detection Scheme Overhead: In the existence of scalar
blinding that is discussed in Section II-A, the constructed binary
string (k′) is of 672-bit length. As shown in Fig. 1, we used a
Barret reduction module to reduce k′ before comparing it to k. The
Barret reduction module operation is based on two multiplications,
one shifting that is free in hardware, and two subtractions. One
multiplication performs on 672-bit by 448-bit with 34 clock cycles,
one multiplication on 224-bit by 224-bit with 10 clock cycles, and
two subtractions that each needs six clock cycles. The error detection
scheme requires a total of 56 clock cycles to complete. To save the
area and reuse the existing modules, we convert all the operands into
224-bit segments to use the DSP modules already used in modular
multiplication as shown in Fig. 4. Furthermore, for subtraction we
used the same 112-bit by 112-bit addition/subtraction component
used in modular addition in Fig. 4. The extra CLB utilization detailed
in Table II refers to additional registers and logic elements, e.g., XOR

gates, which are used in building the error detection scheme depicted
in Fig. 1.

V. COMPARISON WITH PREVIOUS STUDIES

Our error detection scheme encompasses not previously mentioned
fault models and incurs much lower computational overhead in both
software and hardware compared with previous methods. We ref-
erence our work against the prior study [24]. In terms of fault
coverage, our research provides an advantage by detecting faults that
cause premature termination or loop extension, a capability that was
missing in earlier investigations. In terms of safeguarding against
fault attacks, our study concentrated on fault attacks that aimed to
alter scalars rather than altering the base point [30]. Finally, in terms
of overhead, the prior research analyzed the Montgomery Ladder
algorithm using projective coordinates. The overhead is quantified
based on the number of finite field operations rather than hardware
or software utilization. This analysis yielded a cost of 1I + (6t +

4)M + (5t − 2)S, where I denotes inversion, M denotes modular
multiplication, S denotes squaring, and t (the security parameter)
is 192. Moreover, the error detection scheme in the previous study
used 1I + (18t − 18)M + (9t − 9)S leading to a 27.4% overhead.
As indicated in Tables I and II, our error detection scheme incurs a
roughly 2% overhead in hardware and about 5% in software.
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VI. CONCLUSION

In this brief, we introduced a scheme for detecting errors at
the algorithm level within the Montgomery Ladder ECSM opera-
tion, a crucial component in cryptographic systems based on ECC.
By generating two binary trees, one prior to the Montgomery Ladder
operation and another concurrent with it, we implement our error
detection scheme efficiently with an O(n) complexity. We have
shown that our proposed error detection scheme can fully detect
errors that influence the Montgomery Ladder loop or arise from
alterations in the private key bits. We put our proposed error detection
scheme into practice by deploying it in software on the ARMv8
architecture and in hardware on two different FPGAs, namely, the
Zynq Ultrascale+ and Artix Ultrascale+. In terms of hardware and
software, the implementation resulted in less than 2% additional area
in hardware and around 5% additional clock cycle in software.
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