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Abstract—We present a technique for detecting floor changes
in an indoor environment and improving pedestrian indoor
localization and navigation. Our technique relies on barometric
pressure sensors commonly available on smartphones and
tablets. We developed an algorithm running on smart mobile
devices that can be integrated in any indoor localization system
to improve accuracy and support 3D navigation. The main
novelty of our technique is that it can work in any type of
environment, without any prior knowledge of the building
layout, it does not require calibration and it is adaptive.
Experimental results show that our method can accurately
detect floor changes in any condition without requiring any
additional work.
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I. INTRODUCTION

Indoor localization and navigation services are becom-
ing widespread thanks to the diffusion of more and more
powerful mobile devices (i.e., smartphones). Most of the
approaches used for indoor localization are based on em-
pirical measurements of access point signal strength (RSS-
based), which are stored offline. These techniques comprise
an online mapping of the stored scans with the current ones,
and assume that access points are located in the same 2D
location. Unfortunately, these methods are not suitable for
multi-level buildings, especially if open spaces exist, because
the similarity of received signal strength of access points,
can determine incorrect mappings of positions located in
adjacent floors. The direct consequence of these mismatch-
ing is the ping-pong effect in the visualization of the floor
associated to the device position. Therefore, a method for
extending 2D indoor localization with information about
height is required.
This paper proposes a practical approach to estimate altitude
changes that can be combined with any 2D localization
technique to generate a 3D indoor localization system. Our
approach is adaptive, independent from the layout of a
building and works for any type of transport mode (stairs,
elevators, etc.). We started from the theoretical work made
by Misra et al. [1], who used classification strategies based
on measurements provided by phone-embedded barometric
sensors to identify the number of floor traversed by users.
We used an empirical approach, and implemented and val-
idated an algorithm that uses barometric pressure sensors
available on off-the-shelf smartphones for detecting floor

transitions and mapping floors in a multi-floor environment.
Information about floor mapping can be used to improve
the accuracy of RSS-based indoor localization systems a/o
to provide 3D navigation support.

II. RELATED WORK

This work focuses on the integration of context infor-
mation collected using mobile phones’ built-in sensors into
localization systems to provide more accurate indoor loca-
tion. Recently, in [2] we have been exploiting the sensing
capabilities of smartphones (i.e., accelerometer, compass and
gyroscope) to provide alternative tracking techniques, which
come in support of standard localization methodologies
when they are not available. Here, we propose to use
barometric pressure sensors to infer floor-level information
in localization systems.
Despite the number of solutions for 2D localization, only a
few works deal with mapping of multi-floor buildings, but
they use dedicated hardware. In [3], for example, authors use
multiple robots, while in [4] a single robot provided with a
barometric pressure sensor explores a multi-floor building
and in [5] a high precision barometric sensor mounted
on a van is used to perform vehicle localization in an
outdoor environment. In [6], fixed dedicated sensors provide
reference measures, which are used in conjunction with
measurements obtained from tags equipped with barometric
pressure sensors to determine the floor. In [7] an external air
pressure sensor was attached to a smartphone via Bluetooth
for identifying the storey where a device is located: the
technique proposed strongly depends on information about
the layout of the building (i.e., the altitude of each floor,
the distance between every two storeys and the attenua-
tion of signal due to the penetration through the floors).
Fingerprinting methods [8], which use correlations between
locations and radio-signal patterns, are inaccurate to detect
floor changes because radio-signal fluctuations/attenuations
are high in the areas where elevators /staircases are located.
Recently, smartphone manufacturers have started selling
models with integrated barometric pressure sensors. Given
the novelty of these sensors, there is little prior work that
has applied them to the problem of determining indoor
floor information. In [9] for example, authors unsuccessfully
attempted to use a barometer to help users find where
their car was parked. To the best of our knowledge only
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few authors started studying solutions that use barometric
pressure sensors installed on off-the-shelf smartphones to
infer floor-level location, but they have not published their
results yet.

