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Abstract—Ubiquity of internet-connected media- and sensor-
equipped portable devices is enabling a new class of applica-
tions which exploit the power of crowds to perform sensing
tasks in the real world. Such paradigm is referred as crowd-
sensing, and lies at the intersection of crowd-sourcing and
participatory sensing. This has a wide range of potential
applications such as direct involvement of citizens into public
decision making. In this work we present Matador, a framework
to embed context-awareness in the presentation and execution
of crowd-sensing tasks. This allows to present the right tasks,
to the right users in the right circumstances, and to preserve
normal device functioning. We present the design and pro-
totype implementation of the platform, including an energy-
efficient context sampling algorithm. We validate the proposed
approach through a numerical study and a small pilot, and
demonstrate the ability of the proposed system to efficiently
deliver crowd-sensing tasks, while minimizing the consumption
of mobile device resources.

Keywords-Mobile, crowd-sensing, context-aware systems, lo-
calization, energy-efficiency

I. INTRODUCTION

The ubiquitous availability of internet-connected media-
and sensor-equipped portable devices is enabling a new class
of applications which exploit the power of crowds to perform
sensing tasks in the real world. Such a paradigm is typically
referred as crowd-sensing [1], and lies at the intersection
of crowd-sourcing and participatory sensing [2]. Crowd-
sourcing allows to issue tasks to users requiring human
intervention, while participatory sensing exploits smartphone
sensing capabilities to record, analyze, and discover patterns
that are important in people’s lives. In a complementary
manner, crowd-sensing allows issuing sensing tasks to users
without necessarily requiring direct human intervention,
potentially exploiting the sensing capabilities of their mobile
devices.

Crowd-sensing has a wide range of potential applications,
including direct involvement of citizens in public decision
making, such as urban planning and quality assessment
campaigns of public services. In this case, it provides a mean
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to inquire directly from citizens (or indirectly from citizen-
created information sources) about their opinions, emotional
tonalities regarding certain arguments, and problems, as well
as to seamlessly involve citizens in decision making. This
differs from a pure bottom-up interaction, which involves
citizens-to-administration communication, resulting in a par-
ticipatory civic reporting system where citizens with mobile
phones can eventually submit thematic multimedia reports
on civic issues observed in the neighbourhood. Conversely,
the top-down interaction modality enables administration-to-
citizens communication, resulting in a mobile civic crowd-
sensing system, in which the administration can launch
surveys or, more generally, tasks to inquire citizens.

In this work, we present Matador, a crowd-sensing frame-
work which combines the power of crowdsourcing with the
instantaneity and situation-awareness of mobile technolo-
gies. With respect to state of the art solutions [3], [4], [5],
the system allows to specify the context in which a given
sensing task should be executed by the user or by the user’s
device. The resulting system is able to deliver the right
tasks to the right people in the right circumstances. The
notion of context-awareness in the delivery and execution
of tasks characterizes our approach and allows to (i) max-
imize conditions for user participation by presenting only
tasks relevant to the user, with minimal user intervention
(ii) minimize the consumption of mobile device resources,
specifically the battery, thus preserving normal operation.
In this work, we present the Matador system, together with
the framework proposed for modelling context-aware mobile
crowd-sensing tasks. We introduce our algorithmic solution
designed to dynamically adapt crowd-sensing to user context
and preserve the battery lifetime of users’ smartphone.
Finally, we validate our approach with a small scale field
study, showcasing the potential of the proposed solution.

The reminder of this paper is organized as follows. In
Sec. II we define the reference scenario and propose a frame-
work for modelling context-aware crowd-sensing problems.
Sec. III present the algorithm that we designed in order to
dynamically adapt the context sampling to users mobility so
to preserve energy. In Sec. IV, we describe the system design
and its experimental validation. Finally, Sec. V outlines the
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main conclusions of this work and future research directions.

II. CONTEXT-AWARE CROWD-SENSING

Our reference scenario targets a user carrying a smart-
phone with the Matador crowd-sensing mobile application
installed. The application runs in the background and peri-
odically synchronizes its list of tasks with those available
on the server. The type of actions associated with a task
can vary depending on the application scenario: an action
can be a request for a multimedia content (e.g., a request to
take a photo, record a video or sound clip), participation in
a questionnaire (e.g., answer a question, express a free-text
opinion). Each task is further characterized by its context,
which specifies when such a task should be triggered to the
user. The context can be defined along multiple dimensions,
such as geographical (e.g., within a circular area, along a
street), temporal (e.g., in given dates, during given hours),
demographics (e.g., age, gender), user activity (e.g., move-
ment speed, no active calls), etc.
Tasks can either be implicitly performed by the smartphone
after receiving user authorization (e.g., a GPS logging cam-
paign), or explicitly by requiring user intervention (e.g.,
taking a photo of a given situation).

