
A Large Scale Presence Network for Pervasive Social Computing

Honguk Woo, Hongsoo Kim, Kyusik Kim, Dongkyoung Kim

Software R&D Center

Samsung Electronics

Suwon, Korea
{honguk.woo, herald.kim, kyusik80.kim, dk9586.kim}@samsung.com

Abstract— In this paper, we present a scalable presence

network architecture for emerging pervasive social

applications in which the interaction of not only people but

surrounding physical objects seamlessly occurs. The

architecture combines the server-based messaging and the

peer-to-peer communication schemes, thereby rendering itself

deployable at the large scale beyond social networks so as to

incorporate a sheer number of embedded devices in a

ubiquitous environment.

Keywords-presence; XMPP; scalability; pervasive computing;

I. INTRODUCTION

With the growing popularity of smart devices, social

networks, and cloud computing technology, the demand for

seamless inter-connectivity, collaboration, and

synchronization across users’ devices and surrounding

physical objects has been radically increased. Such

technology trends facilitating the convergence of the

physical world and the social networks can lead to a number

of innovative functionalities not yet commercialized for

today’s pervasive social applications. Recently several

projects [1], [2], [3] consider social network platforms for

realizing various collaboration scenarios. However, the lack

of consideration regarding the networks of large scale

causes the difficulty in achieving a generic platform that can

satisfy the levels of scalability, extensibility, and

performance desired to fulfill requirements on pervasive

social applications where a large number of devices and

physical objects are incorporated.

In this paper, we address the architectural issues of large

scale pervasive social applications by describing a managed

overlay network in which the capabilities and resources of

devices can be securely accessed and composed.

Specifically to mitigate the inherent challenges of scalability

due to the sheer number of connected devices, our proposed

architecture incorporates sever-based messaging and

resource-efficient peer-to-peer networking into an overlay

structure. In this approach, a standard messaging protocol,

XMPP (eXtensible Messaging and Presence Protocol) [4] is

essentially used. Moreover, STUN (Session Traversal

Utilities for NAT) and TURN (Traversal Using Relays

around NAT) are used for NAT (Network Address

Translation) traversal on the present Internet with widely

deployed NAT equipments and firewalls. It should be noted

that sole reliance on peer-to-peer technologies leads to

management problems trading off control for the amount of

centralized resources.

The main contributions of our work are as follows: first,

we describe the XMPP-based presence network of which

motivation is to efficiently manage hundreds of millions of

connected devices around the globe for deploying large

scale pervasive social applications. The challenge of such

scale is well investigated in this paper by the hierarchical

construction of regional and inter-regional server clusters,

hence ensuring the linear scalability for dealing with devices

as the cluster size increases. The clean separation between

the control streams with server-based messages and the data

streams with peer-to-peer communication refines the

complex problem of scalability as the architectural choice

on server clustering. Second, we demonstrate the

lightweight web service model for programmable device

interfaces. This device model is intended to foster the device

collaboration and to allow them to be further extended with

fine-grained capabilities. It is not trivial to support

efficiently the device collaboration particularly when

transferring bandwidth-heavy contents is involved. The

presence network manages the collaboration of devices in

near real-time through server-based messaging, making data

transfer happen in a peer-to-peer manner.
The remainder of this paper is organized as follows.

Section II includes related work and Section III presents the
overall system architecture in which XMPP-based presence
servers form a hierarchical cluster so as to efficiently support
connections from a large set of devices. Section IV describes
our implementation and evaluation. A few pervasive social
scenarios spanning user experiences across the network of
devices are explained as the usage of the presence network in
Section V. Then we conclude this paper.

Region 1 Cluster Region 2 Cluster

Inter-region Cluster

Virtual Device Group A

LB

XMPP-based

Presence Server

Device Client

Auth Server

NAT Traversal

(STUN/TURN)

Server

Local

Session DB

Global

Session DB

Load Balancer

LB LB

Virtual Device Group B

...

...

Roster DB

Figure 1. Hierarchical presence network architecture

978-1-4673-5077-8/13/$31.00 ©2013 IEEE

Workshop on Pervasive Collaboration and Social Networking 2013, San Diego (18 March 2013)

145

II. RELATED WORK

XMPP is an open standard communications protocol based

on XML, by which messages and presence information can

be shared among users through centralized servers. It has

been broadly extended to multimedia communications

including VoIP and signaling for file transfer [5], [6] and

cloud services [4]. Wagener et al. [7] demonstrated how

XMPP can be applied for cloud services, exploring the

promising features such that services can be discovered

without service registration. As a collaboration scenario,

Bendel et al. [8] proposed a toolkit WatchMyPhone which

provides data synchronization and collaboration

mechanisms based on XMPP. A pervasive monitoring

system relying on XMPP was introduced particularly for

post disaster management in [9]. As a similar study, Kirsche

et al. [10] proposed a solution to unify the world of sensors

and actuators with the Internet through the use of the XMPP.

