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Abstract— In this paper, we present a scalable presence 

network architecture for emerging pervasive social 

applications in which the interaction of not only people but 

surrounding physical objects seamlessly occurs. The 

architecture combines the server-based messaging and the 

peer-to-peer communication schemes, thereby rendering itself 

deployable at the large scale beyond social networks so as to 

incorporate a sheer number of embedded devices in a 

ubiquitous environment.  
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I. INTRODUCTION  

With the growing popularity of smart devices, social 

networks, and cloud computing technology, the demand for 

seamless inter-connectivity, collaboration, and 

synchronization across users’ devices and surrounding 

physical objects has been radically increased. Such 

technology trends facilitating the convergence of the 

physical world and the social networks can lead to a number 

of innovative functionalities not yet commercialized for 

today’s pervasive social applications. Recently several 

projects [1], [2], [3] consider social network platforms for 

realizing various collaboration scenarios. However, the lack 

of consideration regarding the networks of large scale 

causes the difficulty in achieving a generic platform that can 

satisfy the levels of scalability, extensibility, and 

performance desired to fulfill requirements on pervasive 

social applications where a large number of devices and 

physical objects are incorporated. 

In this paper, we address the architectural issues of large 

scale pervasive social applications by describing a managed 

overlay network in which the capabilities and resources of 

devices can be securely accessed and composed. 

Specifically to mitigate the inherent challenges of scalability 

due to the sheer number of connected devices, our proposed 

architecture incorporates sever-based messaging and 

resource-efficient peer-to-peer networking into an overlay 

structure. In this approach, a standard messaging protocol, 

XMPP (eXtensible Messaging and Presence Protocol) [4] is 

essentially used. Moreover, STUN (Session Traversal 

Utilities for NAT) and TURN (Traversal Using Relays 

around NAT) are used for NAT (Network Address 

Translation) traversal on the present Internet with widely 

deployed NAT equipments and firewalls. It should be noted 

that sole reliance on peer-to-peer technologies leads to 

management problems trading off control for the amount of 

centralized resources.  

The main contributions of our work are as follows: first, 

we describe the XMPP-based presence network of which 

motivation is to efficiently manage hundreds of millions of 

connected devices around the globe for deploying large 

scale pervasive social applications. The challenge of such 

scale is well investigated in this paper by the hierarchical 

construction of regional and inter-regional server clusters, 

hence ensuring the linear scalability for dealing with devices 

as the cluster size increases. The clean separation between 

the control streams with server-based messages and the data 

streams with peer-to-peer communication refines the 

complex problem of scalability as the architectural choice 

on server clustering. Second, we demonstrate the 

lightweight web service model for programmable device 

interfaces. This device model is intended to foster the device 

collaboration and to allow them to be further extended with 

fine-grained capabilities. It is not trivial to support 

efficiently the device collaboration particularly when 

transferring bandwidth-heavy contents is involved. The 

presence network manages the collaboration of devices in 

near real-time through server-based messaging, making data 

transfer happen in a peer-to-peer manner. 
The remainder of this paper is organized as follows. 

Section II includes related work and Section III presents the 
overall system architecture in which XMPP-based presence 
servers form a hierarchical cluster so as to efficiently support 
connections from a large set of devices. Section IV describes 
our implementation and evaluation. A few pervasive social 
scenarios spanning user experiences across the network of 
devices are explained as the usage of the presence network in 
Section V. Then we conclude this paper. 
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Figure 1. Hierarchical presence network architecture 
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II. RELATED WORK 

XMPP is an open standard communications protocol based 

on XML, by which messages and presence information can 

be shared among users through centralized servers. It has 

been broadly extended to multimedia communications 

including VoIP and signaling for file transfer [5], [6] and 

cloud services [4]. Wagener et al. [7] demonstrated how 

XMPP can be applied for cloud services, exploring the 

promising features such that services can be discovered 

without service registration. As a collaboration scenario, 

Bendel et al. [8] proposed a toolkit WatchMyPhone which 

provides data synchronization and collaboration 

mechanisms based on XMPP. A pervasive monitoring 

system relying on XMPP was introduced particularly for 

post disaster management in [9]. As a similar study, Kirsche 

et al. [10] proposed a solution to unify the world of sensors 

and actuators with the Internet through the use of the XMPP. 