III. RATIONALE

Barometric pressure is defined as the force per unit area
exerted against a surface by the weight of the air above that
surface. The standard unit for pressure is the pascal (Pa),
which is equal to one Newton per square meter (N/m2). In
meteorology, the hectopascal (hPa) unit is mainly used; 1
hPa corresponds to 100 Pa.
Pressure and altitude are strongly related. It is well known
that the higher the storey the lower the barometric pressure,
and vice versa. The relationship between pressure P and
altitude h up to 11.000 meters can be defined as:

h = (1− (P/P0)
(k∗R/g)) ∗ (T0/k) (1)

where P0 and T0 are the pressure and temperature at sea
level (1013.25 hPa and 288.15◦ K), R is the universal gas
constant (287.052 m2/s2), k is the lapse rate/drop in tem-
perature with altitude (0.0065◦ K/m), g is the gravitational
constant (9.82 m/s2). In the real world, barometric pressure
and temperature are not constants. Furthermore, buildings’
floors have different heights and the pressure across different
floors of the same building may vary due to pressurization
artefacts. These factors make the problem at hand very
challenging.

IV. EXPERIMENTS

We conducted preliminary experiments using different
mobile phones in order to investigate the characteristics of
barometric pressure in different scenarios. For our tests,
we used two Android mobile phones models: Samsung
Galaxy Nexus and Samsung Galaxy SIII. The first phone is
equipped with a Bosch Sensortec BMP180 digital barometric
pressure sensor, while the Samsung Galaxy SIII mounts an
STMicroelectronics LPS331AP chip. The relative accuracy
pressure is ±0.12 hPa for the BMP180 and ±0.1 hPa for
the LPS331AP chip. The empirical data we collected had
been used to derive and develop our practical method for
detecting floor changes.
First, we analyzed raw pressure readings characteristics.
For all experiments, data was recorded with a sample rate
of approx. 1 Hz. Android allows to listen to pressure
events: the rate events are delivered is only a rough in-
dication as they are specified with values such as ”DE-
LAY FASTEST” or ”DELAY NORMAL”. For this reason
we decided to get sensor data as fast as possible (using the
”DELAY FASTEST” rate), to select the median value of
three samples for minimizing the impact of transient values,
and then to wait 1 s. for the next three values to be read.
The first consideration we made is about the absolute value
of pressure readings: in the same place and at the same

time, there was a gap of about 1.7 hPa in the measurements
provided by the two phones. This means that absolute
pressure readings of a mobile phone cannot be used neither
for directly associating pressure to altitude nor for inferring
altitude based to reference values provided by e.g. fixed
sensors at known positions. The second consideration is
that, in the same position, absolute pressure values are not
constant but vary with time because of atmospheric events
(cloudy/sunny). Our conclusion was that we cannot rely on
absolute pressure values for correlating pressure to altitude
and classify floor-level location.
Raw pressure graph presents some peaks related to distorted
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Figure 1. Raw and smoothed pressure data.

readings, even when the phone is resting on a support. To
produce unbiased pressure values, we decided to use a tech-
nique for producing smoothed data in a noisy time series.
The approach we used is double exponential smoothing,
which is also an excellent approach in following the data
when there is a trend. If xt is the raw data sequence of
observations starting at time t = 0, st is used to represent the
smoothed value for time t, and bt is the best estimate of the
trend at time t. The following two equations are associated
to Double Exponential Smoothing:

st = αxt + (1− α)(st−1 + bt−1)

bt = γ(st − st−1) + (1− γ)bt−1

(2)

