
DORC: Distributed Online Route Computation – Higher Throughput, more Privacy

Niklas Schnelle, Stefan Funke
Universität Stuttgart, Germany

Sabine Storandt
Universität Freiburg, Germany

Abstract—We propose a technique to distribute the work-
load of online route planners as offered for example by
Bing/Google/Yahoo Maps, etc. among the clients requesting
the routes. Our scheme not only increases the throughput of
a server answering the requests of clients but also yields a
simple way of providing some degree of privacy for the user.
A prototype implementation of our system is available as an
Android app in Google Play and on Github.

Keywords-route planning, distributed computing

I. INTRODUCTION

The use of online route planners like Bing/Google/Yahoo
Maps, etc. has become ubiquitous in our daily lives. When
booking a hotel or planning a sightseeing trip to a city, most
websites provide direct links to services like Google maps.
And indeed, most of the time we actually check for good
reachability of the venue before deciding in favor or against
a particular hotel or restaurant. On a road trip, the use of
paper-based map material has almost become extinct. Most
of the time we just type in the destination address in our
smartphone to guide us there. When we are unsure about
the traffic conditions, we use Google maps or the likes to
suggest the best route under the current circumstances.
In this work we consider two of the challenges that arise in
the context of online route planners, namely distribution of
the computational load and privacy concerns of the users.

Load Distribution: It is clear that considerable compute
power is necessary to cope with the load created by the route
planning requests issued at any given moment in time e.g.
to Google maps. This is a problematic issue for smaller
companies or open source initiatives aiming to enter the
online route planning arena and even for big companies
more servers mean more energy consumption, which for
companies like Google is one of the biggest cost factors;
an online route planner might have the coolest features
and the best user interface, if the servers cannot cope with
the requests, it is doomed to fail on the market. And not
all companies or initiatives have the resources to set up
large server farms. The first goal of this paper is to show
how recent techniques to speed-up shortest path queries can
be instrumented to efficiently distribute the computational
load for calculating routes among the clients which issue
the actual requests. This allows even projects with limited
resources to have an impact on the market.

Figure 1. Screenshot of our Android App.

Privacy: Most of the route queries issued from mobile
devices like smartphones or handheld tablets are of the kind
that the shortest/fastest/best route from the current location
to some destination is requested. Obviously, by issuing such
a request to a maps service, the respective service provider
can collect information regarding the whereabouts of the
issuer of the request as well as his intended destination.
Some people might object to this kind of data collection
and the natural solution for that is the use of offline route
planners which have all the necessary road network data
on the device and can perform the route planning without
contacting any external service. Online route planning has
some indisputable advantages, though: it can make use of
up-to-date road network information, in particular temporary
disturbances like traffic jams or construction work can be
taken into account; also, more involved route planning tasks
might require more memory/compute power than offered by
typical mobile devices. The second goal of this paper is to
exhibit means which allow for online route planning but still
keep some degree of privacy. More concretely, we try not to
let the provider of the route planning service know exactly
which trip we are planning. It turns out that the same idea
which helps with distributing the load will also allow for the
provision of some privacy towards the service provider.

Our Contribution

In this paper we devise a scheme which allows for
offloading the computational load of online route planning
from the server to the clients. This is achieved by transferring
to the client a small synopsis of the graph data which

978-1-4673-5077-8/13/$31.00 ©2013 IEEE

Work in Progress session at PerCom 2013, San Diego (19 March 2013)

344

captures all the information necessary to perform the route
planning locally at the client. On the server side, the effort
to compose and transfer these synopses is considerably
lower than performing the actual route planning itself, hence
increasing the throughput of the server considerably. As the
graph synopses are very small, a client which wants a single
route planning task to be solved can easily request several
small synopses, keeping the server in the dark which source-
destination pair the client is actually computing a route for.
Our scheme is derived from a very recent speed-up technique
for shortest path queries called contraction hierarchies, [1].

II. PRELIMINARIES

A. The Classical Shortest Path Problem

Computing the shortest path in a directed, weighted graph
is one of the classical graph optimization problems. For non-
negative edge weights, Dijkstra’s algorithm [2] has been the
non plus ultra in terms of asymptotic running times since
decades. In a graph with n nodes and m edges, Dijkstra’s
algorithm takes O(m+n log n) time to compute the shortest
path from some node s to some other node t. In practice,
a decent implementation on a modern Desktop PC takes on
the order of a few seconds on a road network like Germany
(n = 16 · 106, m = 30 · 106) which clearly prohibits its
application in an online route planner scenario.

