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Abstract—The proximity alert service on Android is im-
portant as an enabler of ubiquitous location-based services,
however, it is also limited in this role due to its excessive
energy expenditure. In this paper, we present the design and
implementation of an energy-efficient proximity alert service
for Android. Our method utilizes the distance to the point
of interest and the user’s transportation mode in order to
dynamically determine the location-sensing interval and the
location providers (GPS, GSM, or Wi-Fi) to be used. We
implement our method as a middleware service in the Android
open source project. Our service, for a realistic scenario,
reduces GPS usage by 96.66% and increases battery life time by
75.71% compared to the baseline proximity alert in Android.
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I. INTRODUCTION

In the last couple of years, the number of smartphone
users in US alone has proliferated to 100 million 1. Equipped
with a touch screen, built-in sensors, one hop access to
web, and supreme portability, smartphones position them-
selves as an alternative to personal computers. In addition,
smartphones also enable novel transformative location-based
services, thanks to their ubiquitous access to GPS and
network localization.

Proximity alert is a prominent example of location-based
services, in which a user is monitored to detect whether the
user passes nearby of a specific location. All major smart-
phone operating systems, including Android and iOS, expose
a proximity alert functionality via their APIs. Proximity alert
enables various applications including: personal location-
based reminders, safety apps notifying user of dangerous
nearby neighborhoods, location-based auto check-in, call, or
text.

A noteworthy category of apps enabled by high-precision
proximity alert is pervasive collaboration applications. Re-
cently, in our LineKing [1] work, we have utilized proximity
alert on the participants’ smartphones to detect the time
spent at the coffee shop in our campus. Then using the
aggregated crowdsourced data and by leveraging on the
computational power of the cloud, our system is able to
forecast future wait times with less than 3 mins mean
absolute error.

1Android smartphones constitute 50% of the US market and 75% of the
global market for smartphones.

Another significant category of apps enabled by high-
precision proximity alert is novel social networking ap-
plications. Although some smartphone users may not be
acquainted with each other, they may share the same spaces
regularly (a concept referred to as familiar strangers). For
example, students taking the same class, people working in
the same building, or people living in the same neighbor-
hood may fit into this category. These people have relevant
information to share with each other, but not the appropriate
social connections/channels to do so. High-precision prox-
imity alert service can help fill in this gap.

Unfortunately, the proximity alert service depends on
frequent checking of physical location with expensive sen-
sors such as GPS, Wi-Fi, or GSM. However, smartphones
remain severely battery constrained: According to the survey
conducted by TIME 2, almost 62% of US mobile users wish
improvements in battery life; more than any other attractive
features such as screen size or lower price.

To alleviate the energy expenditure problems of the prox-
imity alert service, in this paper we propose energy-efficient
methods to implement proximity alert on smartphones. We
restrict our focus to the Android platform, and on high-
precision proximity alert requirements, as in the LineKing
and auto check-in applications. (As we discuss later, our
method readily extends to low-precision proximity alert
requirements and achieve even further energy savings for
them.) Our method of proximity alert utilizes distances
to the point of interests (POIs) and user’s transportation
mode (idle, walking or driving) to dynamically decide on
location providers and location-sensing interval. Specifically,
our contributions are as follows:

1) We identify the problems for proximity alert in An-
droid framework that lead to wasting energy as fol-
lows: static location provider strategy (GPS-first strat-
egy), static and frequent periodicity of the location
checking, and the lack of utilization of less costly
inertial sensors.

2) We propose a method to monitor proximity to POIs
in an energy-efficient way. Our method keeps track of
distances to the POIs and detects the user’s transporta-
tion mode (idle, walking or driving) to dynamically

2http://bit.ly/QO8Dpn
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decide on the location provider strategy and location-
sensing interval.

3) We investigate low-power transportation mode classi-
fication by utilizing the accelerometer to differentiate
between idle, walking and driving modes.

4) We implement our method as a system level service
by modifying the LocationManagerService of the An-
droid Open Source Project (AOSP).

5) We conduct experiments in various scenarios and
show the strengths and weakness of our proposal.
Our results indicated that, for a realistic scenario,
we saved 75.71% of the battery comparing to the
baseline implementation of Android’s proximity alert
by reducing GPS usage by 96.66%.