While these researches cover necessary functional 

properties on collaboration services and commonly exploit 

XMPP as the basis of the system implementation, their 

concentration is not fully made on performance and 

scalability issues of collaboration services. 

Recently social network platforms for pervasive computing 

have been an emerging trend. In [1], Mobilis has been 

explored to provide an XMPP-based social service platform 

for developers of mobile social applications. It supports 

temporal as well as spatial restrictions for the visibility of 

group formation. SAMOA [2] supports the creation of 

social network applications that can reflect the reality of 

social interactions. The middleware framework MobiSoC [3] 

provides the rapid development and deployment of mobile 

social computing applications. There also has been much 

work on incorporating the presence functionality into 

Internet environments. Ford et al. [11] proposed UIA 

(Unmanaged Internet Architecture) that allows nontechnical 

users to connect their personal devices via a simple and 

intuitive way using personal device name domains. 

Similarly, Wu et al. [12] proposed PresenceCloud, a 

scalable server-to-server architecture that can be used as a 

building block for mobile presence services with DHT. 

Furthermore, the scalability issue of presence services on 

peer-to-peer networks has been addressed in [13]. Recently, 

Eyo extended a personal storage system to support the 

device transparency to end users with multiple consumer 

electronics [14]. Such device transparency where user 

contents are reflected in the namespace is enabled by the 

replication of metadata across multiple devices and the high 

availability of metadata. Our approach is different from Eyo 

in that the functionality is not restricted to a personal storage; 

any device capability and resource can be abstracted for 

collaboration on the network through the RESTful service 

interface.  

Especially in the context of home networks, UPnP and 

DLNA have been prevalently known as an industry standard 

for device-to-device interoperability and content sharing.  

HomeOS [15] and dynamically scaling applications are 

examples of extending traditional UPnP and DLNA based 

home networks to a variety of areas. As Internet 

connectivity of devices becomes common, recently many 

efforts to cover beyond local networks in terms of the scope 

of device connectivity have been made including SIP-based 

remote sharing [16] and P2P-based DLNA extension [17]. 

Our goal of providing seamless cross device experiences to 

users is shared by such UPnP and DLNA extensions. 

However, they are generally specific to the semantics of 

interoperability and sharing between devices, and most 

importantly are targeted at lower scale.  

III. SYSTEM DESIGN 

Fig. 1 briefly illustrates the presence network architecture 

which consists of two different types of clusters: regional 

clusters in which XMPP-based servers are tightly connected 

on the high bandwidth networks and inter-regional clusters 

of which the connectivity is restricted by common WAN. 

Each server is capable of the device management including 

discovery (creating a virtual device group), presence 

(notifying the device status information updates in a group), 

and signaling (messaging for controlling functions in a 

group). The signaling is used to initiate the peer-to-peer 

communication, combined with NAT traversal. The local 

session database in a regional cluster supports the near real-

time references to the pairs of a device client and its 

connected server process, but the global session database 

does the pairs of a device client and its regional cluster. This 

hierarchical clustering allows widespread devices to be 

grouped together regardless of their geographical location, 

e.g., the virtual group B in Fig. 1. In our empirical set-up on 

a public cloud, workloads are fairly distributed in that each 

device client is directed to make a session to a server 

according to the policy of the load balancer in front of its 

regional cluster; and before that, the regional choice is 

dynamically made in either a location basis or a user basis. 

To satisfy the system requirements on time-varying load 

characteristics, the clusters have been operated with a 

monitoring and auto-scaling tool in our real deployment.  

A device client can update its presence status and 

communicate with servers and other clients through its 

established session. When the device client initially logs 

into the network or changes its status, e.g., on/offline 

availability, the status information is firstly sent to the 

presence server via the session, and then forwarded to other 

online device clients of which location information can be 

found by using the lookup interface to the session database. 