While these researches cover necessary functional

properties on collaboration services and commonly exploit

XMPP as the basis of the system implementation, their

concentration is not fully made on performance and

scalability issues of collaboration services.

Recently social network platforms for pervasive computing

have been an emerging trend. In [1], Mobilis has been

explored to provide an XMPP-based social service platform

for developers of mobile social applications. It supports

temporal as well as spatial restrictions for the visibility of

group formation. SAMOA [2] supports the creation of

social network applications that can reflect the reality of

social interactions. The middleware framework MobiSoC [3]

provides the rapid development and deployment of mobile

social computing applications. There also has been much

work on incorporating the presence functionality into

Internet environments. Ford et al. [11] proposed UIA

(Unmanaged Internet Architecture) that allows nontechnical

users to connect their personal devices via a simple and

intuitive way using personal device name domains.

Similarly, Wu et al. [12] proposed PresenceCloud, a

scalable server-to-server architecture that can be used as a

building block for mobile presence services with DHT.

Furthermore, the scalability issue of presence services on

peer-to-peer networks has been addressed in [13]. Recently,

Eyo extended a personal storage system to support the

device transparency to end users with multiple consumer

electronics [14]. Such device transparency where user

contents are reflected in the namespace is enabled by the

replication of metadata across multiple devices and the high

availability of metadata. Our approach is different from Eyo

in that the functionality is not restricted to a personal storage;

any device capability and resource can be abstracted for

collaboration on the network through the RESTful service

interface.

Especially in the context of home networks, UPnP and

DLNA have been prevalently known as an industry standard

for device-to-device interoperability and content sharing.

HomeOS [15] and dynamically scaling applications are

examples of extending traditional UPnP and DLNA based

home networks to a variety of areas. As Internet

connectivity of devices becomes common, recently many

efforts to cover beyond local networks in terms of the scope

of device connectivity have been made including SIP-based

remote sharing [16] and P2P-based DLNA extension [17].

Our goal of providing seamless cross device experiences to

users is shared by such UPnP and DLNA extensions.

However, they are generally specific to the semantics of

interoperability and sharing between devices, and most

importantly are targeted at lower scale.

III. SYSTEM DESIGN

Fig. 1 briefly illustrates the presence network architecture

which consists of two different types of clusters: regional

clusters in which XMPP-based servers are tightly connected

on the high bandwidth networks and inter-regional clusters

of which the connectivity is restricted by common WAN.

Each server is capable of the device management including

discovery (creating a virtual device group), presence

(notifying the device status information updates in a group),

and signaling (messaging for controlling functions in a

group). The signaling is used to initiate the peer-to-peer

communication, combined with NAT traversal. The local

session database in a regional cluster supports the near real-

time references to the pairs of a device client and its

connected server process, but the global session database

does the pairs of a device client and its regional cluster. This

hierarchical clustering allows widespread devices to be

grouped together regardless of their geographical location,

e.g., the virtual group B in Fig. 1. In our empirical set-up on

a public cloud, workloads are fairly distributed in that each

device client is directed to make a session to a server

according to the policy of the load balancer in front of its

regional cluster; and before that, the regional choice is

dynamically made in either a location basis or a user basis.

To satisfy the system requirements on time-varying load

characteristics, the clusters have been operated with a

monitoring and auto-scaling tool in our real deployment.

A device client can update its presence status and

communicate with servers and other clients through its

established session. When the device client initially logs

into the network or changes its status, e.g., on/offline

availability, the status information is firstly sent to the

presence server via the session, and then forwarded to other

online device clients of which location information can be

found by using the lookup interface to the session database.

More specifically, the status is sent to the corresponding

proxy process in the regional cluster for each respective

device client, and then actually forwarded to the recipient. If

the recipient is not in the same regional cluster, the

propagation additionally requires inter-regional routing that

inquires of the global session database to locate the gateway

of the target regional cluster and then forwards packets (the

presence update packet in this case) to the gateway. Once

the target gateway receives the packet, the remaining

146

procedure basically follows the same pattern as that in a

regional cluster. Notice that the procedure of the presence

propagation above is commonly applied to other XMPP

primitives between device clients, e.g., instant messaging,

signaling, etc. Whereas the presence associated with the

session database makes message delivery work properly, it

is the concept of inter-region routing (with the global

session database and the gateways) that allows presence

servers to be hierarchically clustered, which can scale

efficiently. The scalability evaluations of our hierarchical

architecture will be presented in Section IV.