Outline of the rest of the paper. In Section II we present
the problems in the current Android implementation and
discuss possible solutions. We present transportation mode
classification in Section III, and in Section IV, we discuss
the overall design of our proximity alert framework. We
discuss our implementation in Section V, evaluation results
in Section VI, and related work in Section VII.

II. PROXIMITY ALERT IN ANDROID

In Android (similarly in iOS), proximity is defined with
respect to a geographical region which is delineated with
three parameters: latitude, longitude, and radius. Once a
device is within the radius of a region, the entered alert
is fired, and once the device is out of the radius, the exited
alert is fired. Below we present the problems in the current
Android proximity alert framework and discuss solutions to
overcome the limitations.

A. Static use of location providers

Android provides a couple alternatives to learn location.
As a location provider, Android can use GPS, cell tower or
Wi-Fi AP (the latter two collectively referred to as network
location). These have different accuracy, availability, and
energy consumption. As for accuracy and availability, GPS is
more accurate in outdoors but unavailable indoors, whereas
network location is mostly available, but more accurate
indoors when Wi-Fi AP (WAP) is available. As for energy,
Figure 1 shows the energy consumption of different location
providers 3. In 10 hours, GPS spent 82% of the battery in
comparison to Network which only spent 36%.

Unfortunately, for proximity alert in Android, location
is requested from each provider following a static order
without considering the availability, accuracy or energy
consumption. If GPS is found to be available then the other
providers are ignored, however, this causes the Wi-Fi to turn
on, even when it goes unused. Also, even when network
location has better accuracy and availability than GPS (e.g.,
indoors), a high energy-cost is still incurred for GPS.

3Experiments are done with the devices that only request corresponding
measurement in the background with minimal settings
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Figure 1. Battery consumption in 10 hours for continuous sensing of GPS,
network localization, accelerometer and idle phone.

In addition, distance to the POI, the most important
parameter in proximity alert, is also not considered in
Android’s provider selection process. There is a need for
high accuracy localization when the user is close the POI,
however if user is far away, then accuracy requirement
can be lowered, for example by using cell tower based
localization.

B. Static and frequent periodicity of location updates

Android’s proximity alert request location in frequent
intervals (in seconds), however, this is often unnecessary.
When the user is far away from the POI, there is no need to
request location with high frequency, as there is no way for
the user to pass through the location in such a short time.
For a stationary user, this is also an overkill.

Rather than fixing the interval, changing it dynamically
based on the distance to the POI and the speed of the
user would lead to significant energy savings. However, to
realize this, an energy efficient method for determining the
user’s speed is needed. We resolve this problem by utilizing
the accelerometer to decide user’s transportation mode and
estimate the time of arrival to the POI.

C. Underutilized sensors

Smartphones are equipped with a variety of sensors,
which can provide valuable information for proximity alert,
but these are unfortunately underutilized by Android. As we
discussed above, using the accelerometer, it is possible to
determine the mode of transportation of the user (stationary,
walking, or driving), using which we can duty cycle the
location sensing interval to conserve energy.

Unfortunately, using the accelerometer is not free, rather
its energy cost is comparable to GPS and Wi-Fi. Figure 1
shows the continuous cost of using accelerometer in 10 hours
in comparison to continuous sampling of GPS and network
localization. As the figure indicates, cost of accelerometer
is almost similar to network localization only with a small
margin of superiority.
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As the distance to the POI increases, we can increase the
interval of sampling location, so there is a sweet point where
sampling the location periodically is more energy-efficient
than sampling accelerometer (and deciding the mode for
energy saving). Figure 2 shows the sampling periodicity
versus the battery level in 10 hours. Horizantal dashed
green line represents the remaining battery from the use of
accelerometer with 1 minute duty cycle periods. (Assuming
that the user is not changing her mode too frequently, this is
a reasonable duty-cycle period). As the figure indicates any
interval more than 1 minute is good enough for the network
localization to be more energy efficient than accelerometer.
Similarly, any interval more than 10 minute is good enough
for GPS to be more energy efficient than accelerometer.
Therefore, we limit the use of accelerometer with distances
that can be reached in 1 minute when network location is
available, and 10 minute in any other cases. We elaborate
on these tradeoffs in Section IV.
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Figure 2. Different periodicity of network and GPS localization for
10 hours. Horizantal green line represents the battery remained for the
accelerometer with 1 min. duty cycle period.

