
Sensor Mobile Enablement (SME): a Light-Weight

Standard for Opportunistic Sensing Services

Valerio Arnaboldi∗, Marco Conti∗, Franca Delmastro∗, Giovanni Minutiello∗ and Laura Ricci†

∗IIT Institute - National Research Council of Italy - via G. Moruzzi, 1 - 56124 Pisa, Italy

Email: firstname.lastname@iit.cnr.it
†Department of Computer Science, University of Pisa - Largo Bruno Pontecorvo 3 - 56127 Pisa, Italy

Email: ricci@di.unipi.it

Abstract—The proliferation of smartphones as complex sensing
systems represents today the basis to further stimulate the active
participation of mobile users in opportunistic sensing services.
However, single sensing devices (either independent network com-
ponents or integrated in more powerful devices) generally present
different capabilities and implement proprietary standards. This
highlights the necessity of defining a common standard for
sensing data encoding in order to guarantee the interoperability
of heterogeneous devices and personal mobile systems. In this
paper we present Sensor Mobile Enablement (SME), a light-
weight standard for efficiently identifying, coding and decoding
heterogeneous sensing information on mobile devices. After a
detailed analysis of SME features and advantages, we present
its performances derived from real experiments on Android
smartphones. Results highlight that SME does not heavily impact
on mobile system’s performances while efficiently supporting
opportunistic sensing services.

I. INTRODUCTION

Opportunistic and participatory sensing represent today one

of the hottest research topic in pervasive and ubiquitous

computing due to the widespread diffusion of personal mobile

devices that make the user a sort of human mobile sensor,

exploring the surrounding environment. The research trend

started with the notion of participatory sensing [1], directly

requiring the user interaction to exploit (mainly) the smart-

phone’s audio/video signals as sensing information in order

to witness particular events. This information was then stored

on centralized servers to be shared with other interested users.

Then, research evolved into phone-embedded sensing services

[2], in which the major issue was how to use phone sensors to

correctly infer the activity of a user, his/her social interactions

and his/her personal behavior in the daily life. In both cases

the smartphone represented a complex sensing instrument

designed to interact with the single user, collect data and

upload it for remote sharing with others.

Opportunistic sensing enlarges this vision by allowing the

cooperation of multiple personal mobile devices through re-

source and data sharing mechanisms based on opportunistic

communications [3], not necessarily requiring the explicit

interaction with the user. It belongs to a wider research

field called opportunistic computing [4], in which all the

smartphone’s resources (i.e., computation, storage, available

connectivity in addition to embedded sensors) can be requested

for a cooperative use by remote devices in order to improve

features of mobile services and applications. In this scenario

the users’ mobility is fundamental both as source of infor-

mation (as smartphone carrier) and as generator of devices’

communication opportunities (due to users and devices en-

counters). However, it is also one of the major causes of

the high dynamism that characterizes mobile systems together

with the heterogeneity of involved devices. In order to over-

come the limitation of devices’ heterogeneity, with particular

attention to both phone-embedded and external sensors, in

this paper we propose the specification and implementation

of light-weight standard models and related software tools for

identifying, encoding and processing heterogeneous sensing

information on mobile devices. The idea arises from the

technical limitations of using the existing reference standard

for sensor web services (i.e., OCG Sensor Web Enablement

(SWE) [5]) on mobile devices, and from the need to guarantee

the interoperability of existing infrastructured solutions with

the innovative approach of participatory and opportunistic

sensing services. The proposed standard, called Sensor Mobile

Enablement (SME) presents multiple advantages: (i) it pro-

vides the definition of general data structures and XML codi-

fication of all information related to phone-embedded sensors

to support the development of opportunistic and participatory

sensing services (not included in SWE); (ii) it guarantees

efficient processing of XML files on mobile devices (related

to encoding information of both phone-embedded sensors and

SWE data); (iii) it guarantees interoperability of opportunistic

sensing services with standard SWE services. In this work we

present an implementation of SME for Android OS (version

4.1.1) as Java library. However, several implementations can

be provided for different mobile operating systems.

After a deep analysis of adopting SME standard in mobile

sensing applications, we decided to support it also in our mid-

dleware platform CAMEO [6], [7], designed for the efficient

development of context- and social-aware applications over

opportunistic networks. In fact, the efficient management of

sensing data represents a common requirement for several mo-

bile applications (e.g., personal and environmental monitoring,

mobile social networks) in which developers tend to exploit

all the available information to improve users’ experience

and applications’ performances. CAMEO support of SME

standard provides additional sensing features to context-aware

mobile applications and the possibility to interact with both

external sensors and remote sensor web services adopting

SWE standard.