On the device client side, our current implementation

includes two sets of API libraries. One library prototype

supports the service-style interface; the capabilities and

resources of individual devices and their compositional

functions are represented in the lightweight RESTful service

APIs [18]. The goal of this library is to simplify the

development of web applications that realizes various cross-

device scenarios, e.g., remotely accessing contents on smart

devices, synchronizing data in a group, manipulating the

properties of multiple devices, and many other cases. In a

device group, the RESTful service is executed mostly

through peer-to-peer communication although there is no

restriction to utilize server-based messages like Jabber-RPC

[19] especially for reliability and timeliness. By using the

RESTful service APIs, complex functions can be executed

in a consistent way that the compositions of device

functionalities can be made on the fly. The other library

includes the socket-style APIs that support the connectivity

among devices behind NAT equipments. The library

employs NAT traversal techniques and is implemented

based on an open source XMPP-Jingle client [20]. Note that

the RESTful APIs of a device client can be executed on top

of this socket-style library for direct device communication.

Push Server (e.g. GCM)

Push Client

Device 1 Presence Server

Message Handler

Push Gateway

Device

Client

Push Notification

Query Handler

Push Client

Device 2

Device

Client

Set

hibernate

mode

Request push

Send

message

to Device 1

Push API

1

3

4

5
6

Wake up 7
set Device 1 as

hibernate mode
2

8

Login & unset

hibernate mode

(Session

establishment)

9 Retrieve

message

Figure 2. Integration with push notification for mobile devices

IV. EVALUATION

A. System Implementation

Our implementation is based on an open source XMPP

server running on erlang virtual machine [21]. The

hierarchical clustering is implemented by extending the

XMPP server-to-server communication module for inter-

regional routing and by integrating in-memory databases

into the network for caching session information. The

session information is maintained in an open source

distributed database [22] in server clusters and cached for

the performance improvement.

Each session for a device client requires maintaining a

persistent TCP connection to the sever cluster. To cope with

constrained resource availability at mobiles, we leverage

push notification e.g., Android’s GCM, as a triggering

mechanism for timely establishing a session only when

requested. When a device client turns into the hibernate

mode, it can terminate its session. In general, the push client

module of mobiles is configured to be always alive as

depicted in Fig. 2, and therefore, upon a message targeting

to the hibernated device client, the presence server rather

can send the push notification so as to make the device

client back to online (3~8 in the figure).

 APIs

Security Manager

Auth SSL/TLS

Session

Manager

Communication Manager

Messaging Presence Roster
Group

Messaging

Connection Manager

Receiver ListenerSocket Handler

Parser/

Builder

Signaling
Relay

Handler

NAT

Traversal

Multiple

Connection

Figure 3. Device client architecture

The device client comprises several components as shown

in Fig. 3. The security manager supports authentication of

users and devices through the auth server and the presence

server. The session manager and the communication

manager provide the main functionalities of a device client

including session establishment, messaging, and presence

update which are mostly XMPP compatible interactivities.

The connection manager handles persistent connections to a

server and peer-to-peer communication by using NAT

traversal and multiplexing. Our client libraries include the

socket-style APIs that provide NAT traversal for peer-to-

peer connectivity in the form of secure channels between

device clients. The socket-style API library is named “plink”

and it has similar functionalities as BSD socket APIs, except

NAT traversal. In addition, our implementation includes a

few messaging APIs and management APIs at client-side.

For example, the below messaging and callback API

signatures hide the complexity of XMPP messaging,

providing a simple semantic of sending and receiving data.