A. Problem Formulation

A mobile crowd-sensing task t is a a tuple t = 〈ct, at〉,
where ct is the task context scoping its applicability, and at

is the action associated to it.
For the sake of clarity, hereafter we consider the simplest

structure of a task context defined by a geographical dimen-
sion, represented by a circular area, and temporal dimension,
represented by a time interval:

ct = 〈latt, lont, radt, [startt, endt]〉 (1)

where latt, lont are latitude and longitude coordinates of the
circle center, radt is its radius, and startt, endt are start and
end timestamps.

A crowd-sensing system typically manages multiple tasks
represented by a tasks list t = {tj} of n tasks tj , where
tj = 〈ctj , atj〉, 0 ≤ j ≤ n.

A user context is an essential element of the mobile
crowdsensing system: it determines if the user (or his device)
is in conditions relevant to perform some tasks. Similarly
to tasks, a user context can be structured along multiple di-
mensions, which can be determined by sensing capacities of
the user device. Hereafter, we assume the simplest structure
of a user context cu defined by a geographical dimension,
represented by the current estimate of user’s location, and a
temporal dimension, represented by the current time:

cu = 〈latu, lonu, accu, tsu〉 (2)

where latu, lonu are latitude and longitude coordinates of
the user location, accu is the accuracy, with which the
location has been obtained, and tsu is the timestamp.

The list of chronologically ordered user context instances
is a user context history cu = {cui }i≥0.

We define the distance du,t between a user context cu and
a task context ct as a function:

du,t = fdist(c
u, ct) (3)

which depends on the dimensions constituting the contexts.
Given a user with the context cu, the task t is said to

be detected by the user if distance du,t ≤ λ, where λ is a
threshold that depends on a specific application scenario.

A user context sampling is the process of obtaining a user
context by the mobile device. This process can be controlled
by the following two parameters:
• sampling accuracy σ: this parameter adjusts the re-

quired accuracy when sampling the context. The higher
its value, the more precise the sampled context is. As
an example, when estimating the user location, different
localization sensors can be used, each one characterized
by a different location accuracy (e.g., GPS vs. Network-
based);

• sampling rate ν: this parameter adjusts the time be-
tween any two consecutive context samplings. The
higher its value, the more frequent the context is
sampled.

In practice, the sampling rate can be directly manipulated
in the mobile device, but there are no practical ways of
explicitly controlling the sampling accuracy, e.g., location
cannot be forced to be acquired with a given accuracy.
A work around for controlling the accuracy is selecting
the sensing method with an a priori known error rate;
the resulting accuracy values are dependent on the method
used, e.g., localization using cell towers is known to be
roughly in hundreds of meters to kilometers. However, the
estimated accuracy in the current position is known only
after localization has occurred. For simplicity of the notation,
hereafter we will interchangeably use σ for sampling method
and the sampling accuracy value.

A user context sampling is a function that, given a user
context history and a list of tasks, determines the appropriate
conditions for the next user context sampling:

〈σ, ν〉 = fsampling(c
u, t) (4)

Clearly, the variation of the aforementioned parameters of
the user context sampling process is related to the amount
of resources consumed by the mobile device, in particular
the energy consumed by sensors involved in the sampling.
In order to quantitatively describe the consumption of re-
sources in the proposed crowd-sensing system, we adopt
the following energy model: each of the sampling methods σ
supported by the mobile device is associated with a resource
cost ω required for its invocation for context sampling and
is determined by the following function:

ω = fcost(σ) (5)
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In the present work we consider the simplest resource cost
function determining the amount of energy consumed by the
mobile device.

A total cost of the crowd-sensing system functioning is
determined by costs of the individual user context samplings
and is represented as the sum of their individual costs:

Ω =
∑

0≤i≤|cu|

ωi (6)

Given a task list t, the goal of the mobile crowd-sensing
system is to define the function fsampling that maximizes
the number of tasks properly detected and presented to the
user, and minimizes the total cost Ω of consumed resources.