The paper is organized as follows: Section II presents
978-1-4244-9529-0/13/$31.00 ©2013 IEEE

International Workshop on the Impact of Human Mobility in Pervasive Systems and Applications 2013, San Diego (18 March 2013)

236

related work in this field and technical motivations of our new

solution. Section III presents the main functionalities of SME

standard and the software library for android OS and Section

IV highlights the advantages of its use in CAMEO. Section

V shows performances analysis of SME management through

real experiments on Android smartphones.

II. BACKGROUND AND MOTIVATIONS

Due to the current proliferation of heterogeneous sensing

devices, generally characterized by proprietary standards for

data encoding and transmission, the Open Geospatial Consor-

tium (OCG) decided to define and implement SWE frame-

work [5] as a set of interoperability interfaces and metadata

encodings (based on XML schemas) that enable real time

integration of sensing information into a server web infrastruc-

ture. SWE defines three standards for encoding, respectively,

sensors’ descriptions (Sensor-ML), observations and measure-

ments (O&M) and transducers (TML). In addition, it provides

four web service interfaces for accessing related information.

Generally, the most used is Sensor Observations Service (SOS)

interface that enables client applications to access observations

and sensor system information stored on remote web servers.

SWE relies on the general assumption that each sensor is a

web-connected device and all sensed data must be remotely

managed through a web service. To this aim, SWE defines

sensors’ discovery procedures, processing and correlations of

sensor observations in a completely centralized way. SWE is

currently becoming the reference standard for remote sensing

services and for the emerging paradigm of Internet of Things.

In fact, OCG formed a new standard working group called

Sensor Web for IoT [8] aimed at developing new standards

based on Web of Things protocols while also leveraging the

existing SWE standard. However, to consider the Web as the

only reference scenario does not reflect the actual distributed

nature of current mobile systems, especially involving smart-

phones as complex sensing devices.

Today smartphones are able to produce several sensing

information, both as raw sensing data derived from phone-

embedded sensors, and application level sensing events, de-

rived from the correlation of multiple sensing data originated

by local and/or remote nodes (e.g., wireless proximity informa-

tion, crowded places). Through opportunistic communications,

mobile devices can also share their own resources (e.g.,

processing and sensing capabilities) extending the use of local

sensors also to remote nodes. The personal mobile device of

each user is thus able to generate and share useful sensing

information not necessarily passing through a web service.

However, to maintain the interoperability of opportunistic

sensing services with external sensors implementing SWE or

with centralized SOS servers, mobile devices must be able to

efficiently elaborate SWE data.

Currently, mobile operating systems do not support the

efficient elaboration of large XML files, like those defined

by SWE, due to limited hardware and software resources.

For these reasons, SWE standard cannot be used as-they-are

on mobile devices and this is currently representing an open

issue in this research area. Limited works on this topic has

Fig. 1. Smart city scenario involving heterogeneous sensing devices.

been presented in literature and they highlight the extreme

inefficiency of managing SWE standard on mobile devices.

Specifically, [9] revealed that processing SOS XML files on

mobile devices can be 30 to 90 times slower than their

elaboration on a desktop PC. To overcome this limitation, the

same authors proposed to use different file formats to encode

SWE messages on mobile devices [10] trying to reduce the

overhead of XML processing and their impact on the network

usage. Even though some formats (e.g., JSON [11], EXI and

EXI with compression [12]) are able to slightly improve the

system performances, they introduce an additional overhead

due to the local conversion of SWE data into the new format

and vice versa. In this paper we show that, in addition to SWE

performances limitations, technical limitations prevent SWE

implementation on mobile devices, especially on Android OS.