// Messaging API

RESULT msg_send(handle_t handle, std::string &jid, std::string &msg)

// Callback API

RARESULT callback_register(handle_t rahandle, callback_pfn_t callback)

In a constrained environment, it is effective to adaptively

control physical connections for sending multiple data

streams between device clients. When UDP hole punching

is needed as part of NAT Traversal procedures, the client

pair might want to maintain a single connection but send

multiple streams on it. This allows clients to reduce the set-

up time of the communication as well as efficiently manage

the resource usage. To do so, our device client is

implemented to support thread-based multiplexing and

147

demultiplexing of data streams. Furthermore, in order to

efficiently support multiple device clients running on a

single physical device (in case of multiple pervasive social

applications on a physical device), we refine the structure of

device connections to the XMPP-based presence server; the

device-to-server proxy in Fig. 4 is implemented as a middle

proxy process at the client-side for handling messages of

multiple device clients through a single TCP connection to a

presence server. To do so, each application, e.g., App 1, 2,

and 3 in the figure, has its own thread and message queue

for sending message packets to the server. Keeping an

individual message queue per application is aimed at

avoiding unfair latency in messaging, considering a

common situation where the bandwidth limitation is a

bottleneck for real-time messaging performance. Otherwise,

one application could fail in sending messages due to the

timeout incurred by heavy messages from the others.

XMPP-based

Presence Server

 Device-to-server Proxy

Application

Connection

Handler

App,

Thread 1

App.

Thread 2

App.

Thread 3
Message Queue

Server Socket

Handler

Message

Handler

App 1

App 2

App 3

Device Client Lib.

Device Client Lib.

Device Client Lib.

Client Socket

Handler

Server

Thread

Message Queue

XMPP

Server

Connection

Handler

Figure 4. Device-to-server proxy

B. Performance Evaluation

The performance and scalability of the presence network

has been measured by deploying our solution on a public

cloud with globally distributed multiple data centers, against

the workloads that have been designed based on real

application characteristics.

 Region 2(EU West) Region 1(US-West)

Tsung Traffic

Generator

Tsung Traffic

Generator

Session DB

Presence

Server Cluster

Roster DB Session DB Roster DB

Presence

Server Cluster

Global

Session DB

GatewayGateway

Figure 5. System configuration in clouds

Fig. 5 illustrates the deployment and configuration of our

benchmark test system in a multi-region cloud environment.

The test system in a region, e.g., US-West region in the left

side of the above figure, consists of two database servers

(local session and roster), five XMPP-based presence

servers, and at least two servers for emulating a group of

device clients. Each of these servers runs on the virtual

machine instances provided and managed by a public cloud

infrastructure and Tsung [23] is configured to generate the

workloads from the large sets of device clients. Notice that

our hierarchical clustering architecture extends the above

configuration in a single region so as to encompass multiple

regions in the network by deploying a set of gateway servers

along with the global session database. The workload by an

emulated client in Tsung is designed to follow the client

behavior model below, which is derived from the empirical

trace data.

• Update session: read user credentials in the authentication

server, update the session entries into the local session

database, check the existence of the routing entry in the

global session database, and add the routing entry into the

global session database if no entry exists.

• Initial Presence: retrieve the roster information of which

average size is 4, and send the initial presence to all the

entities in the roster.

• Presence update: send the latest presence to all the online

entities in the roster every 30 min on average.

• Messaging: send a message (200~1024bytes) to another

client every 10 min on average.

• Reconnection: reconnect every 1 hour on average.

(a) Single clustering (b) Hierarchical clustering

Local

Session DB

Global

Session DB
Cache

DB

Clustering
ReplicationPresence

Server

Figure 6. Clustering architecture

(a) Intra-region

0

40000

80000

1 2 3 4 5
0

40000

80000

2 4 5 8 10

Single clustering

(b) Inter-region

Hierarchical clustering

of servers

#
 o

f
cl

ie
n

ts

of servers

#
 o

f
cl

ie
n

ts

Figure 7. Scalability of clustering architecture

In these tests, the hierarchical clustering has been

compared with a common architecture that has a set of

identical servers in a single cluster, hereafter simply called

the single clustering. In order for any XMPP-based presence

server to be able to appropriately locate the target server for

forwarding a message, each server in the single clustering is

deployed with its own replica of the session database as

shown in Fig. 6 (a). It should be noted that servers in the

single clustering can be geographically distributed, e.g.,

multiple data centers in different continents. Fig. 7 depicts

the comparison test results where X-axis represents the

number of servers, and Y-axis represents the maximum

number of online clients per server. As shown, the

hierarchical clustering yields relatively undeviating results

both for the intra-region case and the inter-region case,

148

leading to the conclusion that it scales linearly along with

the cluster size. On the contrary, the single clustering

reveals relatively adverse results; as the number of servers

in the cluster increases, the overhead from database

replication of the single clustering could make a detrimental

impact on the number of concurrent connections possibly

managed by a single server. Such impact is highly

aggravated for the inter-region case where clustering and

database replication can incur more overhead due to the

limited network bandwidth. For production use where

thousands of millions of devices could be connected, it is

important to have such a system property of linear

scalability against device clients.

