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Abstract—In this work we present a mobile stress recognition
system based on an existing activity recognition system using a
hip-worn inertial measurement unit and a chest belt. Integrat-
ing activity knowledge, the prediction of different human stress
levels in a mobile environment can be enabled while the state of
the art is focussed on stress recognition in static environments.
Our system has been implemented on an Android mobile phone
and evaluated for different Bayesian networks as classifiers.
Our implementation is able to operate in real-time with a stress
inference rate of 1 Hz.

The results of this work indicate that the implemented
system is able to differentiate between the states ’No Stress’
and ’Stress’ in a mobile context. A more detailed distinction
of stress in five substates has not been possible in a reliable
way to date. With our results, the proposed system can serve
as a basis for further improvements with larger data sets and
for in-situ testing during disaster assessment.
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I. INTRODUCTION

Stress is of high importance for personal health and well-
being. In the last years, it also gained more attention in
public. Interestingly, we all know and use the term ’stress’ in
our daily life for different situations. The individual percep-
tion of stress varies from person to person with remarkably
few people sharing the same definition. Nevertheless there
is a common aspect in all formulations because any demand
upon our adaptability causes the stress phenomenon.

While there are different stress definitions (e.g. systemic
or psychological stress, cf. [1]), our work follows the defini-
tion of Selye [2]: “Stress is a state manifested by a syndrome
which consists of all the non-specifically induced changes
in a biologic system”. Hence, stress has no particular cause
while the elements of its form are the visible changes due to
stress. To put it differently: looking at non-specific, by many
different agents induced bodily changes gives a picture of
stress, caused by the General Adaptation Syndrome (GAS).
The intensity of the GAS manifestations allows to deduce
the stress intensity. [2].

While in the last years, many approaches have been
brought up to deduce the activity of persons from sensor
measurements in real-time (e.g. [3], [4]), unobtrusive real-
time stress recognition has not been addressed adequately. In

particular for users in demanding and/or dangerous situations
however, such knowledge would add important value. For
instance the mission control in disaster relief missions could
benefit from knowing when to replace a team and force them
to rest, so they do not run into bigger risks for themselves.

The objective of this paper is the presentation of an
approach to measure a user’s stress level based on a wireless
chest belt and an activity recognition system together with
a prototype which allows the inference of six stress levels
on an Android operated mobile phone. The results of our
experiments are encouraging to show that the recognition of
stress is feasible, but still needs further work to reach the
required standards of reliability.

The organisation of this paper is as follows: the next
section will explain the underlying theory of our recognition
approach and report on the state of the art in activity
recognition. In section III we explain how we recorded
reference data to train our classifier and to evaluate our re-
sults, before section IV explains the details of the developed
classifier. The evaluation of our prototype in the explained
environment and a conclusion close this paper.

II. RELATED WORK

This section will first give the theoretical background for
measuring physical manifestations of stress, before it relates
our approach with the state of the art.

A. Psychophysiological Measuring

The processes taking place in the human body manifest
themselves to a large degree in measurable events [5]. All
these measurable, so called deductive, phenomena are called
bio-signals if they can be quantified directly at the body
surface. For instance the measurement of change of the chest
during respiration or the voltage fluctuation at the cranium
(due to brain activity) are bio-signals. Derived functional
dimensions, like respiration frequency or depth, are referred
to as psychophysiological parameters. The following bio-
signals are particularly relevant for stress recognition:

1) Electro Dermal Activity (EDA): The electro dermal
reaction measures describe skin conductance and potential
deflection while showing direct correlations to psycholog-
ical processes. The skin conductance is measured as an
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exosomatic measure by applying an electric potential to
the biological system. In particular the skin conductance
response (SCR) develops as a reaction to particular stimuli.
The form of the reaction development is not completely
uniform especially concerning the increase and decrease
times.

2) Cardiovascular Activity: As the cardiovascular sys-
tem shows distinct reactions in conjunction with a lot of
psychological processes including, for instance, activation
and stress. The cardiovascular system provides a number
of relevant psychophysiological parameters including heart
rate, blood pressure and peripheral vasomotion.

