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Abstract—This paper presents design, implemen-
tation, and evaluation of AmbientSense, a real-time
ambient sound recognition system on a smartphone.
AmbientSense continuously recognizes user context by
analyzing ambient sounds sampled from a smartphone’s
microphone. The phone provides a user with real-
time feedback on recognised context. AmbientSense
is implemented as an Android app and works in two
modes: in autonomous mode processing is performed
on the smartphone only. In server mode recognition is
done by transmitting audio features to a server and
receiving classification results back. We evaluated both
modes in a set of 23 daily life ambient sound classes and
describe recognition performance, phone CPU load,
and recognition delay. The application runs with a fully
charged battery up to 13.75 h on a Samsung Galaxy
SII smartphone and up to 12.87 h on a Google Nexus
One phone. Runtime and CPU load were similar for
autonomous and server modes.

I. Introduction

Sound is a rich source of information that can be used
to infer a person’s context in daily life. Almost every
activity produces some characteristic ambient sound pat-
terns, e.g. speaking, walking, eating, or using the com-
puter. Most locations have usually a specific sound pattern
too, e.g. restaurants or streets. Real-time sound context
information could be used for various mobile applications.
For example, a smartphone can automatically go into
an appropriate profile while in a meeting, or provide
information customized to the location of the user. It
has been shown that pattern recognition can be used
on sound data to automatically infer user activities [1],
environments [2], [3] and social events [4]. Inferring user
context using microphones has advantages compared to
other modalities: microphones are cheap, available in many
wearable devices (such as smartphones), and work even if
partly cloaked [5].

To date, sound-based context inference has often been
analyzed offline or by simulations on a PC. New smart-
phones with high computational power and Internet con-
nectivity could enable users to rely on sound-based context
inferences for mobile and real-time applications. However,
for a smartphone implementation several design choices
are needed. E.g., the sound recognition could be realized
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by processing directly on the phone, or by offloading the
context processing to a server. Moreover, recognition delay
and CPU load are key to determine practicality of the
approach.

In this work, we propose AmbientSense, a real-time
ambient sound recognition system that works on a smart-
phone. We present the system design and its implemen-
tation in two modes: in autonomous mode, the system is
executed on the smartphone only, while in server mode the
recognition is done by transmitting sound-based features
to a server and receiving classification results in return.
In our evaluation, we compare the two modes regarding
recognition accuracy, runtime, CPU usage, and recognition
time when running on different smartphone models.

II. Related Work

While ambient sound classification is an active research
area, no detailed evaluations of real-time smartphone im-
plementations exist that could confirm essential system
design parameters. Sound has been shown to be a key
modality for recognizing activities of daily living in lo-
cations such as bathroom [1], office and workshop [6],
kitchen [7], and public spaces [2]. Mesaros et al. evaluated
an ambient sound classification system for a set of over 60
classes [3]. These works did not investigate techniques for
real-time operation on resource limited hardware.

Only a few works addressed the implementation of real-
time sound classification on wearable devices. Nomadic
Radio [8] was the first hardware implementation incor-
porating real-time sound classification. Nomadic Radio
is a personal contextual notification system to provide
timely information while minimizing the number of user’s
interruptions. It’s auditory contextual recognition system
consists of a real-time speech detection to infer if the user
is in a conversation and thus should not be disturbed. The
first wearable system for classifying several ambient sound
patterns was proposed by Stäger et al. [6] and is called
Soundbutton. Soundbutton is a low-power audio classi-
fication system implemented as a dedicated hardware.
It enables to recognize everyday sounds like microwave,
coffee grinder, and passing cars. However, because of
recognition vs. energy tradeoffs recognition accuracy is
decreased and cannot compete with the performance of the
algorithms presented above. More recently three systems
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using smart phone-based solutions were proposed: Miluzzo
et al. [7] presented a framework for efficient mobile sensing
including sound, which was used to recognize the presents
of human voices in real-time. Lu et al. [9] presented a
sound speaker identification system on smartphone. Sev-
eral system parameters (sampling rate, GMM complexity,
smoothing window size, and amount of training data
needed) were benchmarked to identify thresholds that
balance computation cost with performance. Finally, Lu
et al. [10] proposed SoundSense, a smartphone implemen-
tation of a sound recognition system for voice, music and
clustering ambient sounds. SoundSense divides ambient
sound of a user in a number of sound clusters which have
to be manually labeled by the user.

The novelty of our work is in integrating design, imple-
mentation, and evaluation of a smartphone-based system
for recognizing ambient sound classes in real-time, while
maintaining the recognition rate similar to offline analyses
as presented above. We evaluated the implementation for
both - running the system on a smartphone only and with
the support of a server - concerning runtime, CPU usage
and recognition time.