A. Technical limitations of SWE on Android

Implementing SWE on mobile devices presents two main

issues: (i) the lack of efficient software tools for managing

XML files on mobile OS, and (ii) the large size and complexity

of SWE XML schemas (most of them including several

dependencies). As far as managing and processing XML files,

the first approach we investigated is XML file parsing by

using standard APIs like DOM (tree-based) [13] and SAX

(event-based) [14]. In both cases, applications’ developers

have to know a priori the specific XML file structure to im-

plement serialization and deserialization procedures, manually

selecting relevant tags and values (e.g., sensor descriptions

and measurements fields). As an alternative, there are some

software tools able to automatically serialize and deserialize

XML files into a predefined set of Java classes, reflecting the

specific XML file structure (i.e, XML data binding). In this

way, the application development is completely independent

of the XML files’ interpretation and a unique library can be

provided for a specific set of XML files. Nevertheless, the high

dimension and complexity of SWE XML schemas make really

difficult the application of this procedure. In fact, even desktop

tools like JAXB [15], XMLBeans [16] and XBinder [17],

are not able to provide a complete support for the automatic

generation of SWE classes (as witnessed by [18]). Specifically

we tested XBinder, which is the only tool able to generate Java

classes for Android, and we found that it is able to support

only Sensor-ML schemas.

In order to overcome these limitations, we implemented

SME as a Java library able to support XML data binding

of a light-weight standard compliant with SWE, customized

for opportunistic and participatory sensing services. In the237

following sections we present SME functionalities both to sup-

port independent mobile sensing applications and to provide

additional sensing capabilities to CAMEO middleware.

III. SENSOR MOBILE ENABLEMENT (SME)

In order to completely understand SME potentialities in

mobile environments, let us consider a smart city reference

scenario as that depicted in Figure 1. We can envision to have

several heterogeneous sensing devices spread around the city,

either located at fixed positions (e.g., traffic lights, panels)

or in movement (e.g., through vehicular networks, as bus

carrying air pollution sensors), thousands of users with their

smartphones, equipped with additional embedded sensors, and

remote sensor data repositories. In this scenario, smartphones

and mobile users can dynamically aggregate in Mobile Social

Networks [4], making users able to generate and share useful

sensing information through opportunistic communications. At

the same time, single smartphones can interact with external

sensing devices (e.g., single sensors) and remote sensor web

services (e.g., SOS server collecting air pollution data of

the city). To allow the interaction of all these heterogeneous

sensing systems it is necessary to define a common standard

suitable for mobile devices’ management and elaboration.

SME defines standard models, compliant with SWE, to

encode information related to both phone-embedded sensors

and application-level sensing events. In this way it allows

to implement opportunistic sensing services and their inte-

gration with external sensing components. As far as SME

Android implementation, it provides to mobile application

developers a set of primitives for efficient XML data binding

of both SME and SWE XML files and for the interaction

with SOS servers (and the efficient elaboration of related

data). In order to reduce XML processing and transmission

overhead on mobile devices, SME data structures are based on

a subset of SWE schemas, appropriately selected for mobile

environments. Specifically, SME mainly refers to Sensor-ML

and O&M as relevant standards for describing sensors, their

possible operations and related measurements, and SOS inter-

faces to support mobile access to sensor web services. Starting

from sensors’ descriptions and observations derived from real

SOS servers, we defined a subset of SWE XML tags relevant

for mobile sensing services and related XML schemas. SWE

schemas reduction does not affect the interoperability of the

SME with the original standard. In fact, experimental studies

on a sample of SOS servers in [19] witnessed that most of them

actually use less than 30% of SWE functionalities. Moreover,

SME defines data structures for encoding information related

to phone-embedded sensors, which are not included in original

SWE. In fact, currently the only support to the development

of mobile applications involving phone-embedded sensors is

the implementation of operating system APIs, which allow

developers to recover a predefined set of information (e.g.,

sensor type, vendor) and to register to the sensing event

specifying the desired sampling frequency. SME defines ex-

novo XML schemas for all phone-embedded sensors derived

from the interaction with Android APIs, and implements a set

of Java classes for data binding operations. These schemas

contain the minimum set of tags to be compliant with SWE

standard.

As far as the interaction of the mobile device with external

SWE sensors and repositories, SME implementation presents

a two-fold functionality. On the one hand, it implements an

efficient data binding procedure of complete SWE XML files

derived from download operations. In fact, to reduce XML

processing overhead additional fields not defined in SME

classes are discarded. On the other hand, SME converts local

objects into SME XML files, compliant with SWE, allowing

mobile device upload operations to remote servers.

In this way, SME is able to overcome technical limitations

of using SWE on mobile devices and to efficiently support

the development of opportunistic and participatory sensing

services, maintaining their interoperability with SWE standard

services.

IV. SME AND CAMEO

CAMEO1 [6], [7] is a mobile middleware platform that

provides to mobile applications’ developers a set of function-

alities for the collection, sharing and elaboration of context

information over opportunistic networks, in addition to effi-

cient networking protocols in case of intermittent connectivity.