III. DECIDING ON TRANSPORTATION MODE

In this section, we explain our method for differentiating
between different transportation modes. For the sake of
simplicity, we focus on three different modes; idle, walking
and driving. These modes exhibit differences in accelerom-
eter readings. In idle mode, we do not move much, and
this results in regular low variances. Walking causes regu-
lar/patterned changes to acceleration in short periods, which
leads to large variances. Finally, while driving occasional
changes in acceleration occur, but not as much as in walking.

Based on these observations, our method works as fol-
lows. We record the accelerometer readings at a sampling
rate of 50 Hz for 10 seconds and obtain a total of 500
samples. In order to deal with orientation issues, we adopt
the approach in [2] and compute the L2-norm of the raw
data. We then calculate the variance and classify the user
based on this value. If the variance turns out to be high
(σ > 1), then we classify the activity as walking. If

Idle Walking Driving
Idle∗ 0.98 0.00 0.02

Walking∗ 0.09 0.80 0.11
Driving∗ 0.00 0.00 1.00

Table I
CONFUSION MATRIX FOR TRANSPORTATION MODE CLASSIFICATION.

ROWS ARE GROUND TRUTHS, WHEREAS COLUMNS ARE THE FINDINGS

the variance is very low (σ < 0.01) and persists across
consecutive intervals, then we classify it as idle. Finally,
if the variance is in between the high and low thresholds,
we classify the activity as driving.

This algorithm runs for 6 consecutive 10 seconds interval.
In order to eliminate dithering, a majority voting is per-
formed at the end of the minute and outputs the detected
transportation mode. The accelerometer is then duty-cycled
and turned off for the next minute.

Experiments: We collected a week of accelerometer data
and manually labeled the time period when the experimenter
is idle, walking, or driving. The resulting confusion matrix
from our algorithm is shown in Table I. We classify idle
and driving behavior with a high percentage (98% and
100%). Walking is occasionally confused with driving and
idle behavior, however, we observe that this happens only
in transition states.

IV. SYSTEM DESIGN

Our proximity alert service consists of three basic com-
ponents, namely Proximity Alert Manager (PAM), Trans-
portation Mode Classifier (TMC) and Phone State Receiver
(PSR). PAM initiates, processes, and controls all the op-
erations including processing location updates and sending
directives to other components to start/stop them. TMC is
responsible for classifying user’s transportation mode (as
explained in the previous section). PSR is responsible for
letting PAM know about whether Wi-Fi is enabled/disabled
and GPS is enabled/disabled. Before delving into the details,
we define the following terms:
lu : Location of the user. lu has latitude (lu.lat), longitude
(lu.lng), accuracy (lu.accuracy) and provider (lu.pr, i.e.
Network or GPS) information.
lp : Location of the POI. lP has latitude (lp.lat), longitude
(lp.lng) and radius information (lp.radius).
tu: User’s transportation mode: idle, walking or driving
dn: User’s distance to the targeted geo-point using the
WGS84 ellipsoid.
dc: Conservative distance to the target geo-point, defined as:

dc = dn − lu.accuracy − lp.radius (1)

dTMC : Threshold distance to activate TMC. After dTMC ,
periodic checking becomes more advantageous than running
TMC. Since the cost of location providers differ, we specify
two different thresholds, (i.e. dTMC1

and dTMC2
). Former
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Figure 3. Threshold distances to the POI. Distance is decreasing from left to right.

is the threshold where periodic GPS checking is preferable,
and the latter is where periodic network location checking
is preferable to TMC.
dR: Critical distance to end periodic checking. After this
point our system either listens location continuously or run
TMC in frequent periodicity to understand departure from
the idle mode.
vmax: Maximum velocity for driving (vdmax

= 60 mph)
and walking (vwmax = 3.1 mph). These are used for setting
the alarm for periodic checking.

Algorithm 1 Proximity Alert Algorithm
1: procedure PROXIMITYALERT(lu)
2: dcmin = Min. dci for all of the monitored regions
3: if dcmin ≥ dTMC1 then
4: Check loc. after dcmin/vdmax

5: else if dTMC2 ≤ dcmin < dTMC1 then
6: if lu.pr == Network then
7: Check loc. after dcmin/vdmax

8: else
9: if tu == DRIVING then

10: Check loc. after dcmin/vdmax

11: else if tu == WALKING then
12: Check loc. after dcmin/vwmax

13: else if tc == IDLE then
14: Stop location updates
15: end if
16: end if
17: else if dR ≤ dcmin < dTMC2 then
18: if tu == DRIVING then
19: Keep requesting location updates
20: else if tu == WALKING then
21: Check loc. after dcmin/vwmax

