
Providing Privacy-Aware Incentives for Mobile
Sensing

Qinghua Li, Guohong Cao
Department of Computer Science and Engineering

The Pennsylvania State University
Email: {qxl118, gcao}@cse.psu.edu

Abstract—Mobile sensing exploits data contributed by mobile
users (e.g., via their smart phones) to make sophisticated infer-
ences about people and their surrounding and thus can be applied
to environmental monitoring, traffic monitoring and healthcare.
However, the large-scale deployment of mobile sensing applica-
tions is hindered by the lack of incentives for users to participate
and the concerns on possible privacy leakage. Although incentive
and privacy have been addressed separately in mobile sensing,
it is still an open problem to address them simultaneously. In
this paper, we propose two privacy-aware incentive schemes for
mobile sensing to promote user participation. These schemes
allow each mobile user to earn credits by contributing data
without leaking which data it has contributed, and at the same
time ensure that dishonest users cannot abuse the system to
earn unlimited amount of credits. The first scheme considers
scenarios where a trusted third party (TTP) is available. It
relies on the TTP to protect user privacy, and thus has very
low computation and storage cost at each mobile user. The
second scheme removes the assumption of TTP and applies blind
signature and commitment techniques to protect user privacy.

I. INTRODUCTION

Mobile devices such as smart phones are gaining an ever-
increasing popularity. These devices are equipped with various
sensors such as camera, microphone, accelerometer, GPS, etc.
Mobile sensing exploits the data contributed by mobile users
(via the mobile devices they carry) to make sophisticated
inferences about people (e.g., health, activity, social event) and
their surrounding (e.g., noise, pollution, weather), and thus can
help improve people’s health as well as life. Applications of
mobile sensing include traffic monitoring [1], environmental
monitoring [2], healthcare [3], [4], etc.

Although the data contributed by mobile users is very use-
ful, currently most mobile sensing applications rely on a small
number of volunteers to contribute data, and hence the amount
of collected data is limited. There are two factors that hinder
the large-scale deployment of mobile sensing applications.
First, there is a lack of incentives for users to participate in
mobile sensing. To participate, a user has to trigger her sensors
to measure data (e.g., to obtain GPS locations), which may
consume much power of her smart phone. Also, the user needs
to upload data to a server which may consume much of her 3G
data quota (e.g., when the data is photos). Moreover, the user
may have to move to a specific location to sense the required
data. Considering these efforts and resources required from
the user, an incentive scheme is strongly desired for mobile
sensing applications to proliferate. Second, in many cases the
data from individual user is privacy-sensitive. For instance, to
monitor the propagation of a new flu, a server will collect
information on who have been infected by this flu. However,

a patient may not want to provide such information if she is
not sure whether the information will be abused by the server.

Several schemes [5]–[7] have been proposed to protect user
privacy in mobile sensing, but they do not provide incentives
for users to participate. A recent work [8] designs incentives
based on gaming and auction theories, but it does not consider
privacy. Thus, it is still an open problem to provide incentives
for mobile sensing without privacy leakage.

In this paper, we address the problem of providing privacy-
aware incentives for mobile sensing. We adopt a credit-
based approach which allows each user to earn credits by
contributing its data without leaking which data it has con-
tributed. At the same time, the approach ensures that dishonest
users cannot abuse the system to earn unlimited amount of
credits. Following this approach, we propose two privacy-
aware incentive schemes. The first scheme is designed for
scenarios where a trusted third party (TTP) is available. It
relies on the TTP to protect user privacy, and thus has very low
computation and storage cost at each user. The second scheme
considers scenarios where no TTP is available. It applies blind
signature, partially blind signature and commitment techniques
to protect privacy. To the best of our knowledge, they are the
first privacy-preserving incentive schemes for mobile sensing.

The remainder of this paper is organized as follows. Section
II discusses related work. Section III presents system models,
assumptions and cryptographic primitives. Section IV provides
an overview of our approach. Section V and Section VI present
our two incentive schemes, respectively. Section VII evaluates
our solutions in cost. Section VIII presents discussions. Sec-
tion IX concludes the paper.

II. RELATED WORK

Many schemes [5]–[7], [9]–[14] have been proposed to
protect user privacy in mobile sensing. AnonySense [5] and
PEPSI [6] enable anonymous data collection from mobile
users. DeCristofaro et al [15] considered scenarios where ex-
ternal entities query specific users’ sensing data and proposed
a scheme to hide which user matches a query. Gilbert et
al [16] proposed to use TPM to secure user data. Privacy-
aware data aggregation in mobile sensing has also been
studied by several works [17]–[19]. However, these schemes
cannot provide incentives for users to participate. Christin
et al [7] proposed a privacy-aware reputation scheme for
mobile sensing which uses reputation to filter incorrect sensor
readings, but their solution does not address incentive either.
Recently, Yang et al [8] proposed incentive schemes for mobile
sensing based on gaming and auction theories, but their work

978-1-4673-4575-0/13/$31.00 ©2013 IEEE

2013 IEEE International Conference on Pervasive Computing and Communications (PerCom), San Diego (18--22 March 2013)

76

Service
Provider

Mobile Node
(MN)

1: Query

Querier
5: Answer

2: Task

3: Data Report

4: Pseudo-Credit

6: Credit Token

Credit

Accounts

7: Update

Fig. 1. System model.

does not consider the protection of user privacy. Privacy-
aware incentives designed for other applications (e.g., publish-
subscribe systems) [20] cannot be directly applied here since
they do not consider the requirements of mobile sensing.

III. PRELIMINARIES

A. System and Incentive Model

Figure 1 shows our system model. The system mainly
consists of a dynamic set of mobile nodes (MNs), a mobile
sensing Service Provider (SP), and a set of queriers. MNs are
mobile devices with sensing, computation and communication
capabilities, e.g., smart phones. MNs are carried by people or
mounted to vehicles and other objects. They have (possibly
intermittent) Internet access via 3G, WiFi or other available
networks. Queriers use the mobile sensing service. They send
queries to the SP to request the desired statistics and context
information, e.g., “What is the pollen level in Central Park?”
The SP collects sensor readings from MNs and answers the
queries based on the collected data.

The SP pays credits to the carrier of a MN for the sensing
data that it contributes1. The credits earned by a MN can be
used to buy mobile sensing service from the SP, exchanged
for discount of the MN’s 3G service, or converted to other
real-world rewards. Thus, MNs are incentivized to participate.