B. Speed-up Schemes

Classical speed-up techniques for Dijkstra’s algorithm like
A* or bidirectional search achieve some acceleration by
pruning the search space e.g. via goal direction. The effect
on the query time for road networks is limited, though.
Typical query times only improve by a small constant
factor. In recent years, more advanced speed-up schemes
have been developed which rely on a preprocessing phase
which precomputes some data allowing for faster query
times later on. Edge reach [3], or transit nodes [4] are
schemes that reduce query times to as little as microseconds
- an improvement by a factor of around 1 million without
compromising optimality of the result.

1) Contraction Hierarchies (CH): This speed-up tech-
nique was introduced in [1]. The basic idea of CH is to
assign levels to the nodes and augment the graph with
additional shortcut edges, such that every shortest path s t
has a representation in the augmented graph where the levels
of the nodes along the path first increase monotonically
until reaching a node of maximum level and then decreases
monotonically towards the target t. This special structure of
shortest paths allows for the pruning of most edges at query
time and still obtain the optimal path. Better query times are
obtained if the level of a node is correlated to its importance
in the road network, see [1] for more details.

Our concrete implementation of CH works in phases:
Starting with phase i = 0 we pick a maximal independent
set Ii of the nodes all of which get assigned level i and are

removed/contracted from the graph. For the final outcome
to preserve all shortest path distances, shortcuts have to be
inserted. More precisely, when contracting a node v ∈ Ii,
for every path uvw a shortcut edge e = (u,w) has to be
added iff uvw is the only shortest path from u to w (this
can be checked via a Dijkstra from u to w). The cost of e
equals the added costs of the edges (u, v) and (v, w). Phase
i ends when all nodes in Ii have been contracted and phase
i+1 starts. The preprocessing step is finished as soon as all
nodes have been contracted.

The outcome of the preprocessing step is a new graph G′

consisting of all nodes (now with levels!) and edges of the
original graph and all shortcuts created during the process.
An edge e = (v, w) (original or shortcut) is called upwards
if the level of v is smaller than that of w and downwards
otherwise. The construction scheme guarantees that every
shortest path has a representation in G′ which is sequence
of upward edges followed by a sequence of downward edges.
Therefore s-t-queries can now be answered via a variant of
the bidirectional Dijkstra algorithm where the forward search
(starting at s) considers only outgoing upward edges, while
the backward search (starting at t) is restricted to incoming
downward edges. This results in query times which are about
a factor of 1000 better than ordinary Dijkstra.

III. DORC - DISTRIBUTED ONLINE ROUTE
COMPUTATION

How to distribute the computation load from the server
amongst the clients? For a query from some source node s
to a target t – instead of running a bidirectional Dijkstra on
the server – we perform the following steps on the server:

1) use breadth- or depth-first search starting from s to
identify all nodes reachable via upward edges from s
(we call this the upward graph Gup

s).
2) identify all nodes that can reach t via downward edges

(Gdown
t).

3) send Gup
s and Gdown

t to the client.
On the other end, the client receives the Gup

s and Gdown
t

and computes the shortest path distance in Gup
s ∪Gdown

t . The
practicability of this approach depends critically on three
aspects: a) how much cheaper is the identification of Gup

s

and Gdown
t on the server compared to an actual shortest

path computation? b) how large is the data package with
Gup

s /Gdown
t to send over the network? c) is the computa-

tional effort required at the client end still acceptable?
Unfortunately, it turns out that identifying and transmit-

ting the complete up- and down-graphs Gup
s /Gdown

t only
provides a modest improvement in terms of the achievable
server throughput. Looking closer at the up-graphs for
different nodes, though, one realizes that the high-level
parts of those graphs exhibit considerable overlap. So one
reasonable strategy is to transfer the whole subgraph induced
by all nodes of level at least l (we call this subgraph the
CORE) to the client once. Later queries then save both

345

the exploration as well as the transmission of these high-
level portions of the CH-augmented graph. Table I lists
the sizes of the CORE graphs above a certain level. For
example, when choosing the CORE graph to be above
level 80, the respective induced subgraph has 476 nodes
and 18, 698 edges, and a space consumption of 0.49 MB
(uncompressed). This CORE graph has to be transmitted
once to the client. Then every subsequent query requires
the collection and transmission of the up- and down-graphs
below level 80 only. In the section IV we will see how
the choice of the CORE graph size affects the achievable
throughput on the server side.

