Workshop on Pervasive Collaboration and Social Networking 2013, San Diego (18 March 2013)

C3S: a Content Sharing Middleware
for Smart Spaces

Marcos Paulino Roriz Junior, Marco Aurélio Lino Massarani, Leandro Alexandre Freitas,
Ricardo Couto Antunes da Rocha, Fabio Moreira Costa
Institute of Informatics
Federal University of Goids
Goiania - Goias - Brazil
{marcosjunior, lino, leandroaf, ricardo, fmc} @inf.ufg.br

Abstract—Current sharing-based applications combine new
computing devices with smart spaces to provide content-level
ubiquity, i.e., the possibility to exchange and move content freely
in a ubiquitous environment. However, due to the environment
complexity and lack of infrastructure platforms, most of the
work in the area is repeatedly built from scratch using raw
techniques, such as socket and rpc, to express content sharing.
Aiming to provide an infrastructure for the development of this
kind of applications, we propose Content Sharing for Smart
Spaces (C3S), a middleware that offers a high-level programming
model using primitives that are based on a set of content
sharing semantics. They express a set of behaviors, move, clone,
and mirror, which serve as a building blocks for developers to
implement sharing and content ubiquity features.

Keywords—C3S; Content Sharing Middleware;
Middleware; Middleware; Ubiquitous Computing

Pervasive

[. INTRODUCTION

Over the past years, there has been a significant increase
in the number of compact and intuitive computing devices,
such as tablets and smartphones with touchscreen [1], [2].
The integration of these devices into smart spaces, which are
physical spaces permeated and coordinated by a responsive
computational infrastructure that enhances users ability to
interact with others seamlessy in this environment [3], [4],
enables building application scenarios which were previously
only glimpsed by the ubiquitous computing vision of Mark
Weiser [5], [6]. Such advances enabled the materialization
of these scenarios within a particular ubiquitous computing
perspective, for instance, mobility, context or content ubiquity.

Content level ubiquity envisions the possibility of scenarios
that transport content, relevant users’ data abstractions, seam-
lessly trough the smart space. In this ubiquitous computing
aspect, contents are first-class entities that are exchanged using
the smart space infrastructure serving as a medium to integrate
users in the environment. This concept is strongly linked to
sharing and can be used to “extend” existing sharing-based
applications contents, such as collaborative and interactive ap-
plications (public displays), into the smart spaces. For example,
Figure 1 portraits a ubiquitous collaborative IDE that uses
content sharing to enable collaborative programming using
gestures. In this application, users can send and synchronize
source code files with each other to build their software.

Several ubiquitous applications focused on content sharing
were developed with the intention to explore content level

978-1-4673-5077-8/13/$31.00 ©2013 IEEE 163

calc.c

1. #include “calc.h”

.Gﬂmt X»(\i _ 3. int add(int x, int y)
turn x, | { y

return x, return y;

7. #include “calc.h”

targetUser

Platform

Platform

Fig. 1: Sharing a content (calc.c) using a move gesture.

ubiquity in smart spaces. The communication layer of these
applications is built from scratch using raw techniques, such
as socket and rpc, to express content sharing in the smart space.
Because these low-level abstractions do not target this scenario
[7], developers are exposed to several non-trivial problems,
such as reference integrity, concurrency access, seamlessly
mobility, when transporting contents in the smart space. For
example, the application can fault or provide wrong answer
due to inconsistent references left by a transferred content.

Treatment of these problems by the programmer is costly
and diverts his/her focus from the application domain. In
fact, due to the complexity of these problems and lack of
infrastructure platforms, most of the work in the area are
repeatedly built from scratch using low-level abstractions and
dealing only with parts of the problems mentioned [8]-[10].
Seeking to provide a more intuitive infrastructure for the
development of this kind of application, we propose C3S
(Content Sharing for Smart Spaces), a middleware that offers
a high-level programming primitives that are based on a set
of content sharing manipulations in the smart space. These
primitives express a set of behaviors, move, clone, and mirror,
which serve as a building blocks for developers to imple-
ment sharing and content ubiquity features. The primitives
also abstract completely the problems mentioned, reference
integrity, concurrency access, and location transparency, that
are involved in content sharing.