The basic workflow is as follows. A querier sends a query
to the SP. To answer the query, the SP transforms the query
into one or more tasks and adds them into a task queue. A
task specifies what sensor readings to report, and when and
where to sense. The task also specifies an expiration time, after
which it should be deleted. When a MN has network access, it
(using a random pseudonym generated by itself) polls the SP to
retrieve tasks. After retrieving a task, the MN decides whether
to accept the task based on certain criteria (e.g., if it has the
required sensing capability). If the MN accepts the task, it will
collect its sensor data at the time and location specified by the
task, and generate one report. Then it submits the report to the
SP using a new pseudonym in a new communication session.
In the same communication session, the SP pays a certain
number of credits to the reporting MN. Since it does not know
the real identity of the MN, it issues pseudo-credits to the MN
which will be used to generate real credit tokens. After the
SP collects enough reports for a task, it deletes the task from
the task queue. It aggregates the reported data to obtain the
answer for the appropriate query, and sends the answer back
to the querier. When the MN receives the pseudo-credits, it
transforms them into credit tokens. After a random time (to
avoid timing attacks), it deposits each credit token to the SP
with its real identity. The SP updates the MN’s credit account

1The carrier of a MN is the person that carries the MN, or the owner of the
vehicle where the MN is mounted. We use MN and carrier interchangeably.

accordingly. Cashing a pseudo-credit for a credit token relies
on a secret which is only known by the MN, such that the
SP cannot link the credit token to the pseudo-credit and hence
does not know the report from which the credit was earned.

When a MN retrieves tasks, the SP sends a random subset
of tasks (e.g., 100 tasks) in the queue to the MN2. Since there
may be many tasks, delivering a subset of them can reduce the
communication cost. In this approach, a MN may repeatedly
retrieve the same tasks. Here performance is sacrificed for
privacy. If the MN reveals the tasks that it retrieved before,
it is easier for the SP to link the tasks accepted by the MN.
Although the MN may retrieve a task multiple times, it accepts
the task at most once. To mitigate timing attacks, the MN waits
a random time between successive task retrievals.

Among the tasks that a MN retrieves in the same communi-
cation session with the SP, at most one task will be accepted
by the MN. Here we sacrifice performance for privacy. If the
MN accepts multiple tasks retrieved in the same session and
the SP does not send these tasks to other MNs, the SP knows
that the collected reports must be submitted by the same MN.
Such knowledge can help the SP to infer the real identity of
the MN.

The amount of credits paid for different reports may be
different. It depends on the type of sensor reading to report and
the amount of effort needed to submit the report. For example,
suppose it requires the carrier to take a high-definition photo-
graph to generate a report. Since the generation process needs
user intervention and the submission of the report causes much
network traffic, more credits should be paid for the report. In
contrast, if a report just needs an accelerator reading which can
be obtained without human intervention and does not induce
much communication cost, less credits can be paid for it. Let
c denote the number of credits paid for a report. The value
of c is set by the SP. A MN may not accept a task if the
amount of credits paid for the task is less than its expectation.
Thus, the SP should set an appropriate c for each task (e.g.,
higher values for more challenging tasks). We assume that c
has integer values ranging from 1 to a certain maximum cmax.
We expect that cmax is not large in practice, e.g., cmax = 5.

The SP may charge queriers fees for using its service. The
fee charged for a query is more than the amount of credits that
the SP pays for the reports collected to answer the query, such
that the SP can make a profit. To control the cost of answering
queries, the SP needs to control the number of reports that each
MN can submit for each task. In this paper, we assume that
each task allows one report from each MN.

In practice, many queries can be answered by a single
report containing the required sensor reading, e.g., What is
the temperature in Central Park? Other queries that need a
series of reports can be answered by creating multiple tasks
each of which only needs one report. For a query that requires
periodical sensor readings (e.g., What is the hourly pollen level
in Central Park?), the SP can create one single-report task in
every period. For a query that requires event-driven reports

2In future work, we will consider other methods to determine which subset
of tasks the SP should send. For example, it may send recently created tasks.
Also, a MN may specify certain attributes that retrieved tasks should satisfy,
on condition that the revealed attributes do not cause much privacy leakage.

77

(e.g., What is your location when you drive over a pothole?),
the SP can ensure that there is always a single-report task for
this query in the task queue, such that MNs can always retrieve
it. We will explore more efficient techniques to support such
queries in future work.

B. Adversary and Trust Model
1) Threats to Incentive: MNs may want to earn as many

credits as possible. To achieve this goal, a MN may submit a
lot of reports for each task (using a different pseudonym to
submit each report), and try to obtain more than c credit tokens
for the task. A number of MNs may collude. A malicious MN
may compromise some other MNs, and steal their credentials
to earn more credits. For example, it steals their credit tokens
and deposits these tokens to its own credit account.

With respect to incentive, we assume that the SP behaves
honestly. It will not repudiate valid credit tokens deposited by
MNs, since this will discourage the MNs from contributing
sensing data in the future. As discussed in Section III-A, the
SP may make profits from providing mobile sensing service,
and thus it is not of interest for the SP to discourage MNs
from participation. Also, the SP will not manipulate any MN’s
credit account (e.g., reducing the credits without its approval).

Malicious MNs may submit false sensor readings to prevent
the SP from obtaining correct answers. Such data pollution
attacks are outside the scope of this paper. However, the effect
of false readings can be mitigated by using an anonymous
reputation scheme (e.g., IncogniSense [7]) to filter the reports
submitted by the MNs with low reputations.

2) Threats to Privacy: The SP is curious about which tasks
a MN has accepted, and what reports the MN has submitted.

The SP may craft a task which targets a narrow set of MNs
and thus makes it easier to identify the MNs accepting this
task. For example, the crafted task only allows the faculty
members of a university to report their data. For such a task,
even a single report may leak the reporter’s affiliation. This
problem is not unique to our scenario, and it can be addressed
as follows [5]: A registration authority is used to verify that
no task targets a narrow set of MNs, and only verified tasks
with the authority’s signature can be published by the SP. In
this paper, we do not consider tasks that target a narrow set
of MNs, but the aforementioned solution to this problem can
be easily applied to our approach.

3) Trust Model: We assume that the SP and each MN
have a pair of public and private keys, which can be used to
authenticate each other. These keys are issued by a (possibly
offline) certificate authority. An adversary may compromise
a MN and know its keys, but the adversary cannot bind the
compromised MN to a new pair of authentication keys. Similar
to [5], we assume that the communications between MNs
and the SP are anonymized (e.g., with IP and MAC address
recycling techniques and Mix Networks).

C. Our Goals
With respect to incentive, we ensure that no MN can earn

more credits than allowed by the SP. More formally, suppose
the SP is willing to pay c credits for one report of a task.
Then each MN can earn at most c credits by submitting reports
for this task. We have two goals in preserving privacy. First,

given a report, the SP cannot tell which MN has submitted
this report. Second, given multiple reports submitted by the
same MN, the SP cannot tell if these reports are submitted by
the same MN.