Level ≥ l 40 80 100 120
#Nodes /#Edges 1092/39019 476/18698 226/10443 103/4542
Space (MB) 2.2 0.492 0.277 0.121

Table I
NUMBER OF NODES AND EDGES OF THE CORE GRAPH (NODES AND

EDGES ABOVE LEVEL l) FOR OUR SAMPLE ROAD NETWORK OF
GERMANY (16271859 NODES, 62062727 EDGES).

On the client side, Gup
s /Gdown

t (or their respective lower
parts below level l) arrive as a sequence of triples (v, w, c)
representing an edge from v to w at cost c each, which has
to be turned into a proper graph representation before the
actual route computation can take place.

A. Prototype Implementation on Google Play

To show that the DORC scheme actually pays off, we have
incorporated DORC into our already existing ToureNPlaner
Android client that was developed as student project at the
Universität Stuttgart. We were able to implement our scheme
with only modest changes to the apps core architecture and
kept all of it’s previous functionality intact. The enhanced
version of our ToureNPlaner app is available on Google Play.
The most important additional software component on the
client is a light weight graph data structure. Unlike typical
high performance graph representations as used in our server
(e.g. offset array based), this one has to cope with node/edge
id’s that are distributed over a large range, which makes it
impossible to use them as index into an array. This problem
is amplified by the fact that we need to keep the exact id
values, at least for the nodes, to be able to link them back
to the corresponding items on the server.
Therefore we used a hash based data structure so we can
address nodes by the same id as on the server, this also
enables us to transfer subsets of the server’s graph as
simple lists of the aforementioned triples. Building on this
principle we developed a graph representations that can be
initialized with the CORE. When running a request the client
then receives the additional graph data from the server and
augments it’s own graph with it. After a request the client
can easily discard parts or all of the augmentation.

IV. EXPERIMENTAL RESULTS

A. Road Network Data

Our experiments are based on the road network of Ger-
many extracted from publicly available OSM data. The
respective graph has 16, 271, 859 and 62, 062727 edges
(when augmented with CH shortcuts), as edge costs we used
travel times based on the respective road categories.

B. Throughput Analysis

1) Testing Environment: All measurements have been
performed on typical server hardware with relatively low
single core performance. We used a dual socket motherboard
with 16 GB RAM and two AMD Opteron 6128 with a total
of 16 cores clocked at 2.0 Ghz. On the software side we
used Arch Linux with Kernel version ≥ 3.6 and 64 bit Java
7 (OpenJDK 64-Bit Server VM build 23.2-b09).

2) Methodology: Unless otherwise noted all measure-
ments have been performed with a special testing client over
loopback networking on the same system. It uses the same
HTTP based interface as our Android prototype to issue
concurrent requests for randomly selected nodes of the graph
and acquires timing and throughput information.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
in

 R
e

q
s
/s

Threads

Scaling by Throughput

unbounded
Level 40
Level 60
Level 80

Level 100
Level 120

Shortest Path

Figure 2. DORC throughput dependent on different CORE parameters.

3) Measurements and Analysis: Figure 2 shows the per-
formance in requests per second of DORC while sending
Gup

s ∪ Gdown
t for each request and how it scales in the

number of threads. To put the data in perspective we also
show the current server side shortest path implementation as
a baseline. We see that even without making use of a CORE
graph, throughput is improved compared to pure server side
computation. For few cores, we also observe linear speed up,
using more than 4–5 cores does not pay off likely due to
the memory bandwidth becoming the bottleneck. Employing
a CORE graph yields considerably higher throughput, e.g.
when using a CORE graph above level 40, a single server
can handle close to 900 requests/second.

346

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 20 40 60 80 100 120

A
v
e

ra
g

e
 P

a
c
k
e

t
S

iz
e

 i
n

 K
B

T
h

ro
u

g
h

p
u

t
in

 R
e

q
u

e
s
ts

/s

Maximum Level

Level Dependence

size
throughput

Figure 3. Average result sizes and throughput with different level
parameters for the CORE graph; one single thread.