III. AmbientSense Architecture

The system samples ambient sound data and produces
a context recognition result using auditory scene models
every second. The models are created in a training phase
based on an annotated audio data training set. This section
details the AmbientSense system architecture. Figure 1
illustrates the main components of AmbientSense.
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Fig. 1: AmbientSense architecture illustrating the main
components of the system. The main components are
either implemented on the smartphone or on the server,
depending on the running mode (detailed in Section IV).

Front-end processing: This component targets to
extract auditory scene-dependent features from the audio
signal. It has as input either continuous sound captured

from a microphone, or in a database stored audio data.
Audio data with a sample rate of 16 kHz sampled at
16 bit is used. In a first step, the audio data is framed
by a sliding window with a window size of 32ms with
50% of overlap (framing). Each window is smoothed with
a Hamming filter. In a consecutive step, audio features
are extracted from every window (feature extraction). We
used the Mel-frequency cepstral coefficients (MFCC), the
most widely used audio features in audio classification.
These features showed good recognition results for ambient
sounds [1], [2]. We extracted the first 13 Mel-frequency
cepstral coefficients, removing the first one resulting in
a feature vector of 12 elements. In a next step, the
feature vectors extracted within a second of audio data
are combined by computing the mean and the variance of
each feature vector element (merging). This results in a
new feature vector fsi with elements i = 1, .., 24 and for
each second s of audio data. In a final step the feature
vectors are normalized with F si =

fs
i −mi

σi
, where mi are

the mean values and σi are the standard deviation values
of all feature vectors of the training set (norm.).The front-
end processing outputs every second s a new feature vector
F s.

Classification: Gaussian Mixture Models (GMM) is
the standard modelling technique for acoustic classifica-
tion [2]. However, Chechik et al. showed that Support
Vector Machine (SVM) can achieve comparable recogni-
tion accuracies while reducing the computational complex-
ity [11]: the experiment time (training and recognizing
phase) was 40 times faster for SVM compard to GMM.
Thus, for the recognition SVM classifier with a Gaussian
kernel was used which includes the cost parameter C and
the kernel parameter γ (as described in [12]). Both param-
eters were optimized with a parameter sweep as described
later in the evaluation section V-A. The one-against-one
strategy was used and an additional probability estimate
model was trained, which is provided by the LibSVM
library [12].

Training and testing phase: In a training phase the
feature vectors of the training set including all auditory
scene classes are computed and the SVMTrain component
creates all auditory scene models which are stored for
the recognition. In the testing phase the feature vectors
are generated from the continuous audio data captured
from the microphone. The SVMClassify component uses
the stored auditory scene models to classify the feature
vectors. Every second a recognition of the last second of
audio data is created.

Training set: We tested our system on a set of 23
ambient sound classes listed in Table I. The classes were
selected to reflect daily life locations and activities that
are hard to identify using existing GPS and activity
recognition techniques. We collected a training set of audio
data by recording for each class six audio samples from
different sound sources (e.g. recordings of six different
types of coffee machines). To record the audio samples we
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used the internal microphone of an Android Google Nexus
One smartphone. The samples were recorded in the city of
Zurich and in Thailand in different buildings (e.g. office,
home, restaurant), and locations (e.g. beach, streets). For
each recording we positioned the smartphone closely to the
sound-generating source or in the middle of the location,
respectively. Each sample has a duration of 30 seconds and
was sampled with a sampling frequency of 16kHz at 16bit.
The audio samples are stored including the annotated label
in the training set database.

beach crowd football shaver
bird dishwasher sink
brushing teeth dog speech
bus forest street
car phone ring toilet flush
chair railway station vacuum cleaner
coffee machine raining washing machine
computer keyboard restaurant

TABLE I: The 23 daily life ambient sound classes used to
test our system.

Running modes: Two running modes have been im-
plemented. In the autonomous mode the whole recognition
system runs independently on the smartphone without
any Internet connection required. The recognition results
are continuously displayed on the phone as an Android
notification. In the server mode, ambient sound capturing
and the front-processing is done on the phone. The result-
ing features are sent to a server where the classification
takes place. After classification, the recognized result is
sent back to the phone, where it is displayed as an
Android notification. This mode requires either Wi-Fi or
3G Internet connectivity, but enables to use more complex
recognition algorithms on the server.

IV. Implementation

The AmbientSense system was implemented in an An-
droid smartphone setting. The main components (see
Section III) were implemented in Java SE 7 and are
running on an Android smartphone or PC environment.
For the implementation we used the FUNF open sensing
framework [13] to derive MFCC features and the LibSVM
Library [12] for the SVM modeling and classification. In
the rest of this section the specific Android and server
implementations are explained in detail.