D. Cryptographic Primitives
1) Blind Signature: A blind signature scheme [21] enables

a user to obtain a signature from a signer on a message, such
that the signer learns nothing about the message being signed.
More formally, to obtain a signature on message m, the user
first blinds the content of m with a random blinding factor,
and then sends the blinded message m′ to the signer. The
signer signs on m′ using a standard signing algorithm (e.g.,
RSA), and passes the signature σ′ back to the user. The user
removes the blinding factor from σ′, and obtains a signature σ
on m which can be verified using the signer’s public key. This
process satisfies two properties. The first property is blindness,
which ensures that the signer cannot link ⟨m,σ⟩ to m′ or
σ′. The second property is unforgeability, which ensures that
from σ′ the user cannot obtain a valid signature for any other
message m′′ ̸= m.

In this paper, we use the blind RSA signature scheme [22]
due to its simplicity. However, our approach can be easily
adapted to other schemes as well. The blind RSA signature
scheme works as follows. Let Q denote the public modulus
of RSA, e denote the signer’s public key and d denote the
signer’s private key. To obtain a blind signature on message
m, the user selects a random value z which is relatively prime
to Q, and computes m′ = mze mod Q. The signer computes
the signature σ′ = (m′)d mod Q. From σ′, the user obtains
the signature for m by computing σ = (σ′ · z−1) mod Q.

2) Partially Blind Signature: A partially blind signature
scheme (e.g., [23]) is quite similar to a blind signature scheme
in that it also allows a user to obtain a signature from a
signer on a message, without revealing the content of the
message to the signer. The only difference is that it allows the
signer to explicitly include some common information (e.g.,
date of issue), which is under agreement with the user, in
the signature. If the common information is attached to many
signatures, the signer cannot link a signature to the secret
message. Our approach does not assume any specific partially
blind signature scheme. We simply use PBSK(p,m) to denote
a partially blind signature, where K is the signing key, m is the
secret message and p is the common information attached to
the signature. Note that the signer cannot link the signature to
the communication session in which the signature is generated.

IV. AN OVERVIEW OF OUR APPROACH

A. Basic Approach
To achieve the incentive goal that each MN can earn at

most c credits from each task, our approach satisfies three
conditions: (i) each MN can accept a task at most once, (ii)
the MN can submit at most one report for each accepted task,
and (iii) the MN can earn c credits from a report. To satisfy
the first condition, the basic idea is to issue one request token
for each task to each MN. The MN consumes the token when
it accepts the task. Since it does not have more tokens for
the task, it cannot accept the task again. Similarly, to satisfy
the second condition, each MN will be given one report token

78

for each task. It consumes the token when it submits a report
for the task and thus cannot submit more reports. To satisfy
the last condition, when the SP receives a report, it issues
pseudo-credits to the reporting MN which can be transformed
to c credit tokens. The MN will deposit these tokens to its
credit account.

To achieve the privacy goals, all tokens are constructed in
a privacy-preserving way, such that a request (report) token
cannot be linked to a MN and a credit token cannot be linked
to the task and report from which the token is earned.

Thus, our approach precomputes privacy-preserving tokens
for MNs which are used to process future tasks. To ensure that
MNs will use the tokens appropriately (i.e., they will not abuse
the tokens), commitments to the tokens are also precomputed
such that each request (report) token is committed to a specific
task and each credit token is committed to a specific MN.

B. Scheme Overview

Following the aforementioned approach, we propose two
schemes. The first scheme assumes a trusted third party (TTP),
and uses the TTP to generate tokens for each MN and their
commitments. This scheme relies on the TTP to protect each
MN’s privacy, and thus has very low computation and storage
cost at each MN. The second scheme does not assume any
TTP. Each MN generates its tokens and commitments in
cooperation with the SP using blind signature and partially
blind signature techniques. The use of blind and partially blind
signatures protects the MN’s privacy against attacks by any
third party. Certainly, such unconditional privacy is not free:
each MN has higher computation and storage overhead.

Both schemes work in five phases as follows.
Setup In this phase, the tokens and their commitments that

each MN and the SP will use to process the next M (which
is a system parameter) tasks are precomputed, and distributed
to each MN and the SP. The distribution process ensures that
each MN cannot get the report token for a task unless it is
approved by the SP to accept the task, and it cannot get the
credit tokens for a task unless it submits a report for the task.

Task assignment Suppose a MN has retrieved a task i from
the SP via an anonymous communication session. If the MN
decides to accept this task, it sends a request to the SP. The
request includes the MN’s request token. The SP verifies that
the token has been committed for task i in the setup phase. If
the SP allows the MN to accept this task, it returns an approval
message to the MN. From the approval message, the MN can
compute a report token for task i. However, the MN cannot
derive a valid report token without the approval message.

Report submission After the MN generates a report for
task i, it submits the report via another anonymous commu-
nication session. The MN’s report token for task i is also
submitted. The SP verifies that the report token has been
committed for task i, and then sends pseudo-credits to the MN.
From the pseudo-credits, the MN computes c credit tokens,
where c is the number of credits paid for each report of task
i. It cannot obtain any credit token without the pseudo-credits.

Credit deposit After the MN gets a credit token, it
deposits the token to the SP after a random period of time
to mitigate timing attacks. The SP verifies that the token has

TABLE I
NOTATIONS

M The num. of tasks for which credentials are precomputed
N,V The num. of real MNs and virtual MNs in the system
ci ∈ [1, cmax] The number of credits paid for each report of task i
τ, δ, ϵ Request token, report token, credit token
r, r1, r2, r3 The secrets assigned to a MN
K0, ...,K3 The private keys of the SP to generate signatures
e, d The SP’s public and private key for blind RSA signature
sk The secret key assigned to the SP
NID,PID The real identity and pseudonym of a MN
H A cryptographic hash function

been committed for the MN, and then increases the MN’s
credit account by one.

Token and commitment renewal When the previous M
tasks have been processed, the tokens and their commitments
for the next M tasks should be precomputed and distributed
similar to the setup phase.

Note that in the setup, credit deposit and token renewal
phases, each MN communicates with the SP using its real
identity. However, in the task assignment and report submis-
sion phases, each MN uses a random pseudonym generated
by itself to communicate with the SP. The pseudonym cannot
be linked to the real identity of the MN.

The notations used in this paper are summarized in Table I.

V. A TTP-BASED SCHEME

This scheme assumes the existence of a TTP which always
has Internet access.

A. The Basic Scheme
1) Setup: In this phase, the TTP precomputes and dis-

tributes the tokens and commitments that will be used to
process the next M tasks. Without loss of generality, suppose
the IDs of these tasks are 1, 2, ...,M .