Context information includes data characterizing the user (e.g.,

personal and social information, like habits, interests, mobil-

ity patterns and interactions), his/her mobile device(s) (e.g.,

information related to internal resources: sensors, capacity,

available memory), running applications (e.g. produced and

shared contents), and the surrounding environment (e.g., data

collected from external sources). CAMEO is in charge of (i)

collecting and managing context information of the local node

(i.e., the ensemble of the user and his/her mobile devices), (ii)

locally defining the social context of the node, derived from

the contexts’ exchange among neighbors, and its historical

profile. CAMEO implements a beaconing procedure that peri-

odically disseminates local context information among 1-hop

neighbors, and it provides to upper-layer applications a set

of functionalities to access context information and to require

data correlations to optimize their features. In this scenario,

phone-embedded sensors represent additional sources of infor-

mation and sharable resources on the opportunistic network.

In fact, nodes running CAMEO can ask their neighbors for

already available sensors’ measurements or for specific sensing

operations (e.g., a node not having pressure sensor can ask to

one of its neighbors to measure the related data, even if the

remote node is not interested in it). To this aim CAMEO,

by interacting with SME library, extends the context of the

local node by introducing the notion of sensing context. In

fact, CAMEO directly recovers sensors’ information through

operating system APIs and exploits SME data structures to

initialize the sensing context. Sensing context includes main

information related to the available local sensors (i.e., sensor

descriptions including both hardware and software capabil-

ities) and their measurements (i.e., observations) and it is

disseminated on the network through the beaconing procedure.

1Context-Aware MiddlEware for Opportunistic Mobile Social Networks238

Fig. 2. CAMEO architecture.

In this way, nodes running CAMEO have a complete view of

available contents and resources among their neighbors2.

SME definition of general data structures for descriptions

and observations of embedded sensors has been designed to

support both existing and possible new integrated devices,

supporting thus heterogeneous sensing components even inside

the same mobile device. In addition, SME implementation

allows CAMEO to interact with external sensing components

based on SWE standard, like independent sensors or SOS

services. In this way, CAMEO can support both standard

upload/download operations to/from SWE services and export

local node sensing capabilities to external entities. This allows

to include complex sensing systems, like smartphones or

tablets, into the emerging paradigm of Sensor Web for IoT [8].

Figure 2 shows the architecture of CAMEO and the inter-

actions between the software library implementing SME (i.e.,

SME library) and CAMEO internal modules. Specifically, at

low level the Device Context Provider is in charge of

interacting with Android APIs for embedded sensors manage-

ment. It directly inherits SME data structures to create Java

objects that represent sensors’ descriptions and observations

according to Android information. Java objects are then passed

to the Context Manager, the core of the middleware,

which manages and elaborates all context information. The

same objects are also included in CAMEO messages in case

of data exchange over the opportunistic network, among nodes

running CAMEO. This allows CAMEO to further optimize

sensor data exchange over the opportunistic network simply

transmitting serialized Java objects instead of SME XML files.

On the other hand, Java objects are converted in SME XML

files if they must be transmitted to independent nodes.

Referring to CAMEO interactions with external SWE ser-

vices, CAMEO extends the API provided to upper-layer

applications to include SWE standard interfaces (e.g., SOS

GetCapabilities, GetDescriptions, GetObservations). When a

CAMEO node receives SWE XML files from the network, the

Context Manager exploits SME data binding procedure

to filter relevant information and deserialize the file. Instead,

in case CAMEO and/or upper-layer applications need to

export local information as SME XML files, the Context

2Naturally, the successful implementation of opportunistic resources sharing
mechanisms is subject to dynamic constraints of the involved nodes (i.e., local
resources availability to host remote service requests).

Manager uses SME deserialization procedures. Even in this

case, CAMEO reduces the data transmission towards SWE

services, since SME XML files are light-weight codifications

with respect to SWE standard.

Therefore, the introduction of SME as reference standard

for mobile sensing applications largely extends CAMEO func-

tionalities, both in terms of additional sensing opportunities

in mobile networks and interactions with remote standard

solutions. In addition, the use of CAMEO as middleware

platform to support multiple context-aware mobile applications

presents the fundamental advantage of local sharing of multi-

dimensional context information among different applications

running on the same node. In this way, independent mobile

applications can access and correlate heterogeneous context

information, provided both by local and external services.