III. ENERGY EFFICIENT CONTEXT SAMPLING

One of the key challenges in implementing the sampling
function fsampling(c

u, t) lies in the minimization of the
battery consumption in order to preserve the normal opera-
tion of users’ mobile device. In this work, we focus on the
energy consumption due to the user localization, which is
considered to be critical for any location-based service. In
fact, when obtaining the user location, battery consumption
is a trade off for the accuracy of the location estimation. This
depends on the type of sensor applied for the localization
[6], and the frequency at which a given sensor is sampled.
We consider the two most common smartphone localization
methods: GPS-based and cellular network-based. The typical
GPS antenna of a modern phone gives an accurate location
estimation, with an error value in the range of a few
meters. At the same time, GPS is also known to be energy
intensive and to lead to significant battery drains [7], [8],
[6]. Conversely, the cellular network method estimates the
location with an accuracy in the order of hundreds of meters
(or in the worst case several kilometers), but with negligible
battery consumption [9], [6].

A. The adaptive sampling algorithm

The intuitive idea behind the adaptive energy-efficient user
context sampling is to dynamically adapt (i) the way the
context is sampled, choosing between GPS and network lo-
calization and (ii) the time between two consecutive context
samples. This is regulated by the proximity to one or more
tasks. As illustrated in Fig. 1, the aim is to utilize the cellular
network localization method when approaching the closest
task. In this case, the energy consumption should be quite
limited. When the uncertainty on the user location, due to the
coarse accuracy of the network localization, overlaps with
the spatial validity of the closest task, we should switch to
GPS localization. In this latter case, the location sampling
time should vary over time on the basis on the approaching
rate of the user to the closest task.

The overlap between a mobile user and the closest task is
graphically illustrated in Fig. 2, and leads to the definition

distance)

Network)localiza1on)

GPS)localiza1on) Task)

Figure 1. Adaptive user context sampling concept.

of the following distance function fdist:

fdist =

{
hvrs∗(cu, ct)− accu − radt if tsu ∈ [startt, endt]

∞ otherwise

where hvrs∗ is the haversine formula for calculating the
spatial distance between the latitude-longitude coordinates
of the user and task location, accu is the accuracy on the
user location estimation, radt is the radius of the closest
task.

Figure 2. Adaptive user context sampling illustration.

The sampling function fsampling is implemented by the
algorithm Alg. 1.

When the user distance du,t from the closest task, com-
puted by fdist, becomes less than twice the user location
accuracy the mobile application localization switches to
GPS, instead of network localization. The calculation of
such distance accounts for both the uncertainty on the user
position, and the spatial validity of the closest task (Fig. 2).
In the proposed approach, network localization is utilized
as a rough probe for checking if there are tasks in range,
while the precise probing of near tasks is performed using
GPS. In order to generate the next sampling time (tsui+1) the
algorithm computes the average approaching speed ῡ to the
closest task based on the context history (line 9 of Alg. 1)
and sets the value to the time anticipating the overlapping
between user context and task context. It is worth noting
that ῡ differs from the user velocity in that it measures
how fast the user is getting close to the nearest task, taking
into account also his direction. As an example, if the user
is moving around a certain task, although his velocity will
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Algorithm 1 User context sampling function fsampling
1: ∆tmin = 10s; . Minimum sampling interval
2: ∆tmax = 120s; . Maximum regular sampling
3: λ = du,t = 1.5 km; . Task detection threshold

4: function NEXTCONTEXTSAMPLING( cu, t)
5: cui ← getCurrentUserContext(cu);
6: cui−1 ← getPreceedingUserContext(cu);
# Find the closest task tj the user is heading to
7: tj ← getClosestTask(cui , t);
# Approach rate to closest task tj
8: υi ←

hvrs∗(cui ,c
t
j)−hvrs∗(cui−1,c

t
j)

tsi−tsi−1
;

9: ῡ ←
∑j=i−3

j=i vi

3 . Average speed over 3 samples
10: du,t ← fdist(c

u
i , c

t
j);

# Selection of next sampling method
11:

σi+1 =

{
GPS if du,t ≤ λ
NETWORK otherwise

12:

∆t =


du,t

ῡ ῡ if ∆tmin <
du,t

ῡ < ∆tmax
∆tmin if du,t

ῡ < ∆tmin
∆tmax if du,t

ῡ > ∆tmax

# Next sampling time (sec.)
13: tsui+1 ← tsui + ∆t;
14: return 〈σi+1, ts

u
i+1〉;

15: end function

never be null, the approach speed will be 0.
The sampling interval is parametrized in such a way so
that it varies between a minimum value of 10s and a
maximum regular interval of 120s. These bounds have been
experimentally proved to produce optimal sensitivity to the
change in user direction and speed.