The TTP assigns and delivers a secret r to each MN and
a secret key sk to the SP. The secrets for different MNs are
different. The TTP also generates a nonce ρ to identify this
set of secrets, and sends it to each MN and the SP. If a new
set of secrets are assigned to the SP and MNs later, a new
nonce will be generated. The TTP computes other credentials
using the set of secrets and the nonce.

We first describe how to generate the tokens and commit-
ments for a single MN. Let r denote the secret of this MN.
From r and the nonce ρ, the TTP derives three other secrets
r1 = H(r|ρ|1), r2 = H(r|ρ|2) and r3 = H(r|ρ|3). Then it
generates the tokens and commitments in three steps.

Step 1. The TTP computes M request tokens for the MN.
Each token will be used for one task. The token for task i
(i ∈ [1,M]) is τi = H(0|Hi(r1)). Here, the one-wayness of
hash chain is exploited to calculate τi (see explanations in
Section V-B2). The commitment to τi is ⟨H(τi), i⟩.

Step 2. The TTP computes M report tokens for the MN,
with each token used for one task. The token for task i is δi =
HMACr2(i|HMACsk(ρ|τi)). Its commitment is ⟨H(δi), i⟩.

Step 3. The TTP computes M · cmax credit tokens. Since
at this time the TTP does not know the number of credits
that the SP will pay for each task, it generates the maximum
possible number of credit tokens for each task. The tokens for
task i are computed as ϵij = HMACr3(j|i|(s′ ⊕Hj(s′′))) for
j = 0, ..., cmax − 1, where s′ = HMACsk(0|ρ|δi) and s′′ =

79

HMACsk(1|ρ|δi). The commitment of ϵij is ⟨H(ϵij), NID⟩,
where NID is the MN’s real identity.

Following these steps, the TTP can also generate the tokens
and commitments for other MNs. The TTP randomly shuffles
each category of commitments and sends them to the SP.

At the end of this phase, each MN gets one secret and
one nonce. The SP gets one secret key, one nonce, N · M
commitments for request (report) tokens and N · M · cmax

commitments for credit tokens. The TTP stores the secret key
of the SP, the secret of each MN and the nonce.

2) Task Assignment: Suppose a MN has retrieved a task i. If
it decides to accept this task, it sends a request to the SP using
a pseudonym PID1. The request contains its request token for
this task, which is τi = H(0|Hi(r1)) where r1 = H(r|ρ|1).

MN → SP: PID1, i, τi (1)

The SP verifies that ⟨H(τi), i⟩ is a valid commitment and
deletes this commitment to avoid token reuse. Then it sends
an approval message to the MN:

SP → MN: HMACsk(ρ|τi) (2)

From this message, the MN computes its report token for task
i, i.e., δi = HMACr2(i|HMACsk(ρ|τi)) where r2 = H(r|ρ|2).

3) Report Submission: When the MN, using a pseudonym
PID2, submits a report for task i, it also submits its report
token δi for this task:

MN → SP: PID2, i, δi, report (3)

The SP verifies that ⟨H(δi), i⟩ is a valid commitment and
deletes this commitment to avoid token reuse. Then it com-
putes s′ = HMACsk(0|ρ|δi), s′′ = HMACsk(1|ρ|δi) and
s′′′ = Hcmax−ci(s′′) and sends the following back to the MN.

SP → MN: s′, s′′′ (4)

Using s′ and s′′′, the MN computes ci credit tokens
ϵj = HMACr3(j|i|(s′ ⊕ Hj(s′′′))) = HMACr3(j|i|(s′ ⊕
Hcmax−ci+j(s′′))) for j = 0, ..., ci − 1. Due to the one-way
property of H , the MN cannot obtain other credit tokens.

4) Credit Deposit: After the MN gets a credit token ϵ,
it waits a length of time randomly selected from (0, T] to
mitigate timing attacks (see Section V-C) and then deposits
the token using its real identity NID:

MN → SP: NID, ϵ (5)

The SP verifies that ⟨H(ϵ), NID⟩ is a valid commitment and
deletes this commitment to avoid token reuse. Then it increases
the MN’s credit account by one.

5) Commitment Renewal: When the first M tasks have been
processed, the SP should communicate with the TTP again to
obtain another set of commitments for the next M tasks. The
commitments for the previous M tasks will be deleted later
as discussed in Section V-D. The SP’s secret key, each MN’s
secret and the nonce are not changed.

B. Dealing with Dynamic Joins and Leaves

1) Join: In the setup phase, the TTP assumes the existence
of V (a system parameter) virtual MNs besides the N real
MNs. It generates the tokens and commitments for both real

and virtual MNs. Also, it sends the commitments to the
request and report tokens of the virtual MNs, mixed with the
commitments for the real MNs, to the SP.

When a new MN joins, the TTP maps it to an unused virtual
MN and sends the virtual MN’s secret r to it. Also, the TTP
generates the credit tokens for the new MN (i.e., the mapped
virtual MN) and sends their commitments to the SP. Afterward,
it tags the mapped virtual MN as used.

If there is no available unused virtual MN when the new
MN joins, the TTP reruns the setup phase again in which
a new set of secrets are issued to the SP and all the current
MNs as well as a new set of virtual MNs. Some MNs may not
have network access during the setup phase and hence cannot
receive the new nonce and their new secrets. To address this
problem, whenever a MN retrieves tasks from the SP, it checks
if it has the same nonce ρ with the SP. Note that the SP always
has the latest version of nonce. If the MN’s nonce is out of
date, it means that the MN has missed the previous setup phase
and its secret is also out of date. In this case, the MN connects
to the TTP to update its secret and nonce.

In practice, the value of parameter V can be adjusted
according to churn rate. If the churn rate is high (i.e., new
MNs join frequently), a larger V can be used to reduce the
number of reruns of the expensive setup phase, at the cost of
higher storage at the SP. If the churn rate is low, a smaller V
can be used to reduce the storage overhead at the SP.

2) Leave: When a MN leaves, its request tokens for future
tasks should be invalidated at the SP. Note that if the request
token for a future task is invalidated, the report token and credit
tokens for the same task are also invalidated automatically,
since the the leaving MN will not be able to compute them.
Let r denote the leaving MN’s secret, ρ denote the current
nonce and r1 = H(r|ρ|1). The TTP releases λ = Hi(r1)
to the SP, where i is the next task to be published. From λ,
the SP can compute the request tokens of the leaving MN for
future tasks. For example, the token for a future task i+ j is
H(0|Hj(λ)). The SP will invalidate these tokens. However,
due to the one-way property of H , the SP cannot derive the
tokens that the leaving MN used in previous tasks. No changes
are made to other MNs.

