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Abstract—The processing capabilities of current smartphones
have increased significantly. We propose a distributed and
collaborative context prediction approach that exclusively uses
current smartphones to automatically collect, process and predict
contexts of users. To predict a user’s next context, not only
her context history is utilised but also context histories of other
users are used. The communication between the smartphones of
the users is realised using peer-2-peer. Therefore, no centralised
server unit is needed to process the context information of the
users externally. We provide a proof-of-concept implementation
and present experimental results that demonstrate the practical-
ity of the proposed architecture.

Index Terms—collaborative; context prediction; p2p

I. INTRODUCTION

With the evolution of today’s smartphones into powerful and

ubiquitous computing devices, it is possible to predict future

contexts in a distributed and collaborative way. Up-to-date

smartphones offer additional sensors like an accelerometer,

a gyroscope or even near field communication that can be

used to collect additional contexts of a user. Due to improved

battery and processing power, collected context data can

directly be processed on smartphones. Moreover, the increased

available mobile bandwidth enables the user to send and

receive data almost continuously.

The extension of the context prediction process by the

additional usage of distributed and collaborative mechanisms

increases the benefit for the user and for services that proac-

tively adapt to the user’s needs equally. Thus, for example,

shopping places a user is going to visit next, could be

automatically predicted using her context history and the

context histories of other users whose shopping interests show

sufficient similarities. If the user makes her predicted shopping

interest visible to her environment, personalised advertising

can be displayed on her smartphone.

In addition, the proposed distributed and collaborative

context prediction approach combines all tasks required to

make existing applications in context prediction, like Car-2-

Pedestrian scenarios [1] or users’ next place prediction [2],

[3] more suitable for daily live usage. From a technical

perspective, gathered contexts must not be transferred and

pre-processed on a server anymore, which is in most cases

complex, time consuming and typically prevents just-in-time

prediction. From the user’s perspective the prevention of

external data processing hinders unauthorized third parties to

gain access to personal data to create profiles.
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Fig. 1. Collaborated and distributed context prediction process.

Figure 1 shows the proposed distributed and collaborative

context prediction approach. Distribution and collaboration in

the context prediction process can be achieved by using peer-

to-peer (P2P) communication (1) for the exchange of context

data between different users, collected (2) and pre-processed

(3) by their smartphones. Consequently, these contexts are

utilised by prediction algorithms (4) that are directly executed

on the smartphone to forecast a user’s next context.

A first solution that uses a hybrid server and P2P approach

for context monitoring, reasoning and prediction is proposed

in [4]. The limitations of present mobile devices prevented a

standalone P2P solution. Another approach that built up a P2P-

based context-aware information system using data gathered

by mobiles is introduced in [5]. Mobile data is collected

directly and shared by mobile phones of users. Due to limited

battery and processing power of the mobile phones the devices

cannot be used for the processing part of the context data.

An approach that proposes a P2P infrastructure to derive

high-level context data from low-level context data is outlined

in [6]. The main focus presented in this research work is the

evaluation of the proposed P2P infrastructure with regard to

memory consumption and query processing. In contrast to the

above-mentioned research we are going to use current smart-

phones to directly perform context prediction tasks. Further,
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Fig. 2. System model for distributed and collaborative context prediction.

no centralised server is used to handle communication between

devices but P2P is used to enable direct communication.

In this paper, we first outline in Section II our system model

that characterises the underlying environment of the distributed

and collaborative context prediction approach. In Section III

we derive the general and technical requirements based on the

introduced system model. Section IV presents our new ap-

proach considering the derived requirements. An experimental

evaluation of our approach is outlined in Section V. Finally,

we conclude this paper in Section VI with a brief summary

and considerations for future work.

II. SYSTEM MODEL

To determine the requirements for the distributed and col-

laborative context prediction approach we first define our

system model comprised of the underlying environment with

its characteristics and our objectives.

Our system model comprises three different dimensions, as

shown in Figure 2 and detailed below. In our structure model

we specify the components the environment consists of. We

assume that the algorithms used to predict a user’s next con-

text in a distributed and collaborative manner are Alignment

[7], ActiveLeZi [8], and the Collaborative Context Predictor

(CCP) [9]. Furthermore, we assume that the knowledge base

is not restricted to the user’s own context history but also

uses additional knowledge in context histories of other users.