Tasks with negative du,t correspond to the case when the
user context and the task context match. In this case, the
tasks are marked as active, and will trigger the execution of
the associated action.

B. Simulation Study

In order to give a quantitative characterization of the
energy-efficiency of the presented adaptive sampling func-
tion, we conducted a series of programmed experiments to
simulate the functioning of a mobile crowd-sensing system.
The implemented simulation environment allows to (i) spec-
ify the route to be followed by the user, (ii) configure random
variation of the user speed when moving along a route, (iii)
place a set of tasks along the user’s route for detection.
Three simplifying assumptions are made: (1) a sampling
method can be activated immediately without delays (in
practice, depending on the environment conditions, getting
a fix on GPS requires some time), (2) the accuracy value

of a sampling method is constant through the simulation
(we used σGPS = 20 meters and σNETWORK = 1000
meters), (3) average cost, in terms of battery consumption,
for invoking a sampling is constant through the simulation.
We compared the proposed context-aware sampling algo-
rithm, with the case of a constant rate GPS sampling. In both
cases, we measured the detection rate, and we compared
the associated energy costs. Fig. 3 shows the results in the
case of a user moving along a 30 Km route at a speed of
50 Km/h. It is possible to observe how the detection rate
varies when the sampling rate is increased, and therefore
the associated trade-off with the energy consumption. In
particular, it is evident that the performance deteriorate
rapidly for a sampling rate greater than 30 sec.. Setting
the task detection rate to 80% leads to a required sampling
rate of approximatively 60s, and a total number of 36
GPS samples over a 30 km route. Under the same setting,
the Matador context-aware sampling algorithm provides
similar performance at the cost of 12 GPS samples and 7
network samples. This leads to a significant saving in terms
of energy consumption. In particular, neglecting the energy
cost of Network samples [6], the proposed adaptive context
sampling mechanism can lead to approximatively a 60%
savings in terms of battery consumption.

Figure 3. Task detection rate in the case of a constant GPS sampling, user
moving along a path at a speed of 50 Km/h.

Fig. 4 provides a visual comparison of the constant
GPS sampling with the Matadador context-aware sampling.
When the user is far away from the closest task, only
Network localization is used, with a considerable saving in
terms of energy consumption. Instead, when approaching the
task, GPS is used, but with a sampling rate which depends
on the distance from the task.

Clearly, this simulation study represents an ideal case, but,
at the same time, provides an indication on the potential
savings that is possible to obtain by adapting the context
sampling function to the specific crowd-sensing campaign
being supported. In Sec. IV, we will provide the results of
a small-scale pilot.

215



Figure 4. Visual comparison of the constant GPS sampling and the
textitMatadador context-aware sampling.

IV. SYSTEM IMPLEMENTATION AND EXPERIMENTATION

A. Prototype Implementation

The Matador context-aware mobile crowd-sensing system
has been fully implemented into a working prototype con-
sisting of a server-side web application and a smartphone
mobile application.

The server-side part has been realized as a web application
providing an interface to create tasks and monitor their
execution. For each task, it is possible to configure: (i)
its context, which in the current prototype implementation
consists of the spatio/temporal region in which the the task
should be triggered to users; (ii) the action requested to be
performed by users. Currently, an action can be implicit or
explicit. In the former case, no direct user intervention is re-
quired for triggering the action. In this case, the smartphone
starts to collect data autonomously, and sends it back to the
server for later processing. Examples of such data includes
accelerometer data, anonymous GPS logging. Conversely,
in the latter case, a direct human intervention is required in
order to complete the task. In the current implementation,
explicit tasks consists of a combination of questionnaires
and multimedia reports (e.g., picture and videos). The server
component receives users’ responses for each task, computes
response statistics and provides a dashboard for visualizing
the analytics of each task. Fig. 5 depicts the user interface
of the server-side component.

Figure 5. The Matador server-side user interface.