The heart rate (HR) is defined as the number of heart
beats per minute. It is the most used indicator for the
cardiovascular activity in the field of psychophysiology and
hence also an important factor for stress recognition. Heart
rate variabilities accompany nearly any change in physical
or psychological requirements. Under activation conditions
an increase of the heart rate up to 2.5 times is possible
[6]. An important characteristic of tonic changes is the heart
rate variability. It can be assumed that, for instance under
alertness supporting conditions, the variability decreases
with the increase of the heart rate reflecting the more precise
central-nervous heart rate control under exertion. Another
point which has to be considered is the age of the subject as
it influences both, the heart rate and the heart rate variability.

Electrical Muscle Activity As psychophysiological arousal
directly relates to muscle tension, the registration of the elec-
trical muscle activity represents a major psychophysiological
method. The corresponding bio-potential is recorded using
electromyography.

3) Temperature: When talking about temperature as a
physiological signal of the body, it is important to differenti-
ate between core and body temperature which are commonly
referred to as the inner temperature of the organism and
the skin temperature. The latter is much more dependent on
the environmental temperature and hence more difficult to
interpret. For instance, the temperature change of the skin
during the so called emotional rubescence, which might be
caused by stress, is at most 1◦C, normally only around some
tenths of ◦C [5].

4) Respiration: The respiratory activity is commonly
registered in psychophysiological examinations, but rarely
serves as an independent measurement for bodily reactions
as it is subject to deliberate control. In general its recording
is meant to identify interference signals caused by respiration
in the elevation of the ECG, EDA and others.

B. State of the Art Stress Recognition Approaches

In the related work, stress recognition is mainly consid-
ered in the fields of human computer interaction [7], [8],
real-time security systems [9] or affective state detection
of drivers [10]–[12]. In all these research areas the stress
recognition is intended to help the system reacting on the

affective state of the user. Hence, they concentrate on stress
recognition in static environments where the subjects remain
in a sitting position. Therefore, most of the used sensing
modules are not wearable or practicable in a mobile envi-
ronment. Others, like the BodyMedia SenseWear Armband
lack the possibility of real-time signal transmission and thus
cannot be used for real-time classification.

The range of physiopsychological reactions, the so called
signals, is very broad. In theory, a complete recording of all
of them would be available, but in practice, only a subset
of the possible measurements are used in the related work
to identify the human stress level. The selection thereby
depends on the situation and requirements under which the
recognition system has to operate. For instance, the pre-
requisite of using minimal invasive measurements methods
[8] rules out obtrusive methods like electromyography. The
following table gives an overview about the signals used in
the state of the art.

Reaction system Signal Related work
Cardiovascular system ECG [10], [11], [13]

Heart rate [7], [9], [14], [15]
Blood volume [8]

Electro dermal system SCR / GSR [7]–[11], [15]
Skin temperature [7], [8], [13]

Respiratory system Respiration [10], [11], [13]
Muscular system EMG [10], [11]
Eye EOG [13]

Pupil diameter [8]
Eye movement [7]
Eyelid movement [16]

Electric brain activity EEG [13]
Others Mouth openness [7]

Facial Expression [16]
Gaze [16]

Table I
BIO-SIGNALS USED FOR STRESS AND EMOTION RECOGNITION.

Challenges for stress recognition can be caused by day-
to-day variabilities (e.g. caused by different moods) and
real-time recognition with fast response times even in high-
dimensional feature spaces. There are different approaches
to this problem in the related work using Fisher Projection
or Sequential Floating Forward Search [17].

The stress levels are recognised in so called classifiers
which take as input features calculated from the signals.
From training data the classifiers are adapted (“learning”)
to the specific use case. The following classifiers have been
used in the related work: Support vector machine (SVM [8],
[11], Adaptive Neuro-Fuzzy Inference System (ANFIS) [11],
k-nearest neighbors (kNN) [9], [15], [17], Discriminant
Function Analysis (DFA) [15], Marquardt Backpropaga-
tion Algorithm (MBP) [15], Fisher Discriminant Analysis
(FDA) [9], Fuzzy logic [14], Decision Tree [8], Naı̈ve
Bayes [8], Bayesian networks [16], and Dynamic Influence
Diagram [7].
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III. GROUNDTRUTH EXPERIMENT

To create a working classifier, the most adequate sensors
have to be chosen and data have to be recorded to train the
classifier. For the recorded data, also the groundtruth, i.e. in
our case the actual stress level at the moment in time, has
to be recorded. The following section will detail our choice
of sensors and the experiment which enables us to record
bio-signals for stress with groundtruth.