Additionally, we assume that no centralised server unit is used

to perform the prediction of a user’s next context. Hence, the

users do not have to trust one central processing unit. The

hardware model describes our assumptions about the hardware

components used in the distributed and collaborative context

prediction approach. We assume that in our environment only

smartphones are utilised and therefore a user’s smartphone

is used to determine her next context. Hence, we assume

that smartphones serve as processing units. Objectives of the

distributed and collaborative context prediction approach are

that the prediction of a user’s next context always has to be

possible, even if a user’s own context history does not provide

sufficient context information. Therefore, it should also use

context information of other users whose context histories

show sufficient similarities. Further objectives are that current

whereabouts of the users whose context histories are used for

the prediction process are not important for the distributed and

collaborative context prediction approach. For this reason, a

geographical proximity of users is not necessary. Context data

of a user is only stored on the user’s smartphone. If context

information has to be transmitted it has to be pseudonymised.

Additionally, only context information that is necessary for the

prediction process is stored. Any contexts that are not relevant

have to be deleted. Finally, the achieved prediction accuracy

of a used algorithm has to be sufficiently accurate.

III. REQUIREMENTS

Based on the system model outlined in Section II technical

and general requirements are derived in this section. These re-

quirements provide the basis for a realistic implementation of

the distributed and collaborative context prediction approach.

In the system model a user’s smartphone is proposed as a

computational device for the distributed and collaborative con-

text prediction scenario. In the proposed approach smartphones

utilise built-in soft- and hardware sensors e.g., accelerometer,

magnetometer, gyroscope, etc. to automatically collect context

information of a user. Collected context information is only

stored on the user’s smartphone. Further, smartphones serve

as processing units. Hence, context prediction algorithms run

directly on the smartphone to predict a user’s next context.

In order to use smartphones for these tasks, the devices

have to be up-to-date with respect to their processor unit and

internal memory size. Otherwise the time needed to predict a

user’s next context directly on the device using the prediction

algorithms might take too long to provide just-in-time context

prediction. Collaboration, respectively the combined usage of

context information of different users is used to achieve high

prediction accuracy and to provide context prediction even

if the context history of the user does not contain suitable

information. This implies that contexts located in histories be-

longing to other users that are stored on their own smartphones

must also be utilised by the prediction process if necessary.

Therefore smartphones require a stable internet connection. If

a context predictor does need context information from other

users to make a reliable prediction, required context data must

be transmitted pseudonymised. A centralised server unit must

not handle the communication between the smartphones of the

users during a prediction process. A prerequisite is the usage

of P2P communication between the smartphones of the users.

Thus, context information is not concentrated on a processing

unit of a single service provider. As context prediction ap-

proaches, Alignment, ActivLeZi and the Collaborative Context

Predictor (CCP) have to be supported. All approaches are

state of the art context prediction algorithms. Regarding to

their different working methods the following requirements

have to be considered: To use Alignment or ActiveLeZi in

a collaborative manner the context sequence which is used
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Fig. 3. Proposed architecture for the distributed and collaborative context prediction approach.

to predict a user’s next context is sent to the smartphones of

appropriate users using P2P communication. Subsequently the

user who sends the context sequence and the users who also

receive her context sequence use Alignment or ActiveLeZi

to make a prediction on their own devices using their own

context histories. Afterwards, each user returns the predicted

context to the user the context sequence originally came from.

Finally, voting is used to determine the context that follows up

the given context sequence. In contrast to the other algorithms,

CCP needs at least one additional context history of another

user on the same smartphone of the user whose next context

has to be predicted to work properly. For this reason, the

context histories of the users, which will also be used, have

to be completely transmitted to the smartphone of the user.

Consequently, CCP is executed on the user’s smartphone to

make the prediction. To limit the number of additional context

histories used to make reliable predictions, those who are most

appropriate have to be identified first. Hence, it is necessary

to compare the history of the user whose context has to be

predicted with those histories available in the P2P network

of the other users. Thereby, context histories do not need

to be compared directly to each other to avoid additional

communication traffic and to avoid that context histories are

processed in plain text centrally.

IV. OUR APPROACH

In this section we present our new approach for the dis-

tributed and collaborative context prediction. The underlying

architecture is outlined in Figure 3. The proposed architecture

is divided into two parts: The Context Recognition Architecture

describes how high-level context information of a user can be

automatically received and processed using the built-in sensors

of a user’s smartphone. The P2P-based Context Prediction Ar-

chitecture describes the P2P-based context prediction process

which is executed on users’ smartphones.

A. Context Recognition Architecture

To provide an easy to use possibility for a user to collect

context information, a web application is provided. By using

this web application the user is able to create profiles, re-

spectively templates, to automatically gather high-level context

data. Defined profiles can be simultaneously accessed and used

by arbitrary smartphones. After a profile has been chosen on

smartphone s1, it automatically starts the tasks specified in

the profile. A profile determines which built-in sensors of a

smartphone are utilised to collect context information of a user.