V. EXPERIMENTAL RESULTS AND PERFORMANCE

EVALUATION

In order to evaluate real performances of using SME on

mobile devices, we performed a set of experiments with

Google Galaxy Nexus smartphones (HSPA+), equipped with

Android 4.1.1 (Jelly Bean) and 1.2 GHz dual-core processor.

Google Galaxy Nexus includes six hardware sensors and seven

software sensors (as highlighted in Table I). Hardware sensors

are physical components integrated into the device, measuring

specific environmental properties. Software sensors represent

the elaboration of data derived from one or more hardware

sensors. Android manages hardware and software sensors

without distinction. It defines Sensor objects as the abstrac-

tion of sensing operations, involving one or more hardware

sensors. Sensor objects are characterized by: event type,

event name, event description, measurement unit, resolution,

sensor name, sensor vendor, maximum range, maximum sam-

pling frequency, consumed power. SME sensor descriptions

are defined as data structures reflecting SME adaptation of

Sensor-ML standard and they are populated by Sensor object

values. As far as data derived from sensors’ measurements,

Android generates SensorEvent objects according to the

sampling frequency. A SensorEvent is characterized by:

accuracy, sensor name, timestamp, and values. SME sensor

observations are defined as data structures based on SME

adaptation of O&M standard and they are populated by

Android SensorEvent characteristics.

Through real experiments we evaluated SME performances

in terms of:

- SME library size with respect to desktop implementations;

- XML processing overhead on mobile devices related to

serialization and deserialization procedures of both SME and

SWE files;

- impact of SME processing on battery consumption.

A. SME size and XML processing overhead

As a first result it is worth noting that SME library,

implementing a light-weight version of SWE standard, highly

reduces the size of current desktop implementations, like JAXB

for OGC project [18]. Specifically, SME requires 38.9KB for239

Sensor Name Type
1 Sharp GP2A Light Sensor HW
2 Sharp GP2A Proximity Sensor HW
3 Bosch BMP180 Pressure Sensor HW
4 Invensense MPL Gyroscope HW
5 Invensense MPL Accelerometer HW
6 Invensense MPL Magnetic Field HW
7 Invensense MPL Orientation SW
8 Invensense MPL Rotation Vector SW
9 Invensense MPL Linear Acceleration SW
10 Invensense MPL Gravity SW
11 Google Rotation Vector SW
12 Google Gravity SW
13 Google Linear Acceleration SW
14 Google Orientation SW
15 Google Corrected Gyroscope SW

TABLE I
GOOGLE NEXUS EMBEDDED SENSORS.

classes definitions and additional space for the use of a data

binding tool (we used SIMPLE [20] that requires 384KB). On

the other hand, the library provided by JAXB for OCG requires

3.43MB just for classes definitions, even not supporting the

entire SWE standard.

In order to evaluate XML processing overhead introduced

by SME standard and data binding procedures, we refer

to the classification of XML files provided by W3C [21].

They define a reference parameter called Content Density

(CD) representing the ratio between the values’ size of XML

attributes and elements (real content of the file measured in

number of characters) and the total size of the XML file

(content and XML overhead). XML files are classified into

two main categories depending on CD value: High CD if

CD > 33% and Low CD if CD < 33%. Low CD files are

additionally divided into Large files if size > 100KB, Small

files if 1KB < size < 100KB and Tiny files if size < 1KB.

In our experiments we considered sensors’ descriptions and

observations derived from local embedded sensors and remote

SOS servers. We envisioned three reference scenarios:

1) Two nodes encounters and exchange their own sensors’

descriptions and observations encoded in SME standard.

2) The local node encounters up to 10 remote nodes and

receives from them sensors’ descriptions and observations

encoded in SME standard.

3) The local node requests a SOS server for a single obser-

vation including an increasing number of values (from 0 to

50, 000 values related to independent sensors’ measurements).

The received observations are encoded in SWE standard. In

a second step, the local node converts the elaborated data in

SME standard in order to send it to other remote nodes.

As far as the first scenario, Figure 3 shows the time

required by SME library to deserialize the description of each

local sensor from SME XML files to Java objects. Sensors

are identified by sequential number as in Table I. The first

time the local node applies the deserialization procedure to a

sensor’s description, the processing time includes also the time

necessary for loading SME library into memory. On average,

the total time is equal to 0.618s with a 95% confidence

interval equal to (0.521s, 0.7150s). Instead, once the library is

already loaded, deserialization time for each embedded sensor

description is in the range [0.027s, 0.044s], as shown in Figure

3. XML file size of each local sensor’s description ranges

between 2.7KB and 3.5KB with CD between 9.8% and 30.1%.