C. Addressing Timing Attacks
If a MN deposits a credit token earned from a report

immediately after it submits the report, since it uses its real
identity to deposit the token, the SP may be able to link the
report to it via timing analysis. Thus, the MN should wait
some time before it deposits the credit token. Specially, after
a MN gets a credit token, it waits a length of time randomly
selected from (0, T] and then deposits the token.

The parameter T is large enough (e.g., one month) such that,
in each time interval T , many tasks can be created and most
MNs have chances to connect to the SP. The SP will store the
commitments to the credit tokens for a time period of at least
2T (see Section V-D), such that most MNs can deposit their
credit tokens before the commitments are deleted. If a MN
(e.g., with very infrequent network access) wants to deposit
some credit tokens after their commitments are deleted, the
SP can check the validity of these tokens with the TTP, and
update the MN’s credit account accordingly.

80

D. Commitment Removal

The SP removes the commitments to the previous M tasks
as follows. Note that part of commitments are removed to
avoid token reuse immediately after the corresponding tokens
are verified. Since not all MNs accept all tasks, some com-
mitments may remain after the previous M tasks have been
processed. Let texp denote the maximum time at which each
of the previous M tasks will expire. Note that all reports for
the M tasks are submitted before texp and all credit tokens
paid for these reports are sent to MNs before texp. Thus, the
SP can remove the remaining commitments to request and
report tokens after time texp. To allow MNs to deposit their
earned credit tokens, the SP stores the remaining commitments
to credit tokens for another time period of 2T (as discussed
in Section V-C), and removes them after time texp + 2T .

E. Security Analysis

1) Attacks on Incentive: Without loss of generality, let us
consider a task i which is paid at a rate of c credits per report.

Our scheme ensures that each MN can earn at most c credits
from the task by satisfying three conditions. First, the MN can
only obtain one request token for the task and hence can only
be approved by the SP once to report for the task. Second,
from the approval message sent by the SP, the MN can only
get one report token and thus can submit at most one report
for the task. Third, after submitting a report, the MN can only
obtain c credit tokens.

Also, if a MN is not approved by the SP to accept the task, it
cannot obtain the report token and thus cannot submit a report
for the task. Without submitting a report, it cannot obtain the
credit tokens and thus cannot earn credits from the task.

A dishonest MN may forge tokens, but the forged tokens
cannot pass the commitment check. The MN may use the
request token of task j (i.e., τj) to request for task i, but
this will fail since the commitment to τj (i.e., ⟨H(τj), j⟩) has
bound τj to j. Similarly, the MN cannot use the report token
of one task to another task.

A dishonest MN may have compromised a number of other
MNs and obtained their secrets. It may use the request token of
a compromised MN to request for task i, use the report token
of the compromised MN to submit a report and obtain some
credit tokens. However, the obtained credit tokens have been
bound to the compromised MN by their commitments, and
thus cannot be deposited to the dishonest MN’s credit account.
If the dishonest MN is not approved to report for task i but
those compromised MNs are, it may submit its own tokens
from one compromised MN and earn c credits. However, it still
cannot increase its credits using the tokens of the compromised
MNs. Thus, the dishonest MN cannot earn more than c credits
from task i no matter how many MNs it compromises.

2) Attacks on Privacy: Since each MN uses pseudonyms
to retrieve tasks, request tasks and submits reports, the SP
cannot know the MN that has submitted a specific report from
whom it is communicating with. Also, the SP cannot know
the information from the request and report tokens, since the
tokens have been randomized (i.e., anonymized) by each MN’s
secrets that the SP does not know. For similar reasons, the SP
cannot link multiple reports submitted by the same MN.

The SP can link a credit token to a MN, since the MN uses
its real identity to deposit the credit token. However, the SP
cannot link the credit token to the report and task (or the report
token and request token) from which the credit is earned, since
the connection between them has been anonymized using the
MN’s secret r3. Thus, linking a credit token to a MN does not
help the SP to break the MN’s privacy.

F. Cost Analysis
Each MN only stores one secret and one nonce. The TTP

stores the secret key of the SP, the secret of each MN and
the nonce. It can be seen that the storage at each MN and
the TTP is low. The SP mainly stores M(N +V)(2cmax+1)
commitments for the next M tasks, where N (V) is the number
of real (virtual) MNs. It also stores (N +V)cmax credit token
commitments for each task created in the past time window
2T . Let us consider a simple case. Suppose N = 10000, V =
1000, M = 1000, cmax = 5, T = 30 days and 1000 tasks
are generated per day. Also, suppose SHA-256 is used as the
hash function H , and each task ID or node ID has 8 bytes.
Then the storage at the SP is about 137GB. We expect that
such storage cost is not an issue for modern servers.

For each task (throughout the setup, task assignment, report
submission and credit deposit phases), each MN computes at
most cmax+2 hashes and cmax+1 HMACs, the SP computes
at most 2N(cmax + 1) hashes and 3N HMACs, and the TTP
computes (N+V)(3cmax+4) hashes and (N+V)(cmax+4)
HMACs. Since hash and HMAC are extremely efficient, the
computation cost is low.

Since each message that a MN sends and receives mainly
contains one or two hash values, the communication cost is
about two hundred bytes per task for each MN, which is low.

VI. A TTP-FREE SCHEME

To provide privacy-aware incentives for the scenarios where
no TTP is available, we design a TTP-free scheme. It uses
blind signature and partially blind signature to generate tokens
and commitments for MNs in a privacy-preserving way.

A. The Scheme
The SP has three private keys K1, K2 and K3 which are

used to generate partially blind signatures, and another private
key K0 which is used to generate traditional digital signatures.
The SP also has a private key d and public key e which
are used to generate blind RSA signatures. These keys are
assigned by a (possibly offline) certificate authority. Besides,
the SP has a secret key sk generated by itself, and each MN
has three secrets r1, r2 and r3 generated by itself.

1) Setup: Each MN communicates with the SP with its real
identity to obtain the tokens and commitments for the first M
tasks. Suppose these tasks’ identifier are 1, 2, ...,M .

For each task i (i = 1, 2, ...,M), the MN computes cmax

random values mij = H(i|j|Hi(r1)) where j = 1, 2, ..., cmax.
Each value and the SP’s RSA signature over the value con-
stitute one credit token, which is ϵij = ⟨mij , SIGd(mij)⟩.
However, the MN cannot obtain the RSA signature until it
submits a report for this task.