More specifically, the status is sent to the corresponding 

proxy process in the regional cluster for each respective 

device client, and then actually forwarded to the recipient. If 

the recipient is not in the same regional cluster, the 

propagation additionally requires inter-regional routing that 

inquires of the global session database to locate the gateway 

of the target regional cluster and then forwards packets (the 

presence update packet in this case) to the gateway. Once 

the target gateway receives the packet, the remaining 
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procedure basically follows the same pattern as that in a 

regional cluster. Notice that the procedure of the presence 

propagation above is commonly applied to other XMPP 

primitives between device clients, e.g., instant messaging, 

signaling, etc. Whereas the presence associated with the 

session database makes message delivery work properly, it 

is the concept of inter-region routing (with the global 

session database and the gateways) that allows presence 

servers to be hierarchically clustered, which can scale 

efficiently. The scalability evaluations of our hierarchical 

architecture will be presented in Section IV.   

On the device client side, our current implementation 

includes two sets of API libraries. One library prototype 

supports the service-style interface; the capabilities and 

resources of individual devices and their compositional 

functions are represented in the lightweight RESTful service 

APIs [18]. The goal of this library is to simplify the 

development of web applications that realizes various cross-

device scenarios, e.g., remotely accessing contents on smart 

devices, synchronizing data in a group, manipulating the 

properties of multiple devices, and many other cases. In a 

device group, the RESTful service is executed mostly 

through peer-to-peer communication although there is no 

restriction to utilize server-based messages like Jabber-RPC 

[19] especially for reliability and timeliness. By using the 

RESTful service APIs, complex functions can be executed 

in a consistent way that the compositions of device 

functionalities can be made on the fly. The other library 

includes the socket-style APIs that support the connectivity 

among devices behind NAT equipments. The library 

employs NAT traversal techniques and is implemented 

based on an open source XMPP-Jingle client [20]. Note that 

the RESTful APIs of a device client can be executed on top 

of this socket-style library for direct device communication.  
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Figure 2. Integration with push notification for mobile devices 

IV. EVALUATION 

A. System Implementation 

Our implementation is based on an open source XMPP 

server running on erlang virtual machine [21]. The 

hierarchical clustering is implemented by extending the 

XMPP server-to-server communication module for inter-

regional routing and by integrating in-memory databases 

into the network for caching session information. The 

session information is maintained in an open source 

distributed database [22] in server clusters and cached for 

the performance improvement.  

Each session for a device client requires maintaining a 

persistent TCP connection to the sever cluster. To cope with 

constrained resource availability at mobiles, we leverage 

push notification e.g., Android’s GCM, as a triggering 

mechanism for timely establishing a session only when 

requested. When a device client turns into the hibernate 

mode, it can terminate its session. In general, the push client 

module of mobiles is configured to be always alive as 

depicted in Fig. 2, and therefore, upon a message targeting 

to the hibernated device client, the presence server rather 

can send the push notification so as to make the device 

client back to online (3~8 in the figure).  
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The device client comprises several components as shown 

in Fig. 3. The security manager supports authentication of 

users and devices through the auth server and the presence 

server. The session manager and the communication 

manager provide the main functionalities of a device client 

including session establishment, messaging, and presence 

update which are mostly XMPP compatible interactivities. 

The connection manager handles persistent connections to a 

server and peer-to-peer communication by using NAT 

traversal and multiplexing. Our client libraries include the 

socket-style APIs that provide NAT traversal for peer-to-

peer connectivity in the form of secure channels between 

device clients. The socket-style API library is named “plink” 

and it has similar functionalities as BSD socket APIs, except 

NAT traversal. In addition, our implementation includes a 

few messaging APIs and management APIs at client-side. 

For example, the below messaging and callback API 

signatures hide the complexity of XMPP messaging, 

providing a simple semantic of sending and receiving data.   
 

// Messaging API 

RESULT  msg_send(handle_t handle, std::string &jid, std::string &msg) 

// Callback API 

RARESULT  callback_register(handle_t rahandle, callback_pfn_t callback) 
 