The server is accessible from the mobile through RESTful
APIs, which are used to (i) periodically synchronize tasks

and (ii) receive task responses from mobile users. A specific
ontology has been created in order to define a common
language between the server and mobile clients, and to
properly represent and interpret tasks and tasks’ responses.
A typical Matador task is modelled as in the following XML
sample:

<t a s k i d =” t a s k I D ”>
< t i t l e>Task a t V i l l a z z a n o< / t i t l e>
<d e s c r i p t i o n>

Take pho to o f t h e bus s t o p i n V i l l a z z a n o
< / d e s c r i p t i o n>
<c o n t e x t>

<s p a c e>
<c i r c l e>

<c e n t e r>46 .04552 11 .13852< / c e n t e r>
<r a d i u s u n i t s =”m”>50< / r a d i u s>

< / c i r c l e>
< / s p a c e>
<t ime>

<v a l i d i t y f o r m a t =”DD.MM.YYYY”>
<from>0 1 . 0 7 . 2 0 1 2< / from>
<t o>3 1 . 0 7 . 2 0 1 2< / t o>

< / v a l i d i t y>
< / t ime>

< / c o n t e x t>
<a c t i o n>

<r e q u e s t i d =” r e q u e s t I D ” t y p e =” pho to ”>
P l e a s e t a k e a pho to o f t h e bus s t o p .

< / r e q u e s t>
< / a c t i o n>

< / t a s k>

Listing 1. XML representation of a crowd-sensing task

The mobile application has been implemented for
Android-based smartphones and tested over a Nexus S. The
application downloads tasks from the server and accordingly
schedules the acquisition context following the proposed
algorithm. In this initial implementation, tasks are synchro-
nized at periodic time intervals (120 sec.). When an active
task is identified, a notification is presented to the user.
The implemented multimedia capture component accesses
the microphone and camera of the smartphone allowing
the execution of multimedia actions assigned to tasks, e.g.,
taking a photo, recording a video, or recording a sound
clip. Responses to tasks and acquired multimedia content
are communicated to the server for elaboration.

Fig. 6 presents the user interface of the implemented
mobile application.

B. Experimental Validation

In order to validate the proposed system, we have run a
small field test, which consisted in a user driving along a
route, and carrying a smartphone with the Matador mobile
application installed. The application runs our adaptive sam-
pling algorithm, and presents an alert to the user whenever
a task is detected. In the experiment, the information related
to the number of samples and detected tasks is saved for
later processing.
The itinerary consisted of 400 Km of driving over a sub-
urban road. 40 tasks were distributed along the path, with
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(a) Tasks list. (b) Map of the closest tasks.

Figure 6. The Matador mobile application user interface.

a radius ranging from 250 to 500 meters. Distance between
consecutive tasks was between 30 and 40 Km.. The speed
of the vehicle varied between 25 Km/h and 130 Km/h.
Since the primary aim of the experimental validation was
to evaluate the adaptive sampling mechanisms, we did not
assume any specific constraint on the temporal context of
tasks. Which means tasks were always active, independently
from the specific time.

Tab. I shows the results of the experiment. The trip lasted
for 4h and 20 mins, and 252 samples were taken, out
of which 103 used GPS and 149 used network. There is
a significant difference between the localization accuracy
of Network and GPS: 2159m versus 5m. Overall, a 76%
detection rate was achieved. In particular, the algorithm
proved to miss the detection of tasks in the case of rapid
changes in the speed. This depends on the context memory
used to estimate the current velocity and task approaching
rate. In addition, GPS not always was able to provide the
location within the predefined timeout (20s). Such delay, in
the case of a task with a small radius, was enough to miss
the detection.

Trip Duration 4h 20 mins
Total number of samples 252
Number of GPS samples 103
Number of network samples 149
Average Network Accuracy 2159 m
Average GPS Accuracy 5 m
Detection Rate 76%

Table I
EXPERIMENT RESULTS.

V. CONCLUSIONS

In this paper we presented Matador, a mobile context-
aware crowd-sensing system which exploits user context in

order to optimally deliver tasks to users, while preserving
mobile device resources. We presented the system design,
together with the framework we used to model and evaluate
the developed algorithmic solutions. Our initial evaluation
supports the proposed approach.
Current work is devoted to extending the dimensions uti-
lized for characterizing the context, and implementing and
evaluating a large-scale experimentation involving a larger
user base.
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