We compared these results with the time needed by SME

library to deserialize a real SOS sensor’s description. The size

 0

 0.02

 0.04

 0.06

 0.08

 0.1

1 [2.8K]

2 [3.5K]

3 [2.7K]

4 [2.9K]

5 [3.5K]

6 [3.5K]

7 [3.4K]

8 [3.5K]

9 [3.5K]

10 [3.5K]

11 [3.4K]

12 [3.6K]

13 [3.4K]

14 [3.6K]

15 [3.4K]

T
im

e
 (

s
e

c
)

Sensor’s description and XML file size

Fig. 3. Scenario 1: mean deserialization time and 95% c.i. over 10 tests.
On the x axis we report sensor id and the related XML file size.

of the original SWE codification of the used SOS sensor’s

description is 10.5KB with CD equal to 23.81% (i.e., small file

- Low CD). During SME deserialization procedure, the XML

file is filtered, discarding not relevant tags and values. As a

result, the size is reduced to 6.6KB and the CD increased

to 43.48%, becoming thus a High CD XML file. In this

case the deserialization time of the original description takes

0.085s on average, with a 95% confidence level (calculated on

10 experiments) in the range (0.067s, 0.102s). These results

witness the advantages of using SME on mobile devices for

efficient elaboration of SWE XML files. In fact, SME is able to

reduce SWE codifications’ size while increasing their content

density. In addition, processing time is proportional to the size

of resulting SME codification, independently of the original

file size.

In the same scenario, we evaluated the processing over-

head related to the management of an increasing number of

observations exchanged between two nodes. Specifically, we

measured both serialization and deserialization times of up

to 15 sensors’ observations measured on one of the involved

nodes. Experimental results are shown in Figure 4. In both

cases, the last value represents the worst case in which

the local node sequentially processes all the sent/received

observations. In case of deserialization, SME library requires

at most 0.24s to complete the operation. Instead, in case of

serialization it requires at most 1.14s. The difference between

these processing times is mainly due to I/O operations of

SME encoding. Specifically, read operations on mobile devices

equipped with NAND memories are generally faster than write

operations. In both cases, SME processing overhead does not

heavily affect mobile device performances.

As far as the second scenario, Figure 5 shows experimental

results of SME deserialization procedure applied to an increas-

ing number of sensors’ descriptions and observations gener-

ated by up to 10 remote nodes. Even in this case, SME library

performances are really advantageous for mobile devices,

requiring up to 1.782s and 3.662s to deserialize observations

and descriptions respectively. The difference between these

times is mainly due to the different size of single observations

and descriptions of embedded sensors (on average, 1.9KB and

3.347KB respectively).

Results related to scenario 1 show that serialization and

deserialization of a relatively high number of small XML

files does not overload the mobile system processing capa-

bilities, making SME library able to support mobile sensing240

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (

s
e

c
)

of files

serialization of observations
deserialization of observations

Fig. 4. Scenario 1: XML processing times of an increasing number of
observations (up to 15).

services that require medium/high frequency I/O operations on

XML files. This is an important characteristic in opportunistic

computing scenarios, in which limited contact times require

efficient processing especially in case of real-time services.

As far as the third scenario, we measured serialization

and deserialization times of a real sensor observation derived

from a SOS server. We considered an observation containing

an increasing number of values related to independent mea-

surements (from 0 up to 50, 000 with steps of 1000). The

observation is originally encoded in SWE O&M standard and

each value corresponds to a sensing event represented by the

following fields: a date, a number in double precision and a

string describing the event. The XML file size of the consid-

ered observation ranges between 1.9KB (i.e, containing only

SWE XML overhead and 0 values) and 2.3MB (i.e., containing

50, 000 values). The content density ranges between 18.4%
and 99.9% respectively. Figure 6 highlights the efficiency of

SME library to manage complex SWE observations, corre-

sponding to large XML files, in few seconds. Also in this

case the difference between serialization and deserialization

times is mainly due to I/O operations.

B. Battery Consumption

As last set of experiments, we analyzed the impact of XML

processing on the battery consumption of mobile devices.

Firstly, we considered power consumption related to continu-

ous execution of serialization and deserialization procedures.