where α is the data smoothing factor, 0 < α < 1, and γ
is the trend smoothing factor, 0 < γ < 1. The initial values
can be taken as s1 = x0 and b1 = x1 − x0. The smoothing
factor, for both data and trend, represents the importance
applied to the most recent period (1 means that the latest
period is more important). We used 0.5 for both factors.
Figure 1 shows raw and smoothed pressure readings when
the phone is on a table.
We carried out a series of experiments at our main building,
which is located at 341 meters above sea level, in five differ-
ent scenarios. In the first scenario, we recorded pressure and
acceleration in the Z axis while the phone was laying on a
support (stationary mode). In the second scenario, pressure
measurements were made while a user was walking on the
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same floor of our building (walking mode). In the third
and fourth scenario, pressure was recorded while the user
was stepping up and stepping down the stairs between the
basement and the second floor of our building. Finally, in the
fifth scenario, we moved from the basement to the second
floor using an elevator and monitored pressure.
As it can be seen from Figure 3, pressure and acceleration in
the Z axis remain stable when the user is in stationary mode.
Standard deviation of barometric pressure for both phones
was less than 0.1 hPa. Furthermore, standard deviation for
the Galaxy SIII was higher than the one for Galaxy Nexus.
This result complies with data about accuracy provided from
both chip manufactures. Acceleration is displayed in the
charts in a secondary axis (with a dashed line), and is
comprised between ±0.25m/s2.
When the user is in walking mode (Figure 4), pressure is
relatively stable, while acceleration in the Z axis oscillates
frequently (±3.5m/s2), and the amplitude of oscillations
varies as a function of user’s speed, phone’s orientation
and phone’s position (e.g., in pocket or hand). Thus we
concluded that the stationary state is the only one that
can be well characterized by fixed bounds of pressure and
acceleration.
Figure 5 shows the evolution of pressure while user was
stepping up the stairs between the ground and the second
floor. The exploration starts at the ground floor. The user
takes the stairs and goes to the first and then to the second
floor, where the pressure is lower as expected. The amplitude
of the acceleration measurements is high at the start and at
the end of the graph (where the user was stepping up the
stairs), while it is limited in the middle of the graph because
there is a landing between the two floors. We do not report
the graph here, but we checked that (similarly) pressure
increases as the user moves from the second, to the first
floor, and then to the basement. Floor transitions are clearly
observable from the pressure data: they are identified by
discontinuities in the pressure graph. Furthermore, pressure
values on different floors are clearly separated.
Finally, Figure 6 shows pressure graph when riding the
elevator from the basement to the second floor. The two
spikes in the acceleration measurements, showed in the
graph (elevator up and arrival), are related to the initial
acceleration of the elevator and to the deceleration at floor
arrival. There is roughly 1 hPa pressure difference between
floors. Furthermore, the rate pressure varies over time is
higher than in the two previous scenarios.
To sum up, the most important considerations that can be
made from the set of experiments are:

• pressure difference between consecutive floors is ap-
proximately the same for both phone models;

• the dynamics associated to pressure variations are the
same for both phones and they do not depend by
external factors like e.g. the speed of the movement.

This means that floor changes can universally be identified
by observing pressure differences.

V. ALGORITHM

The detection of floor transitions is based on the relative
difference of pressure readings and on the identification
of the user dynamics mode (”stationary”, ”walking” on
the same floor or ”stepping up/down” the stairs, ”elevator
up/down”). The detailed detection algorithm is presented in
Figure 2. It takes as input the smoothed pressure readings
and first checks the difference between its value and the
mean value for pressure of the current time window. This
check is made to identify if the user is in stationary/walking
mode. The mean value is updated only if this difference
is less than the PRESS ACC threshold, which reflects the
accuracy of the pressure measurements we found during the
experiments. PRESS ACC is first assigned a fixed value and
this value is automatically adjusted by combining pressure
measurements with accelerometer data when a user is in
stationary mode. The standard deviation of the pressure
when user is in stationary mode is used to update the value
of PRESS ACC as:

PRESS ACC = k ∗ pressure std dev, where k = 3

The rationale for the above equation is that we assumed
that pressure in stationary mode is normally distributed.
Therefore, from the three-sigma rule of normally distributed
data [10], we can state that nearly all values lie within 3
standard deviations (σ) of the mean (µ):