The paper is structured as follows. The next section ex-
plores the content sharing problem and expresses it in the form
of feature that that platforms should provide to developers.
Section III then presents our approach, which consists in the

generalization of content sharing semantics, such as move,
clone, and mirror, into primitives. Section IV describes a
few important C3S structural concepts that describes how can
applications and other services be partitioned in the smart
space to provide support for the primitives. Section V shows
how these concepts and primitives are implemented by the
components that form the C3S architecture. Section VI then
gives a brief description of some implementation issues, while
Section VIII discusses related work. Section VII uses an appli-
cation as an use case to evaluate the middleware constructions.
Finally, Section IX concludes the paper by highlighting the
results and contributions, and discussing future work.

II. CONTENT SHARING

Low-level raw techniques mentioned before are used to
build content sharing in smart spaces, i.e., forms to exchange
and synchronize content with other users in this environment.
Each one of these forms represents a different sharing seman-
tic, a specific way to express an interactive sharing operation.
For example, a move semantic would migrate content from
a user to another, while a clone semantic would copy and
retain the content from the source user. Each specific sharing
semantic that the application uses needs to be coded manually
in those low-level raw techniques, making hard to use multiple
sharing semantics since each one needs to be separately im-
plemented. Also, not only these low-level techniques provide a
poor abstraction level, they were not made with content sharing
or ubiquitous computing in mind thus they do not address
problems that appears in these domains. The rest of this section
lists and explain briefly some problems that appear recurrently
in this environment in these operations.

Content items often reference other contents in order to
express a relationship or to construct complex structures, such
as composition or aggregation, contents can reference others
to build complex structures. Some sharing operations, such as
moving contents between users, can leave the application with
inconsistent references after concluding the operation. This
problem can cause the application to fail by either crashing
(null pointers) or returning wrong results (content is not
deleted). Figure 2 shows this problem in the move operation
described in the introduction.

..
.,

R
-.,, calc.c

targetUser

Platform Platform

Fig. 2: Integrity issues that can happen when contents moves.

Collaborative applications typically use users’ location
abstraction to execute sharing operations. However, in smart
space environments, there can be both user and device mo-
bility, i.e., not only users can enter and leave the space

164

spontaneously but they can change devices too. This means
that in order to abstract a user address we need to know his
current location and active device. This is also a non-trivial
to developers given the fact that developers will need to track
and manage all the users that interact with the environment.

Middleware platforms that provide abstractions for build-
ing sharing-based ubiquitous applications mainly offer a pro-
gramming for smart spaces. However, it is desired that this
model can also abstract some of the environment problems
mentioned, such as managing references, and abstracting user
location and active device. C3S provides three high-level
primitives, move, clone, and mirror, which not only offer an
intuitive programming model using the sharing semantics ap-
proach but also address and turns these problems transparent to
developers. These primitives express a set of functions sharing
behaviors and serve as a building block for the developer
to build sharing-based ubiquitous applications. By using and
combining these primitives, developers can focus on their ap-
plication domain rather than in sharing problems. For instance,
in the introduction scenario the developer would execute the
move(calc.c, targetUser) primitive to share the calc.c content
with fargetUser. C3S would automatically extend remotely the
content references, as we can see Figure 3.

targetUser

Platform Platform

Fig. 3: Using the C3S move primitive to share a content.

III. PRIMITIVES

We analyzed content-level ubiquitous applications in
smarts spaces, both in literature and with prototypes, to iden-
tify common sharing semantics. This exploration discovered
an intersection with three content sharing semantics, move,
clone, and mirror, which were the primary way to express
content sharing in this environment. These semantics were
mapped directly into C3S middleware primitives, see Figure
4. Developers can combine these primitives and create new
sharing semantics, for instance, a trade semantic using move
primitives, or use them as construct block for a high-level
communication layer.