A. Used Sensors

One of our targets is the recognition of stress in mobile
environments. Therefore we need sensors to measure bio-
signals, but moreover also sensors for the activities.

1) Zephyr BioHarness BT: For the bio-signals, we have
chosen the Zephyr BioHarness BT. It is a compact electronic
module attached to a lightweight Smart Fabric strap, which
incorporates electrocardiogram, breathing, temperature and
skin conductance level sensors. Besides the raw signals
also derived values are available. Used derived values given
by the sensor are the heart rate and RR-interval, which are
calculated from the ECG, and the breathing rate, which is
calculated from the raw signal. The specifications for all
directly measured and inferred signals are given in Table II.

Unit Range Frequency (Hz)
ECG Bits 0-1024 250
Heart Rate BPM 25-240 1
RR-Interval ms - 18
Breathing Sensor Bits 0-4095 18
Breathing Rate BPM 3-70 1
Temperature ◦C 10-60 1

Table II
RECEIVED SENSOR DATA FROM THE ZEPHYR BIOHARNESS BT.

2) Activity Recognition System: The activity recognition
system (ARS) [3] used is capable of predicting the current
activity of a person based on the sensor data provided by
an IMU with high reliability. It distinguishes between 7 dif-
ferent states: Sitting, Standing, Walking, Running, Jumping,
Falling, and Lying.

The ARS receives raw data with a frequency of 100
Hz and yields a recognition delay of about 20ms for an
inference rate of 4Hz. Ported to Android, the system gives
a delay of 1s at an inference rate of 2Hz.

B. Stroop Colour Test

The methods for eliciting stress are the basis for the gen-
eration of the training data. In this work, regarding mental as
well as physical stress, a multicomponent stress test is used,
incorporating both psychological and physiological aspects.

The Stroop Colour Word Test (CWT) is a well known
method in the field of psychology for putting cognitive load
on a subject [18], named after J.R. Stroop [19]. It describes
the fact that people are faster in recognizing a written word
than a symbol with the same meaning. An example of a
Stroop CWT is illustrated in Figure 1.

blue blue 
(a) (b) 

Figure 1. Example for the Colour Word Test. If a person is asked to name
the colour in which the words are written, it takes remarkably longer in the
incongruent case (b) than in the congruent case (a).

The CWT is a reliable test to study stress responses [18]
and accordingly it has already been successfully applied as
an elicitation method in the related work, e.g. in [8]. In
order to induce different levels or intensities of stress, the
CWT is implemented in this work as a game to challenge
the test person in different difficulties. Each level extends
the preceding one by a new component intended to increase
the difficulty of the test and hence the perceived stress.

The first level represents a standard CWT without any
modifications as described above. In the second level the
CWT is extended with a pacing timer of five seconds to put
time pressure on the test subject. Then in the next stage the
possible answers, the test person can choose, are presented
in different colours instead of just black. This is causing
additional distraction and thus more stress. On the fourth
level a task variation is added by randomly asking the test
person to either name the font colour of the word or the word
itself. Finally on the last level the time pressure is increased
by reducing the limit for an answer to three seconds.

In addition, physical load has been put on a test subject.
The recorded activities are used as the ground truth for
the physical stress. With an increasing physical load, for
instance ’Running’ is more exhausting than ’Walking’, also
the physical stress increases. Hence the activity trace defines
the physical stress which is put on a person. Being able
to record the physical stress during a certain sequence of
activities and the mental stress in a static, in this case sitting,
situation, it is possible to combine these two methods. This
way, the differences, for instance due to additional mental
stress, can be detected. This is the basis for recognizing
stress in a mobile and versatile environment.

IV. CLASSIFIER DESIGN

This section presents the training dataset and the resulting
classifier, a Bayesian network (BN).

A. Training Dataset

The training dataset serves as an input for the learning
of the stress classifier and hence has a huge influence
on its quality. The data set has been recorded with the
experiments described above. Fifteen subjects participated
in the study, aged between 24 – 57, 5 female and 10
male. Only five subjects participated in the combined part.
According to the presented stress elicitation methods, three
different experiments for data acquisition were conducted.
First, a mental stress test using the adapted CWT, second a
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physical stress test and third a combined stress test. Overall
550 minutes of data have been recorded during the study.
The data have been labelled manually according to the self-
assessed stress of the test person after the experiment. Detail
can be found at http://www.kn-s.dlr.de/activity/.