In a constrained environment, it is effective to adaptively 

control physical connections for sending multiple data 

streams between device clients. When UDP hole punching 

is needed as part of NAT Traversal procedures, the client 

pair might want to maintain a single connection but send 

multiple streams on it. This allows clients to reduce the set-

up time of the communication as well as efficiently manage 

the resource usage. To do so, our device client is 

implemented to support thread-based multiplexing and 
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demultiplexing of data streams. Furthermore, in order to 

efficiently support multiple device clients running on a 

single physical device (in case of multiple pervasive social 

applications on a physical device), we refine the structure of 

device connections to the XMPP-based presence server; the 

device-to-server proxy in Fig. 4 is implemented as a middle 

proxy process at the client-side for handling messages of 

multiple device clients through a single TCP connection to a 

presence server. To do so, each application, e.g., App 1, 2, 

and 3 in the figure, has its own thread and message queue 

for sending message packets to the server. Keeping an 

individual message queue per application is aimed at 

avoiding unfair latency in messaging, considering a 

common situation where the bandwidth limitation is a 

bottleneck for real-time messaging performance. Otherwise, 

one application could fail in sending messages due to the 

timeout incurred by heavy messages from the others.  
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B. Performance Evaluation 

The performance and scalability of the presence network 

has been measured by deploying our solution on a public 

cloud with globally distributed multiple data centers, against 

the workloads that have been designed based on real 

application characteristics.  
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Fig. 5 illustrates the deployment and configuration of our 

benchmark test system in a multi-region cloud environment. 

The test system in a region, e.g., US-West region in the left 

side of the above figure, consists of two database servers 

(local session and roster), five XMPP-based presence 

servers, and at least two servers for emulating a group of 

device clients. Each of these servers runs on the virtual 

machine instances provided and managed by a public cloud 

infrastructure and Tsung [23] is configured to generate the 

workloads from the large sets of device clients. Notice that 

our hierarchical clustering architecture extends the above 

configuration in a single region so as to encompass multiple 

regions in the network by deploying a set of gateway servers 

along with the global session database. The workload by an 

emulated client in Tsung is designed to follow the client 

behavior model below, which is derived from the empirical 

trace data.  

• Update session: read user credentials in the authentication 

server, update the session entries into the local session 

database, check the existence of the routing entry in the 

global session database, and add the routing entry into the 

global session database if no entry exists. 

• Initial Presence: retrieve the roster information of which 

average size is 4, and send the initial presence to all the 

entities in the roster. 

• Presence update: send the latest presence to all the online 

entities in the roster every 30 min on average.  

• Messaging: send a message (200~1024bytes) to another 

client every 10 min on average.       

• Reconnection: reconnect every 1 hour on average. 
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In these tests, the hierarchical clustering has been 

compared with a common architecture that has a set of 

identical servers in a single cluster, hereafter simply called 

the single clustering. In order for any XMPP-based presence 

server to be able to appropriately locate the target server for 

forwarding a message, each server in the single clustering is 

deployed with its own replica of the session database as 

shown in Fig. 6 (a). It should be noted that servers in the 

single clustering can be geographically distributed, e.g., 

multiple data centers in different continents.  Fig. 7 depicts 

the comparison test results where X-axis represents the 

number of servers, and Y-axis represents the maximum 

number of online clients per server. As shown, the 

hierarchical clustering yields relatively undeviating results 

both for the intra-region case and the inter-region case, 
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leading to the conclusion that it scales linearly along with 

the cluster size. On the contrary, the single clustering 

reveals relatively adverse results; as the number of servers 

in the cluster increases, the overhead from database 

replication of the single clustering could make a detrimental 

impact on the number of concurrent connections possibly 

managed by a single server. Such impact is highly 

aggravated for the inter-region case where clustering and 

database replication can incur more overhead due to the 

limited network bandwidth. For production use where 

thousands of millions of devices could be connected, it is 

important to have such a system property of linear 

scalability against device clients.  