The move primitive migrate contents between application
instances. When moving content from one user to another,
it ceases to exist in the origin and is created on the target
user instance. After the execution of this primitive, references
that point to the moved content becomes inconsistent, since
the content is no longer present. These references can either

be extend the reference to the new (remote) content location
or delete completely depending on how the application or
infrastructure address the issue. Both solutions are non-trivial
[11] and requires local and remote reference management,
including tractability and transparency aspects.

The clone primitive copies content between application
instances. From developers and users point of view it is
an interesting operation because, when copying an item of
content, it is not eliminated at the source, thereby allowing
individual development by another user (in his/her application
instance). Since cloned contents are not removed in the origin,
there is no need to treat invalid reference issues.

Primitives described so far do not have a continuous se-
mantic, i.e., after the operation, there is no connection between
the source and target content. This semantic is very common
on shared screen application such as Classroom Presenter [8],
where digital ink is shared and synchronized across students
and teacher. The mirror primitive materializes this behavior by
coping the content and establishing synchronization between
the original and its new copy. After the operation, the content
exists in both instances, in a way, that changes made in any
of them are reflected on copies. Synchronization and keeping
these contents consistent is a hard task due to the volatility of
users in smart space, programmers needs to design temporary
transaction and locks scheme, both are not trivial.

N\ /7 N\
of
>
Q)
el) L J
- N\ N
)
C
o
©L J L J
(N N
o
S
=
£ J U ~4

Fig. 4: The primitives semantic identified and provided by C3S.

IV. C3S CONCEPTS

To express the C3S primitives, move, clone, and mirror, we
defined some basic concepts about applications and services in
smart spaces. These auxiliary concepts describe how the appli-
cation can be partioned in this environment and the structure
and behaviour of the sharing unit (ubiquitous content).

A. Application, Activation, and Ubiquitous Application

We consider an application as the combination of its
executable and metadata. In the metadata, there are fields
for application name, version, and platform support for each
executable. The application is first installed on a server and

165

then is made available to users in the smart space. We call
each instance of the application as activation, and we define
the ubiquitous application in C3S as a set of activations, i.e., it
is formed by the distributed instances of the application. The
ubiquitous application activations can be restored or paused,
allowing collaboration to be maintained into several sessions.
Furthermore, it should be noted that the C3S can run several
ubiquitous applications simultaneously.

B. Ubiquitous Content

These applications share content, so it is necessary to define
a structure, generic and opaque, that the C3S middleware can
handle. We explored pre-existing definitions, such as share
object [12]-[15], and mobile object [16]-[18], however, they
lacked features of sharing, such as migration, synchronization,
and ubiquity, that these kind of application requires.

To fill this gap, we defined ubiquitous content as: the
ubiquitous sharing unit in smart spaces. The term content
is used to emphasize that this is an application abstraction
and that it is implementation-independent, and thus can have
different structures such as objects, modules or tuples. The
ubiquitous part of the content is related to their ability to
migrate between users and exists in multiple locations. Fur-
thermore, contents may continue to exist after the activation
ends, thereby enabling them to be reused by other activations
or keep sharing when a user leave.

The structure of a ubiquitous content follows a standard
format that allows their manipulation in smart spaces. Its
creation is made at runtime in an activation, which binds
the content to the running activation and a given external
representation. The content internal structure can have multiple
of these external representations, for instance, one for tablets
and other for desktops. In C3S, the basic format of a ubiquitous
content is defined by extending the abstract class Ubiquitous-
Content. This class defines metadata, such as ID, activation,
owner and synchronization status, which are used by the
sharing primitives. When a developers instantiate an ubiquitous
content, using the createUbiContent() function, it creates and
returns an ubiquitous reference. This reference is a proxy that
acts as a membrane that controls the content consistency and
intercepts method calls to synchronized copies, both concepts
will be explained further in Section V.