B. Bayesian Network

In this work a Bayesian network (BN) is used as a
classifier to identify the stress level of a person. It has
to differentiate between six stress levels varying from ”no
stress”, level 0, to ”very high stress”, level 5. Bayesian
networks have been used as they can handle uncertain and
missing data - such as from mobile sensors. Furthermore also
the used activity recognition system relies on a Bayesian
network for classification. Hence its output is given as a
probability distribution, which can be easily integrated into
stress recognition with BNs.

Based on the recorded dataset, a Bayesian network has to
be learnt. Every feature is represented by a discrete random
variable, just like stress (with its six stress levels as states).
The first step is to choose the features which have to be
deduced from the recorded raw data.

1) Random Variables: The objective is to find a set of
random variables which determines the different stress states
as good as possible. The points which then have to be
considered are the sensitivity to stress, the computational
complexity of calculating the feature and the available data
provided by the sensors. The used sensors, the Xsens MTx
IMU and the Zephyr BioHarness BT, provide the following
signals: Heart Rate, Breathing Rate, Temperature, and RR-
Interval. Table III presents the features selected for our work.

Normalized Absolute Value: The normalized absolute
value x of the heart rate xhr, the breathing rate xbr and
the temperature xtemp are used as features. Because the
absolute values are very much person dependent, a baseline
normalization xbaseline is used to get the current value
relative to a state of rest.

Mean Value: The mean values of the heart rate, the
breathing rate and the temperature are used for different
window lengths depending on the speed in which a stress
stimulus shows in the reaction of the respective system.

Standard deviation: The standard deviation σx indi-
cates in what extend the signals in the window N vary from
the mean.The same window sizes as for the mean value x
are used. Thereby the same window sizes as for the mean
value x are used.

RMSSD: The square root of the mean squared differ-
ences of successive NN intervals (RMSSD) [20]. is calculated
with a window size of 1024 samples in order to have enough
heart beats in one interval to get a reliable estimation. With
the used sampling rate of 18Hz, the window includes the
heart beats in 56.9s.

Feature Definition
Signal: Heart Rate
Norm. absolute value xhr
Mean xhr
Standard deviation σxhr

Mean first difference
N∑
i=0

xnormi − xnormi−1

Signal: Breathing Rate
Norm. absolute value xbr
Mean xbr
Standard deviation σxbr

Mean first difference
N∑
i=0

xnormi − xnormi−1

Signal: Temperature
Norm. absolute value xtemp

Mean [3] xtemp

Standard deviation σxtemp

Mean first difference
N∑
i=0

xnormi − xnormi−1

Signal: RR-Interval

RMSSD

√
1
N

N∑
n=1

(RRn −RRn+1)
2

pRR50 NN50
NNtotal

SDRR

√
1

N−1

N∑
n=1

(
RRn −RR−RR

)2
SDSD

√
1

N−1

N∑
n=1

(
|RRn −RRn+1| −RRdiff

)2
Table III

THE SET OF FEATURES STEMMING FROM THE CHEST BELT WHICH ARE
USED IN THIS WORK.

pNN50: The pNN50 is defined as the percentage of NN-
intervals which are greater than 50ms, NN50, regarding the
total number of NN-intervals NNtotal in a window [20]. For
pNN50, the same window size as for the RMSSD is applied.

SDNN: The standard deviation of the NN interval
(SDNN) is a variable to describe the heart rate variation [20],
which is very simple to calculate.

SDSD: The standard deviation of differences (SDSD)
between adjacent NN-intervals is an indicator for the heart
rate variability due to cycles shorter than 5min [20]. The
window size N is the same as the one used for the RMSSD.

Previous Activity: The previous activities have a huge
influence on the momentary measurement. An exhausting
activity, in the past minutes for instance, will result, in a
higher heart- and breathing rate. In order to be able to
link that change to its cause, it is necessary to have the
information about the preceding activity. In this work only
the directly preceding activity is considered.

Features Related to the Current Activity: There are
three features considered related to the current activity. The
current activity itself, its probability and the time it is already
ongoing. All three values are given by the ARS and can be
used directly without additional calculations.
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Figure 2. Bayesian network learnt with continuous transitions for complete
stress.

2) Bayesian network for stress classification: After a
discretization (clustering) of the calculated feature values,
a Bayesian network is learnt based on the training data.
Therefore the local Repeated Hill Climber Algorithm [21]
has been used.