All available hard- and software sensors are supported. It is

also possible to specify the pre-processing of collected sensor

data. For example the deletion of redundant sensor informa-

tion or the clustering of sensor information to meaningful

high-level context information using e.g. k-Means or other

appropriate algorithms. In addition, low-level sensor data can

also be mapped to high-level sensor data using annotations

predefined in the profile. Annotations can e.g. be walking,

sitting, standing if built-in sensors are used to recognise the

movement behaviours of a user. These annotations can be used

by another smartphone, which accesses the same profile to

label the sensor information currently collected by the smart-

phone s1. Annotations and collected sensor information are

automatically merged after s1 has stopped its data collection

process. The merging result represents the context history

of the user. The history can be used by context recognition

approaches also defined in the profile to automatically derive

high-level sensor data from low-level sensor data gathered by

built-in sensors using supervised approaches. Then, no manual

annotation of the gathered sensor data is needed.

B. P2P-based Context Prediction Architecture

The second part of the architecture performs the prediction

process to forecast a user’s next context based on her most

recently recognised sensor data. The user’s most recently

context data is automatically derived from the sensor data

using her context history located on s1 and a supervised

learning approach specified in the profile. Before the prediction

process starts the context history of the user is pseudonymised.

In addition, the Fast Fourier Transformation (FFT) of the user’s

context history is calculated on s1. Subsequently, the FFT
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representation is transferred in a vector of quantifiers where

each FFT floating-point value is transferred into a value of

discrete range between 0 and 4. This vector of quantifiers

represents the context history of a user and is used to identify

similar context histories of other users without comparing the

histories directly but by comparing the vectors.

The usage of a server-based register would be the simplest

way to perform the similarity check of the vectors. However,

this would violate our requirement of a pure decentralized

architecture with no single-point-of-failure. Thus we propose

to distribute the register service among all users by using a

distributed hash table (DHT) as the underlying architecture

for a P2P network. Each device that is available in the P2P

network can be used to predict a user’s next context. Therefore,

it registers with the register service its current IP-address,

with its vector of quantifiers and with the profile ID the

context history of the user has been generated with. Thereby,

the used key for storing this information in the DHT-based

register service must be derived from its vector of quantifiers

while preserving order to enable other devices to search for

similar histories. A device can also be registered with several

vectors that belong to different context histories that have been

generated using different profiles. As soon as the preferred

context prediction approach is selected by the user on device

s1, the smartphone sends a prediction request to the register

service, i.e. the P2P network. The prediction request includes

the profile ID, the IP address of s1 and the quantifier as the

key. The responsible device in the DHT for the requested

vectors returns the IP addresses of the devices to s1 whose

quantifiers are most similar to the quantifiers sent from s1,

i.e. all values found in the keyspace around the requested key

(k ± c, with k being the requested key and c a constant).

After that s1 initialises connections to the devices of the users

whose context histories show the most sufficient similarities

using socket communication. If the user chooses Alignment

or ActiveLeZi to perform the prediction task, s1 sends the

pseudonymised context pattern whose next context has to be

predicted, the chosen prediction approach and the profile ID

of the current context history to the devices a connection has

been established with. Subsequently, all devices connected to

s1 and s1 itself perform the prediction task for the current

context pattern using their own pseudonymised context history.

After the prediction task has been finished all devices return

their prediction to s1. The final prediction results from a major-

ity vote of all incoming prediction results. If the user chooses

the CCP approach the pseudonymised context histories of the

connected users have to be sent to s1 first. Afterwards the

prediction task is performed directly on s1. If the prediction

task is finished the received context histories are deleted. The

proposed P2P-based Context Prediction Architecture complies

to the requirements described in Section III for the distributed

and collaborative context prediction approach: mobile devices

instead of PCs are used for the calculation tasks; context

prediction approaches are directly executed on the mobile

devices; recognised context data are solely stored on a user’s

mobile device; context histories do not have to be transferred

to other user’s devices except if CCP is used for prediction;

transferred context data e.g., the current context pattern or

context histories for CCP are pseudonymised; only devices

of users whose context histories show sufficient similarities

to the user whose next context has to be predicted are used;

communication between devices is handled using P2P-based

communication, no centralised server unit is needed.

V. EXPERIMENTAL EVALUATION

In this section, the experimental evaluation of the P2P-based

Context Prediction Architecture is discussed. A full evaluation

of the Context Recognition Architecture is currently underway

and will be part of future work.

We describe experiments to determine the prediction time

needed by the distributed and collaborative context prediction

approach using Wi-Fi and UMTS connectivity. In the scenario

four users are involved. Each user has its own smartphone.

On each smartphone training data belonging to two different

context datasets are stored. One dataset consists of movement

behaviours (sitting, standing, walking, etc.) of four persons,

derived from an acceleration sensor of a smartphone [10]

called mov. The second dataset contains outdoor movement

paths of four pedestrians derived from various sensors built-in

a smartphone the pedestrians carried in their trouser pockets

[1] called ped. Each dataset consists of training- and test data.