Android implementation details: Figure 2 shows an
illustration of the user interface (UI). The application can
either be set to build classifier models using training data
stored on the SD card, or to classify ambient sound in the
two running modes. The UI runs as an Activity, which is
a class provided by the Android framework. An Activity
is forced into a sleep mode by the Android runtime every
time the UI of the Activity is not in the foreground. For the
main components of the recognition system a continuous
processing is needed. Thus, the main components of the
application were separated from the UI and implemented
in an Android IntentService class. This class provides a

(a) Tab for recognition. (b) Tab for training.

Fig. 2: AmbientSense user interface on an Android smart-
phone. During recognition the ambient sound class is
displayed on the top as an Android Notification.

background task in a separate thread continuously running
even in sleep mode, when the screen is locked, or the
interface of another application is in front. The recognition
result is shown as an Android Notification, which pops
up on top of the display (see Figure 2). We used the
Notification class of the Android framework to implement
the recognition feedback. With this, a minimal and non-
intrusive way of notifying the user about the current state
is possible, while the ability to run the recognition part in
the background is kept.

Server mode implementation details: In server
mode, the phone sends every second the computed feature
vector to the server for classification. This is implemented
on the phone side with an additional IntentService han-
dling the HTTP requests as well as the notifications on
the screen. Therefore, communication with the server is
running asynchronously enabling a non-blocking capturing
of audio data and front-end processing. The feature vector
is sent in a Base64 (included in the Android standard
libraries) encoded JSON1 object as a JSONArray. On the
server side, we used the Apache HttpCore NIO2 library,
which provides HTTP client (as used by Android itself)
and server functionality. The server listens for requests on
a specified port, parses the data, computes the recognition
and returns the recognized value.

V. Evaluation

We evaluated the autonomous- and server mode and
compared both modes concerning recognition accuracy,
runtime, CPU usage, and recognition time. For all the tests
we used two Android smartphone devices: the Samsung
Galaxy SII and the Google Nexus One. Table II shows

1http://www.json.org/java/index.html
2http://hc.apache.org/httpcomponents-core-ga/httpcore-

nio/index.html

232



the specifications of both phones. In all the tests a system
with the 23 pre-trained classes was used. The collected
daily life data-set has been used for system training (see
Section III). For the autonomous mode Wi-Fi and 3G
were deactivated, whereas for the server mode Wi-Fi was
activated and 3G was deactivated on the smartphone. The
server part was installed on an Intel Athlon 64 PC, with
4GB RAM and an Ethernet 100Mbit connection running
on a Windows 7-64bit version.

Samsung Galaxy SII Google Nexus One

CPU 1.2 GHz Dual-core ARM
Cortex-A9

1 GHz ARM Cortex A8

RAM 1024 MB 512 MB
Battery 1650 mAh Lithium-ion 1400 mAh Lithium-ion
Wi-Fi IEEE802.11n, 300Mbit/s IEEE802.11g, 54Mbit/s

TABLE II: Specifications of the two testing devices: Sam-
sung Galaxy SII and Google Nexus One.

A. Recognition Accuracy

The recognition accuracy was calculated by a six-fold-
leave-one-audio-sample-out cross-validation. The SVM pa-
rameter C and γ were optimized with a parameter sweep.
For C, a range of values from 2−5 to 215 was evaluated,
while the range for γ was given between 2−15 to 25.
This resulted in a recognition accuracy of 58.45% with
the parameter set C = 27 = 128 and γ = 2−1 = 0.5,
which meets the result of previous work with a similar
number of ambient sound classes [2]. Figure 3 displays
the confusion matrix of the 23 classes. 12 classes showed
an accuracy higher than 80%, whereas 3 classes showed
accuracies below 20%. Since the recognition algorithm is
identical for both running modes, the recognition accuracy
holds for both modes.

Fig. 3: Confusion matrix of the 23 auditory sound classes.

B. Runtime

Runtime was tested by measuring application running
time for five repetitions, each starting from fully charged
phones. During all the tests, the application was contin-
uously running and generating a recognition result every
second, the display was turned off and no other tasks or
applications were running. The time was measured until
the phone switched off due to low battery. Figure 4 shows
the average measured runtime of both running modes and
for both testing devices. The Galaxy SII showed an average
runtime of 13.75h for the autonomous mode and 11.63h
for the server mode, whereas the Nexus One showed an
average runtime of 11.93h for the autonomous mode and
12.87h for the server mode.
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Fig. 4: Average runtime of the testing devices in au-
tonomous and server mode.

C. CPU Usage

The CPU usage of the two modes was measured with
the Android SDK tools. Figure 5 shows that the Galaxy
SII used less CPU power in server mode. Since in server
mode SVM recognition is not calculated on the phone,
CPU power consumption is lower than in the autonomous
mode. On the other hand, the Nexus One used more
CPU in server mode. The reason for this is the additional
Wi-Fi adapter which increased CPU usage of the Nexus
One for the transmission task. The Galaxy SII has a
dedicated chipset for the Wi-Fi communication processing.
Furthermore, the Galaxy SII showed a higher fluctuation
in processor load as the Nexus One. This is due to the
fact that the Galaxy SII reduces the clock frequency of
the CPU when the load is low3.