To commit to credit token ϵij , the MN sends H(mij) and its
real identity NID to the SP. The SP signs on ⟨H(mij), NID⟩

81

with key K0 and returns the signature SIGK0(H(mij)|NID).
Then the MN obtains the commitment to ϵij , which is
⟨H(mij), NID, SIGK0(H(mij)|NID)⟩. To reduce the com-
putation cost, the SP can build a Merkle hash tree [24] over all
⟨H(ϵij), NID⟩ of the same MN, and generates just one digital
signature for all of them. The SP ensures that no two H(mij)
(of the same MN or different MNs) are identical. Since each
mij is a result of the hash function H , the probability of
generating two identical mij (and H(mij)) is negligible.

For each mij , the MN generates a random blinding factor
zij = H(i|j|Hi(r2)|x), where x is the smallest positive
integer such that zij is relatively prime to the pubic modulus
Q of the RSA signature. From each pair of mij and zij ,
the MN computes µij = mij · zeij mod Q. Then it com-
putes cmax report token components for task i which are
bij = H(µi1|µi2|...|µij |i|j) where j = 1, 2, ..., cmax. Each
bij and the SP’s partially blind signature PBSK2(i, bij) over
it constitute one possible report token for task i, which is
δij = ⟨bij , PBSK2(i, bij)⟩. However, the MN cannot obtain
the signature until it is approved by the SP to accept this task.
Only one report token for task i will be obtained by each MN.

To commit to report token δij , the MN obtains a partially
blind signature PBSK3(i, bij) from the SP. However, the
SP does not send this signature to the MN in plaintext. It
encrypts the signature with key kij = H(sk|i|j), and sends
the ciphertext Ekij (PBSK3(i, bij)) to the MN. Given i and
j, the SP uses the same encryption key kij for all MNs.

For each task i, the MN generates a request token τi =
H(0|Hi(r3)). Similar to the TTP-based scheme, hash chain
is used to calculate τi. To commit to token τi, it obtains a
partially blind signature PBSK1(i, τi) from the SP.

In the end, each MN obtains M commitments to request
tokens, M · cmax encrypted commitments to report tokens,
and M · cmax commitments to credit tokens. The tokens τi,
δij , and ϵij can be stored for later use or generated on the fly.

Since bij is committed, µi1, µi2, ..., µij are also committed
due to the one-way property of H . Considering that mij is
committed, the random blinding factor zij is fixed. Thus, each
MN cannot change its credentials after the setup phase.

2) Task Assignment: When the SP publishes task i, it also
publishes ci, which is the number of credits paid for each
report of task i. In the following, we omit the subscript and
refer to the number as c for simplicity. The SP also publishes
a key k′ = kic = H(sk|i|c). Note that in the setup phase, each
MN generated cmax report token components for task i and
obtained an encrypted commitment for each of them. From c,
each MN knows that the report token component it should use
for task i is bic = H(µi1|µi2|...|µic|i|c). Using key k′, it can
decrypt the commitment to bic, which is PBSK3(i, bic).

Suppose a MN has retrieved a task i. If it decides to
accept task i, it sends a request to the SP using a pseudonym
PID1. The request includes the MN’s request token τi and
its commitment PBSK1(i, τi).

MN → SP: PID1, i, τi, PBSK1(i, τi) (6)

The SP verifies the signature PBSK1(i, τi), and knows that
token τi has been committed for task i. Then the MN obtains
a partially blind signature PBSK2(i, bic) on bic from the SP
via a standard partially blind signature scheme. Conceptually,

the SP delivers the signature in an approval message:

SP → MN: PBSK2(i, bic) (7)

Now the MN obtains a report token for task i, which is δic =
⟨bic, PBSK2(i, bic)⟩.

3) Report Submission: When the MN, using a pseudonym
PID2, submits a report for task i, it also submits its report
token for this task and the commitment:

MN → SP:PID2, i, bic, PBSK2(i, bic), PBSK3(i, bic),

µi1, µi2, ..., µic, report
(8)

Signature PBSK2
(i, bic) ensures that the MN has been

approved by the SP to report for task i, and signature
PBSK3(i, bic) ensures that bic has been committed for task i.
If the two signatures are valid, the SP can issue c pseudo-
credits to the MN. Specifically, the SP first verifies that
bic ≡ H(µi1|µi2|...|µic|i|c). Due to the one-way property of
H , the SP knows that each µij (j = 1, 2, ..., c) has also been
committed for task i. Then it signs each µij with the private
key d and sends the signatures to the MN.

SP → MN: SIGd(µi1), SIGd(µi2), ..., SIGd(µic) (9)

From each signature SIGd(µij), the MN removes the blinding
factor zeij mod Q and gets a blind RSA signature for mij

which is SIGd(mij). Then it obtains c credit tokens ϵij =
⟨mij , SIGd(mij)⟩ (j = 1, 2, ..., c).

4) Credit Deposit: After the MN gets a credit token ϵ =
⟨m,SIGd(m)⟩, it waits a length of time randomly selected
from (0, T] to mitigate timing attacks (see Section V-C) and
then deposits the token using its real identity NID:

MN → SP: NID,m, SIGd(m), SIGK0(H(m)|NID) (10)

The second signature means that the credit token has been
committed to this MN. The SP verifies the two signature and
then increases the MN’s credit account by one.

5) Token and Commitment Renewal: When the first M
tasks have finished or expired, each MN should communicate
with the SP to obtain a new set of commitments (as done in
the setup phase) for the next M tasks whose identifiers are
M + 1,M + 2, ..., 2M . The keys used by each MN and the
SP do not change. Similarly, renewal is needed for every task
group [k ·M + 1, (k + 1)M] (k ≥ 0).

The SP may launch isolation attacks, in which it only issues
the commitments for the next M tasks to one MN. When the
MN submits reports for these tasks, the SP can link the reports
to it. To address this attack, each MN generates a signature
over the task ID range (i.e., the smallest and largest ID) of
the next M tasks. Before submitting a report for a task, each
MN makes sure that the SP has collected signatures from a
large-enough number of MNs (e.g., half of the MNs).

B. Dealing with Dynamic Joins and Leaves

Let i denote identifier of the most recently created task.
Suppose k · M ≤ i < (k + 1)M . When a new MN joins, it
obtains the commitments for the tasks in range [i+1, (k+1)M]
from the SP, as done in the setup phase. When a node leaves,
its credentials for the tasks in range [i+ 1, (k + 1)M] should
be revoked. Let r1, r2 and r3 denote its secrets. The MN

82

releases Hi+1(0|r1), Hi+1(0|r2) and Hi+1(0|r3) to the SP.
From them, the SP can compute the leaving MN’s tokens and
commitments for those tasks, and invalidate them. Due to the
one-way property of hash function H , the SP cannot derive
the credentials that the leaving MN used for previous tasks.

C. Credential Removal

A MN removes the credentials for a task if it decides not
to accept the task. For the tasks that it accepted, the tokens
and commitments can be removed after they are submitted or
deposited to the SP.