The training data is used to build the prediction model for

a chosen context predictor. The test data is used to evaluate

the results of the predictors using their trained model for

a certain dataset. The training data belonging to a certain

context dataset is unique on all smartphones. Hence, each user

provides different context information for a certain context

dataset. During the experiments the prediction tasks in the

P2P environment are performed on Motorola DROID RAZR

MAXX smartphones. Each smartphone has a dual-core 1.2

GHz Cortex-A9 processor and 1 GB RAM. In the experiments

the required time to make various forecasts with a user’s

smartphone s1 is proposed.

First, a baseline is given by measuring the needed prediction

times of the predictors for the two datasets on a server unit

(PC). The server unit has an Intel Core i7 with 2 GHz and

8 GB RAM. In addition, the needed prediction times are also

measured using only the smartphone of one user (s1 local)

that holds the test data of the two datasets. In both cases the

training data of all four users are previously merged to one

big training data for each dataset. This is because no P2P

communication has been used for this experiment to derive

additional context information of other users. Moreover, the

prediction time, needed to predict the contexts for all instances

of a given test data belonging to a certain dataset using P2P

communication, was measured. The measurements have been

performed while the four smartphones have been connected

using Wi-Fi (P2P Wi-Fi) respectively UMTS (P2P UMTS).

If all devices are located in the same Wi-Fi network a direct

connection between devices can be established. Otherwise, if

the devices use the UMTS network they have to share the same

VPN connection. A direct connection between mobile devices
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using UMTS is not possible because the telecommunication

provider blocks it. Furthermore, the accuracy (acc) gained by

the prediction approaches and the number of test instances

(ins) included in a test dataset are outlined.

CCP
data PC s1 local P2P Wi-Fi P2P UMTS acc ins

mov 0.74 13.9 13.5 49.1 90% 20

ped 0.30 1.39 3.9 41.2 87.5% 24

Alignment
data PC s1 local P2P Wi-Fi P2P UMTS acc ins

mov 90 ms. 0.96 16.1 86.9 75% 20

ped 61 ms. 0.59 4.5 73.7 66.6% 24

ActiveLeZi
data PC s1 local P2P Wi-Fi P2P UMTS acc ins

mov 160 ms. 5.43 19.6 62.45 80% 20

ped 94 ms. 1.13 7.8 49.1 66.6% 24

TABLE I
MEASURED PREDICTION TIMES IN SECONDS USING THE P2P-BASED

CONTEXT PREDICTION ARCHITECTURE.

The results of the experiments are shown in Table I. The

baseline presented by (PC) shows that the server always needs

the shortest execution times for all prediction approaches and

all datasets. The same experiments needed longer execution

times when performed directly on the smartphone s1 (local

s1). In both cases CCP required the longest execution time

because of its complex mathematical computations. P2P-Wi-

Fi and P2P-UMTS show the execution times of the algorithms

on the two datasets using P2P for direct communication

between the four devices. The measured execution times are

significantly higher than the execution times measured without

P2P communication. The reason is the additional cost of

communication needed to send the context pattern to the other

smartphones respectively to receive the prediction results and

the context histories from the other smartphones. Nevertheless,

the average prediction times per instance for the algorithms are

quite promising. They range between 0.16 and 0.98 seconds in

P2P Wi-Fi and between 1.72 and 4.34 seconds in P2P UMTS

for a single prediction depending on the chosen algorithm and

on the chosen dataset. The faster prediction times of CCP

compared to Alignment and ActiveLeZi results from the less

demand of communication needed between the smartphones.

CCP needs a P2P communication to be established to the other

three devices only once to get the context histories of the users.

ActiveLeZi and Alignment establish a P2P communication to

the other devices for every test instance. The highest prediction

accuracy for both datasets is achieved by CCP.

VI. CONCLUSION

We have presented an approach for distributed and collab-

orative context prediction. Contexts of users are exclusively

collected, processed and predicted using up-to-date smart-

phones. To provide collaboration the proposed approach not

only uses the history of one user but also uses histories

of additional users. Distribution is achieved using P2P that

allows direct communication between smartphones used to

predict a user’s next context. Hence, no centralised processing

unit is needed. To implement the approach a system model

is outlined that describes the underlying environment and

its characteristics. Subsequently technical requirements are

derived from the system model, which are used to build

a P2P-based context prediction architecture that fulfils the

requirements. Experiments to measure prediction times needed

to forecast a user’s next context using different datasets,

algorithms and smartphones in a P2P network with Wi-Fi and

UMTS connection demonstrate real-world practicality.

Future work includes a mechanism to prevent ”bad” users

from requesting a context prediction only to collect context

information of other users. Later, a full evaluation of the

Context Recognition Architecture will be provided.
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