P (µ− 3σ ≤ x ≤ µ+ 3σ) ≈ 0.9973

To identify when a user is in stationary mode, we period-
ically read the Z axis acceleration and check if it is less than
a specified threshold T STATIC [11]. If the amplitude of the
oscillations is higher than the T STATIC threshold and there
is a minimum number of samples for calculating the standard
deviation of pressure, PRESS ACC is updated. If the user
is in one of the other dynamics mode (”walking”, ”stepping
up/down” or ”elevator up/down”), pressure will exceed the
PRESS ACC threshold and continue to increase/decrease
until the user commutes to the stationary or walking mode.
As said, by using the smoothed pressure value, we are sure
to follow the trend. A floor transition will then be clearly
identified by a change of sign in the smoothed pressure
difference between adjacent readings.
To avoid false floor transition detections, we check if
the pressure measured afterwards does not exceed the
PRESS ACC threshold for at least MIN SAMPLES sam-
ples. To get the final confirmation that there has been
a floor transition, we check that the difference between
the last mean pressure value and the pressure when
a floor transition has been detected is higher than a
DELTA PRESS MIN constant. DELTA PRESS MIN is
first initialized to PRESS ACC and its value is updated in
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an adaptive way by computing differences between stored
pressures values at floor changes. After a floor transition has
been detected, the pressure mean value is recalculated from
scratch.
The main advantage of this approach is that floor transitions
can be identified without any prior knowledge of the building
layout. The detection algorithm does not include information
about floor heights, which can be different for different
buildings, but even for the same building; therefore it can
work in any type of environment. Furthermore, our technique
does not depend on the transport mode used (stairs or
elevator). Finally, it does not need any additional HW nor
any complicated preliminary calibration of the barometric
sensor to correct the sensor device error component.

Input: pressure p, previous pressure prev_p, acceleration a 

Output: floor transition is_floor_changed 
PRESS_ACC←1.2 
MIN_SAMPLES ←4 
change_in_sign ← FALSE 
threshold_exceeded ← FALSE 
if (a < T_STATIC) 

update pressure_std_dev 

end if 
else if (num_samples_pressure_std_dev > MIN) 

 PRESS_ACC= k * pressure_std_dev 

end if 
deltaPress ←  (p – meanPressure) 
adjacentDeltaPressure ← (p – prev_p) 
if |deltaPress| > PRESS_ACC 

 threshold_exceeded ← TRUE 
end if 
if threshold_exceeded 

if(n_boundaries==MIN_SAMPLES) 
 if (p – last_press > DELT_PRESS_MIN) 

   is_floor_changed ← TRUE 
   last_press = p 
  end if 
 end if 
 if change_in_sign 

  if  |deltaPress| < PRESS_ACC 
    n_boundaries← n_boundaries+1 
  end if 
  else 
   change_in_sign ← FALSE 
  end if 
 end if 

 else if (adjacentDeltaPressure change sign) 
  re-compute  meanPressure 
  change_in_sign ← TRUE 
 end if 

else 
 update meanPressure 

end if 
return  is_floor_changed 

Figure 2. Algorithm for detecting floor transitions.

VI. RESULTS

To validate our floor detection algorithm, we deployed
an application implementing it. Since we demonstrated in
Section IV that the behaviour of the two smartphones is
identical, we used only one phone for tests (the Galaxy
Nexus) and conducted a number of experiments first at our