A ubiquitous content may also reference others to build
complex structures or simple relationship, this is done using
the link concept. A link is a connector that C3S uses to attach
two pieces of content together. C3S provide default behavior
for links when it is inconsistent, for instance when the content
moves, they are break or extend the link remotely. However,
developers can also define their own behavior specifying a
connect() and disconnect() method which are called respec-
tively when establishing or canceling links. When developers
want to link two contents, for instance X to Y, they execute
the X.link(Y, behavior) function, which calls the X.connect()
operation (default behaviors) or the developer custom method.
Links can be stored in the content and developers grab their
endpoints using the getTarget() method, in the sample case it
returns the ubiquitous reference of Y. Links relationship, e.g.,
X — Y, are registered in a C3S graph, which are used later
to manage references, e.g., when they become inconsistente.

V. ARCHITECTURE

The above described primitives are implemented by a
series of components that together collaborate to form the
C3S architecture. It is composed mainly by users’ peer-to-
peer interactions in the sharing process, however, it also has a
client-server style to use and explore smart space services. The
smart space provides naming, storage, and concurrency control
services, for example, user devices can query the list of current
running ubiquitous application or discovers present users in
the smart space. These services are provided by a C3S Server
instance that runs in the smart space infrastructure which is
exposed to users’ applications using well-known identifiers,
such as package-data type and port number.

C3S components are located on top of the user runtime
platform and a communication middleware, as exposed in
Figure 5. The communication middleware serve as a message
bus between C3S instances (peers and server) which abstract
well-known problems, such as user platform, different com-
munication models, that serve as low-level building block of
our primitives. Primitives are implemented separately through
a set of interactions between C3S components thus allowing
to use various communication infrastructure, including, tuple
space, distributed objects, and message-oriented middleware.
Overall managers perform the following tasks:

e Content Management: Provides an interface for ubig-
uitous content manipulation by activations, which in-
cludes methods to create, delete, share and link these
contents. Uses a direct graph structure to manage
content relationships and a local storage scheme to
store and track activations contents.

e User Management: Manages and registers users’
entrance and exit in the environment. Provides conven-
tional methods, i.e., register, remove, login, list users,
to discover and explore user services in the space. This
component is also responsible in abstracting the user
name to his/her current location and active device.

e Application Management: Deals with management
aspects of applications. It allows to create, list, join,
and delete ubiquitous applications in the smart space.

Application Application

mirror()

Content
Manager

User
Manager

<

Application
Manager

Communication Middleware

Runtime Platform

Fig. 5: An overview of C3S architecture.

166

A. Entering and Leaving the Smart Space

User enters the C3S smart space executing a well-known
login service provide by the Server instance in this environ-
ment. The Server can uses different back-ends, e.g., Google,
OpenlID, Facebook, or its own infrastructure to validate this
operation. If the operation is successfully, the user is registered
or updated with an abstract username pointing to his/her
current location and active device.

Users might be carrying multiple devices and just spon-
taneously change between them or other devices presented in
the environment, to keep the primitives location-independent
we need to address this issue. Whenever users interact with
an activation ubiquitous content, the proxy creates and sends
signals to user manager. These signals serve as heartbeat
messages and allow the manager to update the username
abstraction in the smart space. Developers, can also manually
specify the current device using a setcurrentdevice() function.

B. Move and Clone

The move and clone primitives are similar since the both do
not establish a continuous sharing binding between the source
content and its destination after the operation. Cloning can
be seen as a “light” move operations, since it doesn’t remove
contents from the source location and don’t need to deal with
inconsistent references, thus we will mainly describe the move
primitive. The steps involved in this process are:

1) Activation initiates the sharing process executing the
move(content, targetUser) primitive;

2) User manager translate the targetUser name to its
low-level address in the communication middleware;

3) Content manager takes the content structure from the
storage, transform it on an external data representa-
tion with metadata and send to the address provided,

4) The target C3S instances receives the communication
middleware message, which contain the serialized
content and activation metadata. Using this external
data representation the content is rebuilt and added
to the activation content storage.