D. Security Analysis

1) Attacks on Incentive: Similar to the analysis in Section
V-E1, the TTP-free scheme also ensures that each MN can
earn at most c credits from a task.

A dishonest MN may forge tokens but these tokens will fail
the commitment check. Since the commitment to each request
(report) token binds the token to a task identifier, the MN
cannot use the request (report) token of one task to process
another task.

A dishonest MN may compromise a number of other MNs
but it still cannot earn more than c credits from a task.
Since the commitment of each credit token binds the token
to a specific MN, the dishonest MN cannot deposit the credit
tokens of the compromised MNs to its own account. It may
use the report tokens of a compromised MN to submit reports,
but the obtained credit tokens have been committed to the
compromised MN. This is because, given bij , the µi1, ..., µij

used to generate bij are determined due to the one-wayness of
hash function H . Due to the unforgeability of blind signature,
the mi1, ..., mij are also determined. In the next token renewal
phase, the dishonest MN may want to bind the credit tokens
of the compromised MNs (in addition to its own credit tokens)
to its own identity, but the binding of more than one set of
credit tokens to the same MN will be detected by the SP.

2) Attacks on Privacy: Since each request and report token
(as well as its commitment) is constructed using a partially
blind signature, the SP cannot know the MN that has submitted
a specific report, and cannot link multiple reports submitted
by the same MN. Although the SP can link a credit token to
a MN, since the connection between the credit token and its
corresponding report token is anonymized using a blind RSA
signature (i.e., the connection between mij and µij is blinded
with the random factor zij), the SP cannot link the credit token
to the report from which the credit is earned. Thus, linking a
credit token to a MN does not lead to any privacy leakage.

E. Cost Analysis

Each MN mainly stores M(2cmax+1) commitments for the
next M tasks. It also stores the credit tokens earned during the
past time interval T . Let us consider a simple case. Suppose
the parameters are the same as in Section V-F, and a MN
accepts 100 tasks per day. Also, suppose RSA (1024-bit) is
used as the digital signature scheme and partially blind RSA
[25] is used as the partially blind signature scheme. Then the
storage at each MN is about 2.7MB. The cost is not an issue
for modern smart phones with many gigabytes of storage.

TABLE II
THE RUNNING TIME OF OUR SCHEMES WHEN M = 1000 AND cmax = 5

Setup Task Report Credit
Assignment Submission Deposit

TTP 45ms* - - -

TTP-based SP - 4µs 8µs 4µs
MN - 0.56ms 2.4ms -

TTP-free SP 32s* 4.1ms 8.2ms 0.2ms
MN 37s 6.3ms 0.5ms -

* The time is needed to generate credentials for each MN.

For the whole life cycle of each task, each MN mainly
performs one modular exponentiation and participates in the
generation of cmax +2 partially blind signatures. In the setup
phase, the SP generates N · M · cmax digital signatures and
NM(cmax +1) partially blind signatures. Later on, when the
SP receives a request, report or credit token, it generates at
most cmax signatures and verifies at most two signatures.

Each message mainly contains at most cmax signatures
or hashes. Since expectedly cmax is not large in practice,
the communication cost is low. Under the aforementioned
parameter settings, it is about 4.5KB per task. Considering
that setup and credit deposit can run when the MN has WiFi
access, the remaining cost is about 1.4KB per task.

VII. EVALUATIONS

To study the feasibility of our solution, we have built a pro-
totype and implemented our schemes in Java. The prototype
has three components: a MN, a SP and a TTP. The MN is
implemented on Android Nexus S Phone, which is equipped
with 1GHz CPU, 512MB RAM, running Android 4.0.4 OS.
The SP and TTP are implemented on a Windows Laptop with
2.6GHz CPU and 4GB RAM. For simplicity, our prototype
uses RSA as the digital signature scheme and partially blind
RSA [25] as the partially blind signature scheme. SHA-256 is
used as the hash function.

Table II shows the running time of our schemes when
M = 1000 and cmax = 5. In the TTP-based scheme, every
phase can be finished within tens of milliseconds, which means
the computation cost is very low. In the TTP-free scheme, the
task assignment, report submission and credit deposit phases
only take several milliseconds. The running time of the setup
phase is long (around half a minute) for both the MN and
the SP, which means high computation cost. However, such
cost is amortized among 1000 tasks. Also, the running time
can be significantly reduced if other more efficient signature
schemes are used instead of RSA. Using other native libs
(e.g., OpenSSL) in combination with Java can also reduce the
running time. Moreover, the SP can be implemented on more
powerful high-end servers to further shorten the running time.
Lastly, since the setup phase for certain tasks is run before
these tasks are created, the running time is not a big issue
even for tasks with real-time requirements.

We also measure the power consumption of the smartphone.
In the experiment, the smartphone iteratively runs the whole
life cycle of one task (setup, task retrieval & assignment,
report submission, and credit deposit) for 2500 (500) tasks
in the TTP-based (TTP-free) scheme. The smartphone com-
municates with the laptop using TCP connections via WiFi,
and it initiates a new TCP connection for each phase. In this
process, we use Agilent E3631A Power Supply to power the

83

TABLE III
THE POWER CONSUMPTION OF OUR SCHEMES ON A SMARTPHONE

Scheme TTP-based TTP-free
Power (W) 0.363 0.349

Energy cost per task (J) 0.05 0.22
Num. of Tasks per Battery (3.7V, 1500mAh) 399600 90818

smartphone at a constant voltage and program it to capture
the current of the smartphone. From the voltage and current,
the power consumption can be easily calculated. Table III
shows the results. The TTP-based scheme only consumes 0.05
joules to process each task. The TTP-free scheme consumes
a little more energy, which is 0.22 joules, due to the use
of computation expensive cryptography. However, the power
consumption of both schemes is low. For example, a fully-
charged standard battery for a Nexus S phone (3.7V, 1500
mAh) can support 400 (90) thousand tasks when the TTP-
based (TTP-free) scheme is used.

VIII. DISCUSSIONS

The SP may infer if a MN has accepted a task from the
number of credits that the MN has earned, and then cause
privacy leakage. For instance, suppose the SP has published
100 tasks, each of which is paid at a rate of one credit per
report. If a participant Bob has earned 100 credits, the SP can
infer that Bob has submitted a report for every task. If one of
the tasks is “Report the temperature at 10:00 AM in Central
Park,” the SP knows that Bob is in Central Park at 10:00 AM.
To launch this attack, the SP may create multiple tasks that
require the MN to appear at close-by times (e.g., 10:01 AM)
and locations. In the above example, suppose 51 tasks require
a temperature reading near Central Park around 10:00AM. If
Bob has earned 50 credits, at least one credit is earned from
those 51 tasks. Thus the SP knows that Bob is near Central
Park around 10:00 AM.