Due to the common fact that a complex hierarchical

structure may increase the number of queries over topology

information for locating an entity in the structure, the

potential overhead from such queries needs to be studied

and mitigated. The single clustering in which each server

owns a full replica of all necessary session information is an

ideal structure, particularly when the number of required

queries on session databases for forwarding messages is

mainly considered for overhead estimation. In this regarding,

we first compare the message latency of the hierarchical

clustering with that of such an ideal case, the fully replicated

single clustering. Then we conduct tests with a cache

scheme for reducing the message latency. Specifically in the

hierarchical clustering as conceptually illustrated in Fig. 6

(b), the local session information is partially cached in the

server memory. Fig. 8 presents the inherent message delay

of the hierarchical clustering (without cache), and the

improvement by exploiting the session cache in the same

clustering architecture. In the figure, X-axis represents the

number of messages per second and Y-axis represents the

message latency in milliseconds. Since a group of device

clients are emulated by Tsung running on public cloud

virtual machines, the message latency does not include

delay in wide-area networks. It implies that in practice, end-

to-end message delays must vary significantly by additional

network delays from the last mile between devices and

servers. Overall, the hierarchical clustering with cache

yields the stability of message latencies against various

message rates, and the improvement by cache gets much

significant with the higher message rates as expected.

0

20

40

60

80

200 250 300 350 400 450

of messages per sec

D
el

ay
 i

n
 m

s

Single

clustering

Hierarchical

clustering

Hierarchical clustering

w/o caching

Figure 8. Message latency of clustering architecture

The auto-scaling mechanism is deployed to provide usage

monitoring and automatic scale-out of a server instance

when a certain threshold is reached. In practice, the

threshold is defined as a runtime condition imposed on

resource utilization. Fig. 9 shows that one server instance is

added around time 21 when the resource utilization reaches

the threshold, e.g., 40% in memory usage, and then the new

workload (connection requests from device clients) is

successfully migrated to the new server from time 24. The

migration of existent connections can be expensive due to

required updates on session databases and caches. So we

rather consider new connections and fail-and-retry

connections as candidates for migration. Combined with the

linear scalability demonstrated previously, the auto-scaling

function provides the practical foundation for operating the

production system at large scale.

0

50

100

0

30000

60000

0 4 8 12 16 20 24 28 32

Time

Total

Server1

Server2

Resource Utilization

#
 o

f
cl

ie
n
ts

U
ti

li
za

ti
o
n
 %

+ +

Figure 9. Auto scaling of presence network

 (d) video chat with

screen sharing

 (e) file transfer (c) text messaging

 (a) video chat

 (b) buddy list

Figure 10. Real-time communication and collaboration

V. USE CASES

Although it is still in the evolving phase, our XMPP-

based presence network has been implemented and

deployed as a common networking platform for operating a

few pervasive social services. Some of the following service

scenarios have been recently implemented and tested for the

feasibility of the presence network.

• Pervasive Collaboration: With the presence network, it is

possible to build a real-time communication and

collaboration environment in which a user can access her

149

own or her friend’s devices and play contents at any time

regardless of the device locations. Devices can form a

group by exploiting owners’ social relations. In this group,

the device capabilities and resources can be dynamically

composed for realizing a variety of device collaboration

scenarios. Remotely playing favorite video contents or

synchronizing documents between heterogeneous devices

at different network settings is a basic one, which can be

extended with functional diversity, e.g., GPS, gyro sensors,

etc. Moreover, collaborative executions can be seamlessly

migrated to another composition of device capabilities.

Fig. 10 shows the captured images of such a real-time

collaboration application, of which clients have been

implemented on Android smartphones, demonstrating

various features such as instant messaging, video chatting,

file sharing, screen sharing and so on. In our

implementation, XMPP of the presence network is used

for messaging and signaling in group communication and

NAT traversal techniques are used for setting up peer-to-

peer collaborations among devices.

• Smart Object Interaction: A user can control and monitor

smart objects such as intelligent appliances, e.g., PC,

connected TV, robot-style vacuum cleaner, from outside

through her mobiles. In Fig. 11, the presence network is

used as the core component for seamlessly discovering

and controlling devices i.e., robot vacuum cleaners and

smartphones, by exploiting the roster information of

XMPP between a user and her controllable devices. Note

that video streams and control command data streams are

separately maintained by the XMPP session and the peer-

to-peer channel, consistent with our principal architectural

feature of the presence network. From our experiences in

deploying and operating such controlling services for

smart devices in our production environment, we have

learned that such a clear separation between control and

data streams alleviates the system complexity, thereby

improving the service scalability.