main building, and then in a different building.
In the first experiment, the user started walking from the
basement, and then took the stairs, exited at the first floor,
walked and entered into our office. Finally, he did the reverse
path. The experiment was repeated 50 times. We initially
used a small value for the MIN SAMPLES parameter: it
was set to 2. With this value, as expected, we achieved
an accuracy of 82% in exactly identifying floor transitions.
More precisely, 9 over 50 times, pressure decrease was not
linear and the algorithm detected a false floor transition
because there was a change of sign in the difference of pres-
sure between adjacent readings, followed by short pressure
variations within the PRESS ACC interval, and then by a
subsequent decrease in pressure values. For this reason, we
decided to set the value of MIN SAMPLES to 4. Then, we
repeated the experiment again for 50 times and no longer
got false floor transitions.
In the second experiment, the user stepped into the elevator
from the basement, went to the first floor and finally stepped
out from the elevator. We repeated the experiment 50 times.
Our algorithm was always successful because the elevator
context is characterized by a distinct linear variation of
pressure until a new floor is reached.
In the third scenario, we combined the paths followed in
the previous two: the user waited for the elevator, took
the elevator at the ground floor, stepped out at the first
floor, walked along the corridor and finally went downstairs
by stairs. In 7, which refers to this scenario, the elevator
context can be easily identified from the measurements
since the rate of change of pressure over time is very fast.
Staircase environment is instead characterized by a slow
rate of change in pressure. The value of PRESS ACC -
automatically calculated by the application when the user
stood in front at the elevator (stationary mode) - was 0.11
hPa. We repeated the experiment 10 times: our application
was always able to correctly detect floor transitions.
Finally, we tested the convergence of our algorithm. We
initially set the value of PRESS ACC to 5 hPa, reproduced
stationary mode conditions (amplitude of acceleration oscil-
lations lower than T STATIC) and checked if the algorithm
was able to adjust the PRESS ACC value in order to detect
a floor transition in two scenarios: when the user stepped
upstairs from the ground to the first floor, and when he went
from the first to the second floor and then again to the first
by the elevator. Note that with PRESS ACC set to 5 hPa,
even if there is a big drop/rise in pressure (hence the floor is
presumably changed), the algorithm is not able to distinguish
it because the margin of tolerance to discriminate between
stationary and walking mode is high. In both scenarios, our
algorithm detected the initial stationary mode conditions
and computed the standard dev. of pressure during that
period. The value was calculated right after the amplitude of
the acceleration oscillations was higher than the T STATIC
threshold (0.35 m/s2).
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Figure 3. Barometric pressure and acceleration in stationary mode.
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Figure 4. Barometric pressure and acceleration walking on the same floor.
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-1.2

-0.7

-0.2

0.3

0.8

1.3

974.4

974.6

974.8

975

975.2

975.4

975.6

975.8

976

976.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ac
ce

le
ra

tio
n 

(m
/s

2 )

Pr
es

su
re

 (h
Pa

)

Time (s)

Galaxy Nexus

Pressure

Acceleration

-1.3

-0.8

-0.3

0.2

0.7

1.2

972.8

973

973.2

973.4

973.6

973.8

974

974.2

974.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ac
ce

le
ra

tio
n 

(m
/s

2 )

Pr
es

su
re

 (h
Pa

)

Time (s)

Galaxy SIII

Pressure

Acceleration

Ground floor
Elevator up

Second floor
Arrival

Ground floor
Elevator up Second floor Arrival

Figure 6. Barometric pressure and acceleration riding the elevator to the second floor.

6



To discard the influence of external factors (i.e., related
to the structure of the building, to weather conditions or
to altitude), we performed a second set of experiments in
a different building, with a different layout (3 floors with
lower heights, connected by two staircases), located at 210
meters, under good and cloudy weather conditions.
The first consideration is that, as expected, pressure values
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were higher than those measured at our main building
because altitude is lower. Our algorithm correctly detected
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Figure 8. Floor changes under low pressure conditions in new building.

floor changes along the route basement→first→second→
first floor (Figure 8). The two false changes of sign indi-
cations were ignored as pressure respectively had been de-
creasing/increasing and exceeded the PRESS ACC thresh-
old, meaning that the user was not in stationary mode.
The final consideration is that the capability to detect floor
changes from the barometric sensor observations was unaf-
fected by changes in the phone’s positioning and orientation.
In our experiments we intentionally didn’t care about the
positioning of the phone, as it happens in a daily usage
pattern: under this ”flawed” condition, the accuracy to detect
floor transitions didn’t change.

VII. CONCLUSION

We presented a mechanism for detecting floor transitions
using barometric pressure measurements provided by widely
available off-the-shelf smartphones. We use measurements

provided by embedded accelerometers to adapt the be-
haviour of our algorithm to the environment. Our approach is
context-agnostic, thus can work in any type of environment;
and does not require any external hardware or preliminary
calibration of the barometric sensor to fix the sensor error
component. The experiments show that our algorithm can
accurately detect floor transitions in any type of indoor
environment and for any type of transport mode used (stairs
or elevators).
Future work includes: the investigation of the power con-
sumption of our algorithm and its integration into our ELS
solution [2] to provide a continuous localization service
while reducing the resources consumption; the conversion
of the algorithm into an add-on that can be easily integrated
into any 2D indoor localization system to provide 3D local-
ization; the integration with our PROMO indoor localization
platform [12] for a large-scale evaluation of accuracy.
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