To address this attack, each MN should carefully select the
tasks that it will accept and limit the number of accepted
tasks. One possible approach is as follows. Among the tasks
that it is able to report for, the MN identifies the “similar”
tasks which may reveal the same privacy information about it
(e.g., its location around a certain time). For each group of
similar tasks, it accepts one of them with a certain probability
(e.g., 0.5). This ensures that the number of its accepted tasks
does not exceed the number of similar-task groups. From
the number of credits earned by a MN, the SP does not
know which tasks the MN has reported for, and thus cannot
infer any private information about the MN. Since each MN
intentionally omits some tasks, this approach sacrifices some
chances of earning credits for better privacy. Due to the space
limitation, we plan to explore this topic in a separate work.

IX. CONCLUSIONS

To facilitate large-scale deployment of mobile sensing appli-
cations, we proposed two credit-based privacy-aware incentive
schemes for mobile sensing to promote user participation, cor-
responding to scenarios with and without a TTP respectively.
Based on hash and HMAC functions, the TTP-based scheme
has very low computation and storage cost at each MN. Based
on blind and partially blind signatures, the TTP-free scheme
has higher overhead at each MN but it ensures that no third

party can break the MN’s privacy. Both schemes can efficiently
support dynamic joins and leaves.

REFERENCES

[1] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden, H. Balakrish-
nan, S. Toledo, and J. Eriksson, “Vtrack: accurate, energy-aware road
traffic delay estimation using mobile phones,” in Proc. ACM SenSys,
2009, pp. 85–98.

[2] M. Mun, S. Reddy, K. Shilton, N. Yau, J. Burke, D. Estrin, M. Hansen,
E. Howard, R. West, and P. Boda, “Peir, the personal environmental
impact report, as a platform for participatory sensing systems research,”
in Proc. MobiSys, 2009, pp. 55–68.

[3] J. Hicks, N. Ramanathan, D. Kim, M. Monibi, J. Selsky, M. Hansen,
and D. Estrin, “Andwellness: an open mobile system for activity and
experience sampling,” in Proc. Wireless Health, 2010, pp. 34–43.

[4] N. D. Lane, M. Mohammod, M. Lin, X. Yang, H. Lu, S. Ali, A. Doryab,
E. Berke, T. Choudhury, and A. Campbell, “Bewell: A smartphone
application to monitor, model and promote wellbeing,” in 5th Intl. ICST
Conf. on Pervasive Computing Technologies for Healthcare, 2011.

[5] C. Cornelius, A. Kapadia, D. Kotz, D. Peebles, M. Shin, and N. Trian-
dopoulos, “Anonysense: privacy-aware people-centric sensing,” in Pro-
ceedings of the 6th international conference on Mobile systems, appli-
cations, and services (MobiSys). ACM, 2008, pp. 211–224.

[6] E. D. Cristofaro and C. Soriente, “Short paper: Pepsi—privacy-enhanced
participatory sensing infrastructure,” in Proceedings of the fourth ACM
conference on Wireless network security (WiSec), 2011, pp. 23–28.

[7] D. Christin, C. Rosskopf, M. Hollick, L. A. Martucci, and S. S.
Kanhere, “Incognisense: An anonymity-preserving reputation framework
for participatory sensing applications,” in Proc. IEEE PerCom.

[8] D. Yang, G. Xue, X. Fang, and J. Tang, “Crowdsourcing to smartphones:
Incentive mechanism design for mobile phone sensing,” in Proc. ACM
MobiCom, 2012.

[9] S. Pidcock, R. Smits, U. Hengartner, and I. Goldberg, “Notisense: An
urban sensing notification system to improve bystander privacy,” in
PhoneSense, 2011.

[10] M. Shao, Y. Yang, S. Zhu, and G. Cao, “Towards statistically strong
source anonymity for sensor networks,” in Proc. IEEE INFOCOM, 2008.

[11] Z. Zhu and G. Cao, “Applaus: A privacy-preserving location proof
updating system for location-based services,” in IEEE INFOCOM, 2011.

[12] K. L. Huang, S. S. Kanhere, and W. Hu, “Towards privacy-sensitive
participatory sensing,” in The 5th International Workshop on Sensor
Networks and Systems for Pervasive Computing, 2009.

[13] M. Shao, S. Zhu, W. Zhang, and G. Cao, “pdcs: Security and privacy
support for data-centric sensor networks,” IEEE Transactions on Mobile
Computing, vol. 8, no. 8, pp. 1023–1038, 2009.

[14] Y. Yang, M. Shao, S. Zhu, B. Urgaonkar, and G. Cao, “Towards
event source unobservability with minimum network traffic in sensor
networks,” in Proc. ACM WiSec, 2008.

[15] E. De Cristofaro and R. Di Pietro, “Preserving query privacy in urban
sensing systems,” in Proc. of the 13th intl. conf. on Distributed Com-
puting and Networking (ICDCN). Springer-Verlag, 2012, pp. 218–233.

[16] P. Gilbert, L. P. Cox, J. Jung, and D. Wetherall, “Toward trustworthy
mobile sensing,” in Proc. ACM HotMobile, 2010, pp. 31–36.

[17] R. K. Ganti, N. Pham, Y.-E. Tsai, and T. F. Abdelzaher, “Poolview:
stream privacy for grassroots participatory sensing,” in Proc ACM
SenSys, 2008, pp. 281–294.

[18] J. Shi, R. Zhang, Y. Liu, and Y. Zhang, “Prisense: privacy-preserving
data aggregation in people-centric urban sensing systems,” in Proc. IEEE
INFOCOM, 2010, pp. 758–766.

[19] Q. Li and G. Cao, “Efficient and privacy-preserving data aggregation in
mobile sensing,” in Proc. IEEE ICNP, 2012.

[20] M. Ion, G. Russello, and B. Crispo, “Supporting publication and
subscription confidentiality in pub/sub networks,” in SecureComm, 2010.

[21] D. Chaum, “Blind signatures for untraceable payments,” in Advances in
Cryptology: Proceedings of CRYPTO ’82. Plenum, 1982.

[22] ——, “Blind signature system,” in Advances in Cryptology: Proceedings
of CRYPTO ’83. Plenum, 1983.

[23] M. Abe and T. Okamoto, “Provably secure partially blind signatures,”
in Proc CRYPTO, 2000, pp. 271–286.

[24] R. Merkle, “Protocols for public key cryptosystems,” IEEE S&P, 1980.
[25] M. Abe and E. Fujisaki, “How to date blind signatures,” in Proc.

ASIACRYPT, 1996, pp. 244–251.

84