5) Using the message metadata, content manager creates
an event and signalizes to the activation the receiving
content and the user who sent.

6) After the content is delivered, the source content
manager removes it from its activation storage. To
deal with possible inconsistent references the man-
ager checks for violations in the relationship graph
for links behaviors that need to be addressed.

7) The current reference is linked to a keep behavior, the
content proxy will redirect future calls to the remote
copy using the subjacent communication middleware.

C. Mirror

Mirror primitives, in turn, provide a continuous effect in
content sharing. The first part of the operation is identical to
copying, however, after doing that it adds the new copy address
to a sync queue in the Server. Interactions with synchronized
ubiquitous content are intercepted by C3S, using the proxies,
and are broadcasted to the other replicas. The broadcast
message contains metadata about the intercepted function, such
as arguments and function name, which are locally executed in

each replica. To control concurrency C3S uses the Mediated
Updated pattern [19] which minimize update loads using a
central instance (Server) that dispatches updates. Whenever
a synchronized content changes, e.g., through a function, the
proxy sends the changeset to the central instance which locks
the contents and propagate the update in the smart space.

VI. IMPLEMENTATION ISSUES

When ubiquitous contents are instantiated, proxies are
dynamically created using reflection to manage the content
structure as described in the Active Object pattern [20]. This
pattern decouples the method execution from its invocation and
allows the C3S middleware to intercept and control the content
consistency. During the primitive execution, the content can
receive further method calls from other threads. These methods
are transformed into requests metadata and are stored in a
buffer that is sent and executed on the destination location
after transferring the content.

C3S combines the Active Object [20] with the Mediated
Updates [19] pattern to manage the consistency throughout
mirrored content in the smart space. While the first pattern
can lock contents the second dispatches updates and control
these locks. This provides full transaction support, however
it slows down other replicas in high interactive applications
given the fact they are blocked when propagating changes.

VII. CASE STUDY

The Secret Words application was designed to validate
the C3S architecture and primitives in a smart space. It is
intended for children undergoing literacy and employs a simple
methodology that combines images with words. Secret words
are distributed among the students and they have to hit the
correct letters to reveal the word. These words can be shared
between students, for example, if a student knows one letter,
you can move to him/her. Figures 6 and 7 shows the screen
of the application and its execution in tablets respectively.

Hidden words represent the sharing unit of the application
and were modeled as ubiquitous content. Among its attributes
and operation it can list the string that contains the origi-
nal word, inset letter, and get hints. The entire application
communication layer to exchange words was mapped to C3S
primitives. However, we identify primitives not supported by
C3S, particularly, the merge semantic. For example, when a
student clones a secret word to another, it is interesting that
this student could apply modifications developed by colleague
in the original copy.

Fig. 6: Secret Words screenshot.

167

VIII. RELATED WORK

There are few specific middleware platforms for collabo-
rative applications in smart spaces. However, there are some
frameworks and middleware that meet some of the require-
ments of these applications. This section compares them with
C3S using the abstractions that they provide to deal with
content-level ubiquitous applications identified in Section II.
Table I summarizes this comparison.

A. Sharing Semantics

A sharing semantic represents a way to share content, for
instance, moving, cloning, and mirroring. This requirement ex-
presses the content sharing semantics that platforms provide to
developers. We are not aware of work that provides semantics
other than the ones presented in C3S.

DOLCLAN [12], DreamObject [13], and Agilo [15] are
middleware and frameworks developed by CSCW researches,
which happens to all focus on syncing (mirroring) semantics
in stable scenarios. Mica [14] provides a blackboard approach
using tuple space that presents only a manual mirror semantic
through reading and writing. AOM [16] and ProActive [18] use
distributed objects middleware such as CORBA to provide a
service that resembles move and clone. However, both requires
that developers manually program parts of the operation.
Finally, NetMorph [17] presents an interesting and different
migration approach than the others. It divides the smart space
in 2D coordinates and content are moved to a position (z,y)
rather than an user. The related works usually provide only
one semantic or lower-level abstraction compared to C3S.