22: else if tc == IDLE then
23: Stop location updates
24: end if
25: else
26: if tu == DRIVING OR tu == WALKING then
27: Keep requesting location updates
28: else if tu == IDLE then
29: Stop location updates
30: end if
31: end if
32: end procedure

PAM keeps track of all proximity alerts by monitoring
the user’s transportation mode and the minimum distances

to the registered POI regions. Whenever a location update
arrives or user’s transportation mode changes, PAM updates
the periodic checking parameters by running Algorithm 1.
Threshold distances: We define 3 threshold distances from
the user’s location, which yields 4 distance intervals to
consider (see Figure 3). The first one is dTMC1

which is
regarded as a far away location and requesting GPS loca-
tion periodically is better than observing the transportation
mode (similar argument for the second threshold dTMC2

for network localization). As inferred from Figure 2, these
distances roughly corresponds to 10 minute for GPS and 1
minute for network. Considering vdmax

, this approximately
corresponds to 1 mile and 10 mile from the POI. Third and
final threshold is dR which is regarded as a close point to the
POI. Once this threshold is reached, location or TMC needs
to be run frequently in order not to miss any POI. We chose
dR as 100 meters. Based on these threshold distances, we
dynamically decide the next step as shown in Algorithm 1.
Algorithm 1: We first calculate dc to all of the monitored
regions and select the one with the minimum distance
(dcmin ) as the target point. The rest of the operations are
based on this min distance and its corresponding distance
interval (see Figure 3). If the distance falls into interval 1,
then our system stops if TMC is running and sets up an
alarm to check location again after dcmin

/vdmax
interval.

If the min distance is at interval 2, then we first check
if the location provider is network. Since this is a threshold
where periodic network location checking is more preferable
to TMC, if the location provider is network, then we request
location after dcmin/vdmax interval. Otherwise, we run TMC
and observe the user’s transportation mode. If the user is
driving, then we check the location again after dcmin

/vdmax

interval. If the user is walking then we check the location
after dcmin

/vwmax
. Finally if the user is in idle mode, then

we stop requesting location updates and run TMC to detect
departure from this mode.

If the min distance falls into the third interval, we follow
a more conservative approach. If TMC is not running,
we start it and observe the user’s transportation mode.
If the user is driving, then we request location updates
continuously as this implies user will be at the target soon.
If user is walking then we set up an alarm to check location
again after dcmin

/vwmax
interval. If the user is idle, then
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we stop requesting location updates. Finally if min distance
is at the fourth interval, it means user is almost at the target
point, so our system request location updates continuously
unless user is in idle mode.
Location provider selection: Location is first requested as
a network location. If the user’s distance is more than dR
and location is not accurate enough, then GPS location is
requested. However, if user’s distance is smaller than dR,
then we request from GPS unless GPS is unavailable. This
way, as the user is getting closer to the POI, we ensure that
we get more accurate location information.

V. IMPLEMENTATION

We implemented our proximity alert as a middleware
service in Android by modifying Android open source
project (AOSP) [3]. Specifically, we modified the parts
where the Android proximity alert is implemented, namely
the LocationManagerService class located in the framework
folder. This class is implemented as a singleton to simplify
the management of resources and access control.

All our changes were done in Android JellyBean 4.1 and
we approximately added 1KLOC to this service to enable
our proposed system. After making the modification, we
generated a new custom build with the changes for Nexus
S 4G phones.

In addition to the custom build, we also developed an
application to perform the experiments in Section VI. This
application provides an ability to register and unregister
proximity alert on the map. Finally, we recorded bat-
tery stats periodically by registering and unregistering the
ACTION BATTERY CHANGED provided by the Android
framework. This action calls the provided BroadcastReceiver
to report the battery level. All our logs are stored internally
in the device and evaluated offline after the experiments.

VI. EXPERIMENTS

To evaluate the performance of our service, we conduct
experiments for various scenarios. All comparisons are done
with the original implementation of proximity alert in the
Android platform. We use the Nexus S 4G Sprint phones
in all our experiments. We record the GPS usage, network
usage, TMC usage, and the battery information during the
experiments.