Figure 3 depicts (for one single thread) the correlation
of the size of the transmitted graphs and the throughput
versus the choice of the level parameter for the CORE graph.
As expected graph sizes increase dramatically with growing
level parameter whereas throughput improves drastically.

C. Client Side Performance

Finally we provide some performance data on the proto-
type Android client. As the capabilities of mobile devices
varies broadly, we can focus only on one device which we
consider ’standard’ by todays standards. Our measurements
were taken on a Galaxy Nexus with a 1.2 GHz ARM Cortex-
A9 processor running Android 4.0. Because the performance
on the client doesn’t impact the overall throughput, number
of serviceable clients or cost of the entire system it’s
performance matters mostly in terms of usability. If a mobile
app can compute and display a route fast enough to make it
feel right for the user there isn’t really any point in putting
much work into scraping of another millisecond.
The transfer of the CORE graph with level parameter 40
takes about 1.4 seconds (this has to be done only once!).
Adding the upwards and downwards graphs for source and
target takes another 115 milliseconds. The time for actual
Dijkstra computation on the augmented graph depends on
the distance of the path to be computed but was measured at
about 500 milliseconds for a cross-country path in Germany.

D. DORC for Privacy Preservation

How could a client user hide its position and intended
route of travel towards from server? A straightforward
strategy is to not only issue the single request he/she is
interested in, but let’s say additional k random source-target
requests. Then the server does not know which of the k+1
source-target pairs the user is actually interested in, e.g. for
k = 15 there are 16 possible routes the user might take.
The cost of achieving this ’16-fold privacy’ is the issuing

and computation of 16 route queries on the server. Using
our DORC scheme, we can do much better: additionally to
the true source s and target t the client chooses 3 additional
random sources and 3 additional random targets and queries
the server for the 4 up-graphs (down-graphs) associated with
the sources (targets). Upon delivery of the up-/down-graphs,
the server cannot tell which one of the 4× 4 = 16 source-
target-pairs the client is actually computing and following.
Hence using DORC the overhead compared to a single
source-target query to achieve 16-fold privacy, is only a
factor of 4. In general, by requesting κ-times more data from
the server, DORC can achieve a κ2-fold privacy, which for
the naive obfuscation strategy would require k = κ2-times
more queries to be solved by the server.

V. OUTLOOK

We have presented the DORC scheme which extends our
existing online route planner by a mechanism to distribute
the computation load amongst its requesting clients. DORC
not only leads to a considerable increase of throughput
on the server but also allows for more efficient ways of
obfuscating the clients’ routes of travel. While for ordinary
shortest/quickest paths the computational load on the client
was not a real issue, more complex queries like constrained
shortest paths, or travelling salesperson tours (as already
present in the purely-online version of our route planner) are
not computable on the client side in reasonable time without
negatively affecting the user experience. The current focus of
our work is the development of schemes to balance the work
of these computationally more challenging tasks between
clients and servers. Furthermore, changing traffic conditions
might require an update of the CORE subgraph which is
usually transmitted only once to the clients. We are currently
developing update strategies avoiding the full retransmission
of the CORE each time traffic conditions change.

ACKNOWLEDGEMENT

This work was partially supported by the Google Focused
Grant Program on Mathematical Optimization and Combi-
natorial Optimization in Europe.

REFERENCES

[1] R. Geisberger, P. Sanders, D. Schultes, and C. Vetter, “Exact
routing in large road networks using contraction hierarchies,”
Transportation Science, vol. 46, no. 3, pp. 388–404, 2012.

[2] E. W. Dijkstra, “A Note on Two Problems in Connexion with
Graphs,” Numerische Mathematik, vol. 1, no. 0029-599X, pp.
269–271, 1959.

[3] R. Gutman, “Reach-based routing: A new approach to shortest
path algorithms optimized for road networks,” in 6th Workshop
on Alg. Engineering and Experiments (ALENEX’04), 2004.

[4] H. Bast, S. Funke, and D. Matijevic, “Ultrafast Shortest-Path
Queries via Transit Nodes,” DIMACS Series in Discr. Math.
and Theor. Computer Science, vol. 74, pp. 175–192, 2009.

347

