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Abstract—One of the key problems in pervasive computing is
enabling the collective processing of sensor data obtained from
mobile devices such as smartphones. In this demonstration we
present a highly scalable storage and processing framework for
pervasive computing applications, enabling various estimation
problems to be solved from massive data sets, consisting of
measurements from millions of nodes or more. The key to
achieving such scalability is the use of linear or sublinear time
processing algorithms emerging from statistical and machine
learning communities. We focus specifically on spatial and
spatio-temporal estimation problems in the demonstration, such
as prediction of sensor readings, user densities, or wireless
network usage in regions for which direct measurements are
not available.
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I. INTRODUCTION

The rapid proliferation of smartphones is presenting the
pervasive computing community with an unprecedented data
processing challenge. Together with other mobile devices
smartphones are enabling massive amounts of diverse types
of sensor data to be collected, annotated with a geograph-
ical location and time of acquisition. Processing this data
for studying, for example, user mobility dynamics, contact
patterns, or the radio coverage of various wireless systems
presents a massive spatio-temporal estimation problem. Ex-
isting platforms (see, for example, [1], [2] and references
therein) have typically focused on the data gathering and
annotation problem, without specifically focusing on the
processing challenge.

In this demonstration we will present a prototype im-
plementation of a data storage and processing framework
specifically tailored for pervasive computing applications,
with scalability properties needed for dealing with the
emerging massive data sets. Our prototype builds on our
earlier work on radio coverage estimation [3], which has
been substantially extended to support additional sensor
modalities and data processing algorithms. We focus specif-
ically on spatio-temporal estimation problems in the demon-
stration, basing our work on recently developed fixed rank
spatial and spatio-temporal estimation methods [4], [5],
[6] as well as sublinear machine learning techniques [7],
[8]. We specifically leave out the problems related to data

Figure 1. The high level functional architecture of the demonstrated data
processing framework.

acquisition from the demonstration, since those are already
well addressed in the literature in frameworks such as [1],
and for specific sensor modalities are even already being
dealt with in standardization bodies [9], [10].

In the following sections we first give an overview of the
design and overall architecture of the demonstrated frame-
work, and then discuss the implemented data processing
algorithms and related demonstrated functionalities in more
detail.

II. SYSTEM ARCHITECTURE AND DESIGN

The high level architecture of the developed data pro-
cessing framework is illustrated in Figure 1. Different data
sources deposit measurement results into a logically cen-
tralized storage service, from which they are accessed by
different data processing modules. These are run either
periodically, or in an event-driven fashion based on changes
or additions of new sensor readings into the database. The
results from the data processing modules are also stored
back into the storage service, from which they can be
accessed by other data processing modules for subsequent
processing or refinement of results, or by the demonstration
GUI for visualization. The data processing modules can also
distribute measurement plans or schedules to data sources,
for example to improve the accuracy of results in regions in
which too small amount of data was originally available.
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Figure 2. An example of a spatial tessellation adapted to the distribution
of measurement locations used for indexing sensed data for storage.

It should be emphasized that the architecture shown in
Figure 1 is, especially regarding the storage service, only
logically centralized, with the individual architectural ele-
ments typically being implemented in distributed fashion to
avoid bottlenecks and to increase reliability. For example,
as a basis of the storage service we have worked with both
Hadoop [11] and more recently developed HyperDex no-
SQL storage system [12]. Both of these offer distributed,
highly scalable and fault tolerant platforms for storing,
querying and processing data. In order to utilize such
storage platforms as a part of our framework, a number
of novel design choices have been incorporated into the
implementation. For example, to support spatial indexing
of data within the storage platforms, spatial tessellations
such as shown in Figure 2 are used to derive indexes for
measurement locations in a scalable manner. These design
decisions will be further detailed in a poster accompanying
the demonstration, enabling the attendees to have better
insight into the implementation challenges in such systems.

III. TECHNICAL REQUIREMENTS AND FUNCTIONALITY

In this section we outline in more detail the technical
details and the functionality of the proposed demonstration.

A. Demonstration Setup and Flow

The demonstration will support both local as well as
remote mode. In the former, all the elements of the functional
architecture are run on a single laptop as separate pro-
cesses communicating through Websocket-based interfaces.
A variety of prerecorded measurement traces as well as
dynamically generated simulated traces will be available as
data sources. Through the GUI attendees can run different
processing and estimation algorithms — discussed in more
detail below — on the corresponding data sets, and study
the results compared against the ground truth. Figure 3

Figure 3. Simulated measurement device population following the popu-
lation distribution of Germany.

illustrates one of the simulated data source types, corre-
sponding to a percentage of smartphone users in Germany.
On-the-fly simulation of data sources is supported in order
to allow the attendees to study the impact of the amount and
quality of the available measurement data on the accuracy
and computational performance of the implemented storage
and processing solutions.

In the remote mode most parts of the storage framework
together with the data processing modules are run in a
distributed fashion on a number of dedicated computational
servers, with the demonstration laptop only being used for
the user interface, and for providing local storage area
for the results to be visualized. The same interfaces as
in the local mode are still used, and the actual codebase
used in both demonstration modes is identical. The remote
mode enables demonstration of the distributed storage and
processing aspects, while the local mode is provided for
robustness, making the demonstration setup independent of
working Internet access.

B. Examples of Implemented Data Processing Algorithms

As discussed in the introduction, our focus is especially on
algorithms for spatio-temporal estimation problems. Figure 4
illustrates such a problem in which values of spatially
continuous phenomenon such as temperature, user density,
or received signal strength has to be estimated for a given
region based on a collection of samples. The figure shows
the ground truth data set, as well as optimal reconstructions
using techniques from spatial statistics [13] for different
densities of sensor nodes. The fixed rank estimation al-
gorithms [5] implemented in the demonstrated framework
enable such estimates to be made for massive data sets,
having only linear time computational complexity in the
number of measurements available. For each of the esti-
mation algorithms, the user interface enables studying the
accuracy of the obtained estimates, the computational time
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Figure 4. Convergence of spatial sampling and estimation, with panel on the left showing the ground truth, middle panel showing the optimal reconstruction
based on 25 sensor readings, and panel on the right showing a more accurate reconstruction with 250 sensors.

Figure 5. Formal variance estimates of the spatial predictions shown in
the middle and right panels of Figure 4.

involved, and how these depend on the properties of the
underlying data set, such as the number of simulated mobile
devices carrying out the measurements. Further, many of
the algorithms are also capable of estimating the reliability
of their results, and these estimates together with their
reliability can be explored through the demonstration GUI.
For example, in Figure 5 the estimated prediction errors
are shown for the results given in Figure 4. Such estimates
can be used to drive adaptive measurement routines, and to
improve the battery life on mobile terminals carrying out the
measurements.
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