B. Sharing Implementation

Content sharing can be realized through procedural prim-
itives or content built-in types. In the first case, sharing
is done with the use of functions expressing the different
sharing semantics, while in the second case the semantic is
embedded in the content type. Primitives are usally defined
using functions, thus, they can be classified as dynamic, since it
can choose at runtime the function (or sharing senatic) desired.
With data typing, the semantis is static and integrated on the
content type, which means, that any created conent can only
be shared with the pre-defined type semantic.

CSCW work (DOLCLAN, DreamObject, Mica, and Agilo)
use built-in types. The problem with built-in types is that
it restricts the contents to a given semantic, and thus it can
only be shared using that predefined form. The other related
works and C3S uses the approach based on primitives, which

Fig. 7: Tablets executing the Secret Words application.

Middleware Platform Sharing Semantic

DOLCLAN Mirror
DreamObject Mirror
Mica Mirror

Agilo Mirror
NetMorph Move
ProActive Move, Clone
AOM Move, Clone

C3S Move, Clone, Mirror

Sharing Implementation Referencial Integrity

Built-in None
Built-in None
Built-in None
Built-in None
Primitives None
Primitives Auto
Primitives Auto
Primitives Manually, Auto

TABLE I: Comparison of abstractions that content sharing platforms provides.

allow higher abstraction to developers, given the fact that the
semantics is defined in the primitive, which means, that the
same content can be shared in different ways.

C. Referential Integrity

Referential integrity is an interesting problem that only
some platforms try to solve. Since DOLCLAN, DreamObject,
Mica, and Agilo do not have the move and clone semantic sit
is quite expectable that they do not provide solutions to this
problem. AOM and ProActive use a narrow copy during these
operations and they fix these references using an lazy approach,
i.e., when the reference miss they discover and redirect to its
new location. In C3S we provide the delete and keep behaviors
or allow developers to specify custom functions to operate
when the problem happens.

IX. CONCLUSION

C3S is a middleware platform that provides a high-level
programming model base on the sharing semantics and prim-
itives approach to build content-level ubiquitous application
in smart spaces. These primitives abstract recurrent problems
encountered in sharing applications, such as referential in-
tegrity and transaction support. The primitives include sharing
semantics of move, clone, and mirror. Move transfer and delete
the content from the origin to the target user. Clone copies the
content and mirror provides a synchronous content replication.

The C3S architecture and primitives were built on top of
a generic communication middleware. This allows the imple-
mentation to be flexible and agnostic to the subjacent low-level
communication bus. It constructs the sharing semantics on top
of this communication service. As future work we intend to
explore the middleware in a larger scale than a closed smart
space. Furthermore, we want to extend these primitives to
explore and support other sharing semantic in the smart space,
such as trade, merge and peak.

REFERENCES

[11 G. Goetz, “Apple’s inevitable path to a post=pc era,” http://gigaom.com/
apple/apples-inevitable-path-to-a-post-pc-era/, 2012.

[2] M. Lopez, “Four ways the post-pc era differs from
today,” http://www.forbes.com/sites/maribellopez/2012/05/01/
four-ways-the- post-pc-era-differs-from-today, 2012.

[3]1 G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed Sys-
tems: Concepts and Design, 5th ed. USA: Addison-Wesley Publishing
Company, 2011.

[4] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan, R. Campbell, and
K. Nahrstedt, “A middleware infrastructure for active spaces,” IEEE
Pervasive Computing, vol. 1, no. 4, pp. 74-83, Oct. 2002.