For a CPU profiling of the app we used the profiling
tool included in the debugger of the Android SDK.
We logged the trace files for both running modes to
compare the different CPU time allocations. Figure 6
shows the profiling of the autonomous and the server
mode on both testing devices for the execution steps
Framing, FFT, Cepstrum, SVM, HTTP, and Rest. FFT

3http://www.arm.com/products/processors/cortex-a/cortex-
a9.php
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Fig. 5: CPU usage of the testing devices for autonomous
and server mode.

and Cepstrum represent the system components feature
extraction, whereas Rest includes operations for the
system components merging and the audio recorder (see
Figure 1). The different execution steps are ordered in
the way as they occur in the chain. The CPU time of one
single task is measured as a percentage of the time it takes
to complete the processing chain. The results show that
server mode needed less time than in autonomous mode,
also for the Google Nexus One (note that in contrast to
Figure 5 the CPU profiling includes just the CPU usage of
the processing chain). The FFT used to derive the MFCC
features used up almost 50% and the calculation of the
cepstrum used about 35% of the CPU time. The SVM
classify used about 14% of the CPU time in autonomous
mode and none in server mode, as in server mode the
recognition is not done on the phone. Similarly there is
no CPU time used for the HTTP client in autonomous
mode, because the features do not have to be sent to a
server. CPU load could be decreased by ∼80% moving the
front-end processing to the server. However, in this case
the raw audio data has to be sent to the server increasing
the data rate from ∼ 3kbit/sec to 256kbit/sec.

D. Recognition Time

We define the recognition time as the time the system
needs to calculate one recognition (see Figure 7). This
includes in the autonomous mode just the execution time
of the SVM recognition. In the server mode the recognition
time includes the execution time of sending the feature
vector (∼ 370Bytes) to the server, the SVM recognition
on the server, and sending the result (∼ 5Bytes) back
to the smartphone. The evaluation was done with both
devices in autonomous mode, and in the server mode over
the Wi-Fi as well over the 3G network. The measurement
of the latency over Wi-Fi connection has been done from
a LAN outside the network the classification server is in.
The phones have been connected to a D-Link DI-524 Wi-Fi
router following the 802.11g / 2.4GHz standard. For each

0 10 20 30 40 50 60 70 80 90 100 110

Server Mode

S
a
m

su
n
g

G
al

ax
y

S
II

Framing FFT Cepstrum SVM HTTP Rest

0 10 20 30 40 50 60 70 80 90 100

Autonomous Mode

0 10 20 30 40 50 60 70 80 90 100 110

Server Mode

CPU time [%]

G
o
o
gl

e
N

ex
u
s

O
n
e

0 10 20 30 40 50 60 70 80 90 100

Autonomous Mode
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tonomous and server mode of the two testing devices.
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one recognition.
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Fig. 7: Definition of recognition time for autonomous and
server mode.

mode we ran the experiment for 10min (600 recognitions).
In Figure 8, the latency in the 3G network shows a higher
mean and standard deviation for both phones. However,
a 3G latency of approximately 260ms does not limit the
usability of the application as this is still within the one
second interval in which the request packets are sent.

VI. Conclusion

AmbientSense is a real-time ambient sound recogni-
tion system for smartphones. The system can run au-
tonomously on an Android smartphone or work in com-
bination with a server to recognize auditory scenes from
captured sound. For 23 ambient sound classes, the recog-
nition accuracy of the system was 58.45%, which meets
result of previous efforts in auditory scene analysis that
considered a similar number of ambient sound classes,
e.g. [2]. Overall, our runtime and energy consumption
analysis showed similar results for autonomous and server
modes. For the Galaxy SII, the runtime in server mode
was ∼ 2h lower than in autonomous mode, which could
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be explained by the network communication usage.

Our further analysis revealed that ∼80% of the total
processing time was spent for feature computation (Fram-
ing, FFT and ceptrum), where the server mode cannot
gain advantages over the autonomous mode. In contrast,
only ∼14% of CPU time are required for computing
classification results. Combined with the communication
overhead, we concluded that the server mode is not ben-
eficial for auditory scene recognition as in our approach.
However, a server mode implementation could be benefi-
cial if more complex classification models are chosen (e.g.
modeling MFCC distributions with a Gaussian mixture
model). The server mode may have an advantage if crowd-
sourced data is added dynamically and learning is per-
formed online. However, even in this setting the revised
models could be updated to be available in autonomous
mode.
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