(a) device discovery (b) controlling and monitoring

Figure 11. Remote control and collaboration of smart appliances

VI. CONCLUSION

Despite all the opportunities in enhancing ambient user

experiences by the proliferation of smart devices and cloud

computing technologies, the lack of generic solutions for

accommodating the sheer number of device connections

often calls for cumbersome efforts for development and

deployment of pervasive social applications. The proposed

presence network architecture incorporates server-based

discovery and messaging as well as peer-to-peer overlay in

the network of devices, hence enabling existing social

network scenarios to be applicable for ubiquitous networks

where many heterogeneous devices are connected.

REFERENCES

[1] R. Lubke, D. Schuster, and A. Schill, “Mobilisgroups:

Location-based group formation in mobile social networks,” in

Proc. IEEE PERCOM Workshops, 2011.

[2] D. Bottazzi, R. Montanari, and A. Toninelli, "Context-Aware

Middleware for Anytime, Anywhere Social Networks," in IEEE

Intelligent Systems, Vol. 22, 2007.

[3] A. Gupta, A. Kalra, D. Boston, and C. Borcea, "MobiSoC: A

Middleware for Mobile Social Computing Applications," Mobile

Networks and Applications, Vol. 14, 2009.

[4] A. Hornsby and R. Walsh, “From Instant Messaging to Cloud

Computing, an XMPP review,” in Proc. IEEE ISCE,

Braunschweig, 2010.

[5] P. Saint-Andre, “Streaming XML with Jabber/XMPP,” IEEE

Internet Comput., vol. 9, no. 5, 2005.

[6] P. Saint-Andre, “XMPP: lessons learned from ten years of

XML messaging,” IEEE Commun. Mag., vol. 47, no. 4, 2009.

[7] J. Wagener, O. Spjuth, E. L. Willighagen, and J. ES. Wikberg,

“XMPP for cloud computing in bioinformatics supporting

discovery and invocation of asynchronous web services,” BMC

Bioinformatics, vol. 10, no. 1, 2009.

[8] S. Bendel and D. Schuster, “WatchMyPhone - Providing

developer support for shared user interface objects in collaborative

mobile applications,” in Proc. IEEE PERCOM Workshops, 2012.

[9] R. Klauck and M. Kirsche, “XMPP to the rescue: Enhancing

post disaster management and joint task force work,” in Proc.

IEEE PERCOM Workshops, 2012.

[10] M. Kirsche and R. Klauck, “Unify to bridge gaps: Bringing

XMPP into the Internet of things,” in Proc. IEEE PERCOM

Workshops, 2012.

[11] B. Ford et al., “Persistent personal names for globally

connected mobile devices,” in Proc. USENIX OSDI, 2006.

[12] C. Wu, J. Ho, and M. Chen, “A Scalable server architecture

for mobile presence service in social network applications,” IEEE

Trans. Mobile Comput., vol. 12, no. 2, 2013.

[13] C. Raniery Paula dos Santos et al., “On the impact of using

presence services in P2P-based network management systems,” in

Proc. IEEE GLOBECOM, 2010.

[14] J. Strauss et al., “Eyo: Device-transparent personal storage,”

presented at USENIX ATC, 2011.

[15] C. Dixon et al., “An operating system for the home,”

presented at USENIX NSDI, 2012.

[16] Y. Oh et al., “Design of an extended architecture for sharing

DLNA compliant home media from outside the home,” IEEE

Trans. Consum. Electron., vol. 53, no. 2, 2007.

[17] C. Rus, K. Kontola, I. D.D. Curcio, and I. Defee, “Mobile TV

content to home WLAN,” IEEE Trans. Consum. Electron., vol. 54,

no. 3, 2008.

[18] C. Riva and M. Laitkorpi, “Designing web-based mobile

services with REST,” LNCS, vol. 4907, 2009.

[19] Jabber-RPC, http://xmpp.org/ex-tensions/xep-0009.html, 2011.

[20] Jingle, http://xmpp.org/extensions/xep-0166.html, 2009.

[21] Ericsson AB, http://www.erla-ng.org, 1997.

[22] Cassandra, http://cassandra.apache.org, 2009.

[23] Tsung, http://tsung.erlang-projects.org, 2005.

150