168

[5]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

A. Schmidt, “Ubiquitous Computing: Are We There Yet?” Computer,
vol. 43, no. 2, pp. 95-97, Feb. 2010.

M. Weiser, “The computer for the 21st century,” SIGMOBILE Mob.
Comput. Commun. Rev., vol. 3, no. 3, pp. 3-11, 1999.

P. Byrne, “MUSE - Platform For Mobile Computer Supported Collab-
orative Learning,” Ph.D. dissertation, University of Dublin, 2011.

R. R. Anderson, P. Davis, N. Linnell, C. Prince, V. Razmo, F. Videon,
and V. Razmoyv, “Classroom Presenter: Enhancing Interactive Education
with Digital Ink,” Computer, vol. 40, no. 9, pp. 56-61, Sep. 2007.

J. P. Hourcade, B. B. Bederson, and A. Druin, “Building KidPad: an
application for children’s collaborative storytelling,” Software: Practice
and Experience, vol. 34, no. 9, pp. 895-914, Jul. 2004.

J. Steimle, O. Brdiczka, and M. Muhlhauser, “CoScribe: Integrating
Paper and Digital Documents for Collaborative Knowledge Work,”
IEEE Transactions on Learning Technologies, vol. 2, no. 3, pp. 174—
188, Jul. 2009.

A. Fuggetta, G. Picco, and G. Vigna, “Understanding code mobility,”
IEEE Transactions on Software Engineering, vol. 24, no. 5, pp. 342—
361, May 1998.

J. Bardram and M. Mogensen, “DOLCLAN: middleware support for
peer-to-peer distributed shared objects,” in Proceedings of the 7th
IFIP WG 6.1 international conference on Distributed applications and
interoperable systems. Springer-Verlag, 2007, pp. 119-132.

S. Lukosch, “Transparent and Flexible Data Sharing for Synchronous
Groupware,” Ph.D. dissertation, University of Hagen, 2003.

M. W. Kadous and C. Sammut, “MICA: pervasive middleware for learn-
ing, sharing and talking,” in Pervasive Computing and Communications
Workshops, 2004. Proceedings of the Second IEEE Annual Conference
on, 2004, pp. 176-180.

A. Guicking, P. Tandler, and P. Avgeriou, “Agilo: a highly flexible
groupware framework,” in Proceedings of the 11th international confer-
ence on Groupware: design, Implementation, and Use, ser. CRIWG’05.
Berlin, Heidelberg: Springer-Verlag, 2005, pp. 49-56.

R. Kapitza, H. Schmidt, G. Soldner, and F. Hauck, “A Framework for
Adaptive Mobile Objects in Heterogeneous Environments,” in On the
Move to Meaningful Internet Systems 2006: CooplS, DOA, GADA, and
ODBASE, ser. Lecture Notes in Computer Science, R. Meersman and
Z. Tari, Eds. Springer Berlin, 2006, vol. 4276, pp. 1739-1756.

M. Umezawa, K. Abe, S. Nishihara, and T. Kurihara, “NetMorph
- an intuitive mobile object system,” in Creating, Connecting and
Collaborating Through Computing, 2003. C5 2003. Proceedings. First
Conference on, 2003, pp. 32-39.

B. Xu, W. Lian, and Q. Gao, “Migration of active objects in proactive,”
Information and Software Technology, vol. 45, no. 9, pp. 611-618, 2003.

S. Lukosch and T. Schummer, “Patterns for Managing Shared Objects in
Groupware Systems,” in Proceedings of the Ninth European Conference
on Pattern Languages of Programs (EuroPLoP’04), K. Marquardt and
D. Schutz, Eds. Konstanz: UVK Universititsverlag, 2005, pp. 333-378.
R. G. Lavender and D. C. Schmidt, “Pattern Languages of Program
Design 2,” in Pattern Languages of Program Design 2, J. M. Vlissides,
J. O. Coplien, and N. L. Kerth, Eds. Boston, MA, USA: Addison-
Wesley Publishing Co., Inc., 1996, ch. Active Obj, pp. 483-499.