The resulting network, including mental stress, physical
stress and resting phases, can be found in Figure 2. The
originating dataset contains 29531 instances, of which 26578
are used for learning the Bayesian network and 2953 are
used for evaluating the found model.

V. EVALUATION

The Bayesian network learnt from our training data has
been evaluated offline with the test data set, but also live
with new test subjects. The results will be shown in the
following section.

A. Offline Evaluation

S0 S1 S2 S3 S4 S5

Precision 0.971 0.783 0.832 0.871 0.858 0.827
Recall 0.977 0.844 0.858 0.823 0.826 0.848

Table IV
COMPARISON OF PRECISION, RECALL AND CORRECTLY CLASSIFIED

INSTANCES FOR THE LEARNT BAYESIAN NETWORK FROM FIGURE 2.
Si THEREBY REPRESENTS STRESS LEVEL i, 0 ≤ i ≤ 5.

The results of the evaluation with a random 10% test split
(2953 data instances) are presented as precision and recall
in Table IV. ’Stress 0’ has the best results for precision and
recall compared to the other stress states. The learnt network
has a overall classification accuracy of 90.35%, .

The different stress levels can be very well differentiated
from each other. Looking at the precision and recall for the
different classes the worst value is 78.3%. Considering a
binary class distribution with only ’No Stress’ and ’Stress’,
in each case a considerably better result can be achieved.

B. Online Evaluation

Online evaluation has 2 objectives. Time consumption,
memory and CPU usage have to be evaluated, as well as
the prediction accuracy on live data.

1) Performance: The SRS is intended to work on mobile
devices, in particular the Samsung Galaxy S2 (SGS2). This
evaluation is based on the SGS2 with Android 2.3.3 Gin-
gerbread. CPU and memory usage are determined using the
Task Manager. Results are given in Table V.

Used CPU Used RAM
ARS 45% 27MB
SRS without ARS 28% 15MB
SRS with ARS 65% 36MB

Table V
OVERVIEW OF CPU AND RAM USAGE OF THE stress recognition system

(SRS) WITH AND WITH OUT ACTIVITY RECOGNITION.

In total, stress recognition needs 500ms to infer the
current status. Thereby, it takes 331ms to compute all
feature values and 169ms for the actual inference. Hence
the current system is capable of operating in real-time with
an inference rate of at least 1Hz on the SGS2.

2) Online Classification Results: For online classifica-
tion, a test person conducts the mental stress test only. The
features related to activity are set to Sitting to avoid extra
complexity due to the influence of physical stress. The test
person is asked to relax for five minutes before conducting
the test. During that time, the stress is inferred already
to examine the sensitivity of the SRS to non-stress. The
recorded stress level is then compared with the self-assessed
stress level of the person which serves as the groundtruth.
The resulting confusion matrix is shown in Table VI.

true class→
↓ predicted S0 S1 S2 S3 S4 S5

S0 156 15 0 0 2 0
S1 0 3 0 0 0 0
S2 0 1 56 37 7 28
S3 1 12 30 66 53 3
S4 0 0 0 17 32 86
S5 14 21 93 62 88 63

Table VI
CONFUSION MATRIX OF ONLINE EVALUATION OF THE BN LEARNT

WITH CONTINUOUS TRANSITIONS FOR COMPLETE STRESS.
Si THEREBY REPRESENTS STRESS LEVEL i, 0 ≤ i ≤ 5.

Only a classification accuracy of 39.7% is reached. Look-
ing at the confusion matrix, it is apparent that ’Stress 0’
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is very well recognized, with a precision of 0.902 and a
recall of 0.912. However, the boundaries between the further
classes, ’Stress 1’ to ”Stress 4”, are blurred and no clear
distinction is possible.

VI. CONCLUSION

The objective of this work is the development of an unob-
trusive, real-time capable, mobile stress recognition system.
We have realised an Android app connecting an activity
recognition system and a Bluetooth chest belt. It measures
psychophysiological parameters and infers stress levels with
a frequency of 1Hz. While the main targets have been met,
the stress recognition yields room for improvement.

Only the distinction between “No Stress” and “Stress” is
reliably possible in the current version. The big difference
between offline and online evaluation results reveal problems
with the used dataset, possibly explained by an overfitting
due to the split of the data set which led to misleading results
in the offline evaluation. Moreover, the quantity and diversity
of the data set have to extended.
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