A. Scenario A: Idle device

In this scenario, we conduct an experiment with idle
devices which register a proximity alert with different
distances. Figure 4-a shows the battery consumption with
respect to the distance of the registered proximity alert for
10 hour periods. As shown in the figure, as the distance
increases (d1 < dR < dTMC2 < d2 < dTMC1 < d3) battery
consumption is reduced considerably. Especially once the
distance is greater than dTMC2

(d2 and d3) where periodic

checking is taking place, the battery consumption is much
less than the baseline proximity alert (B-P).

B. Scenario B: Day planning

In this scenario, Bob sets up two proximity alerts before
he leaves the home (08:00am) to arrange his day. He uses
the first alert to remind him to meet with his colleague
when he arrives at work. He uses the second one to remind
him to buy some groceries at the grocery store. Bob might
go to grocery store either in the morning or after work,
so he specifies a large expiration time (12 hours) for the
grocery store, but he turns off the alert for his work when
he gets there. Bob returns home back at 8:00pm. Figure 4-
c shows the route Bob takes during the day. Point A is
his home, B is the grocery store, and C is his workplace.
Distance between A and B is approximately 0.6 miles and
the distance between B and C is around 2.2 miles. As
shown in Figure 4-b, within this 12 hour period, baseline
proximity alert spends most of the battery (30% remained),
while our implementation spends only 17% of the battery
(83% remained). Although, baseline proximity alert uses
GPS and network location almost continuously (12 hour),
for our implementation the GPS usage is 24 minutes, which
is mostly traded with periodic network localization (22
minutes) and TMC (37 minutes). These findings corresponds
to 75.71% improvements in battery consumption along with
reducing GPS usage by 96.66%, network localization us-
age by 96.94% which are traded with periodic checking
and TMC component which relies on relatively low-cost
accelerometer sensor. We repeat the experiment several times
and get the similar results.

VII. RELATED WORK

A. Location Sensing

Our work is the first work to investigate the energy-
efficiency of high-precision proximity-alerts in Android,
however, energy consumption of location sensing in smart-
phones has received interest in recent years. In [4], authors
identify four factors that waste energy: static use of location
sensing mechanism, absence of use of other sensors, lack of
cooperation among applications, and finally ignoring battery
level while sensing. In [5], authors argue that using a history
of cell-id sequences, one can determine the user’s location
with accuracy comparable to GPS. In [6] authors utilize
the location-time history of the user along with user’s past
velocity and activity ratio to duty-cycle GPS. In a related
vein, in SensLock [7], authors explore the possibility of
continuous location tracking in an energy efficient way. They
utilize Wi-Fi AP beacons for localization, use accelerometer
to duty cycle sensing, and GPS for path tracking. In [8],
Ryoo et al. aim to monitor geofences defined as polygons.
Their method of detecting entry and exit from geofences is
to use GPS and cell tower signal strength along with user’s
activity state.
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Figure 4. From left to right: a) Scenario A: Battery consumption of an idle phone with different distances. b) Scenario B: Battery consumption for a day
planning scenario. c) Route for the Scenario B. Point A is Bob’s home, B is the grocery store and C is Bob’s workplace.

B. Activity Recognition
Due to the proliferation of sensors in commodity mobile

devices, identifying the physical activity of a user has
recently gained attention in pervasive community. Aside
from using sensor motes to recognize user’s activity [9],
there has been an increasing interest on using smartphones to
perform activity recognition. In [10] authors use accelerome-
ter in smartphones to recognize different activities including
walking, jogging and standing. In [11], authors use sensors
to infer the user’s status to share it on user’s social network.
This work adopts a split-level classifier to perform some
part of the classification on the server. Finally, similar to
our work, in [12], authors use smartphones to determine
transportation mode of a user. Different than our approach,
they utilize both accelerometer and GPS sensors. Due to the
energy consumption of GPS, we opt-out of GPS and instead
rely entirely on accelerometer.

VIII. CONCLUSION

We presented the design, implementation and the ex-
periments of an energy efficient proximity alert for An-
droid phones. Our method utilizes distances to the POIs
and user’s transportation mode to dynamically decide on
location providers and location sensing interval. We tested
our proposal in different scenarios and shows the strengths
of our approach. Our evaluation results showed that, for a
realistic scenario, we increase battery lifetime by 75.71%
and reduces GPS usage by 96.66%. These results place
applications which require high precision proximity alert
service into the realm of possibility using the constrained
battery capacities of today’s smartphones. In our future
work, we will improve the service by considering user’s
mobility profile and additional transportation modes.
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