Due to the common fact that a complex hierarchical 

structure may increase the number of queries over topology 

information for locating an entity in the structure, the 

potential overhead from such queries needs to be studied 

and mitigated. The single clustering in which each server 

owns a full replica of all necessary session information is an 

ideal structure, particularly when the number of required 

queries on session databases for forwarding messages is 

mainly considered for overhead estimation. In this regarding, 

we first compare the message latency of the hierarchical 

clustering with that of such an ideal case, the fully replicated 

single clustering. Then we conduct tests with a cache 

scheme for reducing the message latency. Specifically in the 

hierarchical clustering as conceptually illustrated in Fig. 6 

(b), the local session information is partially cached in the 

server memory. Fig. 8 presents the inherent message delay 

of the hierarchical clustering (without cache), and the 

improvement by exploiting the session cache in the same 

clustering architecture. In the figure, X-axis represents the 

number of messages per second and Y-axis represents the 

message latency in milliseconds. Since a group of device 

clients are emulated by Tsung running on public cloud 

virtual machines, the message latency does not include 

delay in wide-area networks. It implies that in practice, end-

to-end message delays must vary significantly by additional 

network delays from the last mile between devices and 

servers. Overall, the hierarchical clustering with cache 

yields the stability of message latencies against various 

message rates, and the improvement by cache gets much 

significant with the higher message rates as expected. 
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Figure 8. Message latency of clustering architecture 

 

The auto-scaling mechanism is deployed to provide usage 

monitoring and automatic scale-out of a server instance 

when a certain threshold is reached. In practice, the 

threshold is defined as a runtime condition imposed on 

resource utilization. Fig. 9 shows that one server instance is 

added around time 21 when the resource utilization reaches 

the threshold, e.g., 40% in memory usage, and then the new 

workload (connection requests from device clients) is 

successfully migrated to the new server from time 24. The 

migration of existent connections can be expensive due to 

required updates on session databases and caches. So we 

rather consider new connections and fail-and-retry 

connections as candidates for migration. Combined with the 

linear scalability demonstrated previously, the auto-scaling 

function provides the practical foundation for operating the 

production system at large scale.  
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Figure 9. Auto scaling of presence network 
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Figure 10. Real-time communication and collaboration 

V. USE CASES 

Although it is still in the evolving phase, our XMPP-

based presence network has been implemented and 

deployed as a common networking platform for operating a 

few pervasive social services. Some of the following service 

scenarios have been recently implemented and tested for the 

feasibility of the presence network.  

• Pervasive Collaboration: With the presence network, it is 

possible to build a real-time communication and 

collaboration environment in which a user can access her 
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own or her friend’s devices and play contents at any time 

regardless of the device locations. Devices can form a 

group by exploiting owners’ social relations. In this group, 

the device capabilities and resources can be dynamically 

composed for realizing a variety of device collaboration 

scenarios. Remotely playing favorite video contents or 

synchronizing documents between heterogeneous devices 

at different network settings is a basic one, which can be 

extended with functional diversity, e.g., GPS, gyro sensors, 

etc. Moreover, collaborative executions can be seamlessly 

migrated to another composition of device capabilities. 

Fig. 10 shows the captured images of such a real-time 

collaboration application, of which clients have been 

implemented on Android smartphones, demonstrating 

various features such as instant messaging, video chatting, 

file sharing, screen sharing and so on. In our 

implementation, XMPP of the presence network is used 

for messaging and signaling in group communication and 

NAT traversal techniques are used for setting up peer-to-

peer collaborations among devices.  

• Smart Object Interaction: A user can control and monitor 

smart objects such as intelligent appliances, e.g., PC, 

connected TV, robot-style vacuum cleaner, from outside 

through her mobiles. In Fig. 11, the presence network is 

used as the core component for seamlessly discovering 

and controlling devices i.e., robot vacuum cleaners and 

smartphones, by exploiting the roster information of 

XMPP between a user and her controllable devices. Note 

that video streams and control command data streams are 

separately maintained by the XMPP session and the peer-

to-peer channel, consistent with our principal architectural 

feature of the presence network. From our experiences in 

deploying and operating such controlling services for 

smart devices in our production environment, we have 

learned that such a clear separation between control and 

data streams alleviates the system complexity, thereby 

improving the service scalability.  
 

 

(a) device discovery (b) controlling and monitoring  
 

Figure 11. Remote control and collaboration of smart appliances 

VI. CONCLUSION 

Despite all the opportunities in enhancing ambient user 

experiences by the proliferation of smart devices and cloud 

computing technologies, the lack of generic solutions for 

accommodating the sheer number of device connections 

often calls for cumbersome efforts for development and 

deployment of pervasive social applications. The proposed 

presence network architecture incorporates server-based 

discovery and messaging as well as peer-to-peer overlay in 

the network of devices, hence enabling existing social 

network scenarios to be applicable for ubiquitous networks 

where many heterogeneous devices are connected.  
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