At the end of a 15 hours test, the battery level changed from

100% to 98%. Considering the reference scenario involving

both a group of CAMEO nodes and external SWE services,

we ran a second set of experiments involving the use of

CAMEO WiFi communications. We performed 5 tests for one

hour each, and the battery level reduced to 97% for all the 5
tests. To evaluate the impact of XML processing on battery

 0

 1

 2

 3

 4

 5

 15 30 45 60 75 90 105 120 135 150

T
im

e
 (

s
e

c
)

of files

deserialization of descriptions
deserialization of observations

Fig. 5. Scenario 2: deserialization times of an increasing number of
observations and descriptions (up to 150).

 0

 1

 2

 3

 4

 5

0
[1.9K]

10000
[460K]

20000
[917K]

30000
[1.4M]

40000
[1.8MK]

50000
[2.3M]

T
im

e
 (

s
e
c
)

of values and XML file size

serialization
deserialization

Fig. 6. Scenario 3: XML processing times of a single observation with an
increasing number of values.

consumption with respect to a power consuming service, we

performed the previous experiments including also the use of

GPS. In this case the battery level reduced to 88% for all

the 5 tests. These results clearly show that XML processing

does not significantly impact on battery consumption, while

the main consumption is related to the use of WiFi, and GPS

especially.

All the experimental results demonstrated the efficiency of

SME introducing a limited overhead for XML processing on

mobile devices.

ACKNOWLEDGMENT

This work was partially funded by the European Commis-

sion under the SCAMPI (FP7-FIRE 258414) project.

REFERENCES

[1] T. Abdelzaher, Y. Anokwa, P. Boda, J. Burke, D. Estrin, L. Guibas,
A. Kansal, S. Madden, and J. Reich, “Mobiscopes for human spaces,”
IEEE Pervasive Computing, vol. 6, no. 2, pp. 20–29, 2007.

[2] N. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. Campbell,
“A survey of mobile phone sensing,” Communications Magazine, IEEE,
vol. 48, no. 9, pp. 140–150, 2010.

[3] L. Pelusi, A. Passarella, and M. Conti, “Opportunistic networking: data
forwarding in disconnected mobile ad hoc networks,” Communications

Magazine, IEEE, vol. 44, no. 11, pp. 134–141, 2006.
[4] M. Conti and M. Kumar, “Opportunities in Opportunistic Computing,”

Computer, vol. 43, no. 1, pp. 42–50, 2010.
[5] “http://www.opengeospatial.org/projects/groups/sensorwebdwg.”
[6] V. Arnaboldi, M. Conti, and F. Delmastro, “Implementation of CAMEO:

a Context-Aware MiddlEware for Opportunistic Mobile Social Net-
works,” in IEEE WOWMOM 2012, 2011.

[7] V. Arnaboldi, M. Conti, and F. Delmastro, “CAMEO: a novel Context-
Aware MiddlEware for Opportunistic Mobile Social Networks,” Tech.
Rep., 2012. [Online]. Available: http://cnd.iit.cnr.it/fdelmastro/pub/
techrep/cameo tr.pdf

[8] “http://www.opengeospatial.org/projects/groups/sweiotswg.”
[9] A. Tamayo, C. Granell, and J. Huerta, “Analysing Performance of

XML Data Binding Solutions for SOS Applications,” in Proceedings

of Workshop on Sensor Web Enablement, 2011.
[10] A. Tamayo, C. Granell, and J. Huerta, “Using SWE Standards for

Ubiquitous Environmental Sensing: A Performance Analysis,” Sensors,
vol. 12, no. 9, pp. 12 026–12 051, 2012.

[11] “http://www.json.org.”
[12] “http://www.w3.org/XML/EXI/.”
[13] “http://www.w3.org/DOM/.”
[14] “http://sax.sourceforge.net/.”
[15] “http://www.oracle.com/technetwork/articles/javase/index-

140168.html.”
[16] “http://xmlbeans.apache.org/.”
[17] “http://www.obj-sys.com/xbinder.shtml.”
[18] “http://www.ogcnetwork.net/jaxb4ogc.”
[19] A. Tamayo, C. Granell, and J. Huerta, “Dealing with large schema sets in

mobile SOS-based applications,” arXiv preprint arXiv:1110.0209, 2011.
[20] “http://simple.sourceforge.net/.”
[21] “http://www.w3.org/tr/exi-measurements/.”

241

