
DiTON: Towards Facilitating Distributed
Transactions in Opportunistic Networks

Chance Eary, Mohan Kumar, and Gergely Zaruba
Dept. of Computer Science and Engineering

University of Texas at Arlington
chance.eary@mavs.uta.edu, mkumar@uta.edu, zaruba@uta.edu

Abstract—Opportunistic networks (ONs) exploit mobility of
wireless devices to route messages and distribute content inde-
pendent of fixed network infrastructure. An inherent property of
ONs is that the unpredictable mobility of devices results in brief
and intermittent connections between networked nodes. This
presents a challenge to implementing useful distributed system
paradigms, such as distributed transactions. Transactions are a
sequence of read and write operations that must be executed in
a reliable and coherent fashion, even in the presence of multiple
concurrent operations or process failures. Distributed transac-
tions require the participation of multiple processes utilizing data
available locally to collaborate with other processes.

In this work in progress paper, we outline the requirements
behind a novel cache-based mechanism for distributed transac-
tions in ONs. The requirements are defined with the expectation
that the proposed mechanism will be robust and energy efficient.

I. INTRODUCTION

In opportunistic networks, wireless mobile devices interact
with each other in a peer-to-peer fashion when they are within
communication range [1] [2]. Using onboard radios, mobile
devices can create temporary, point-to-point connections be-
tween themselves without the use of pre-existing networking
infrastructure (i.e., WiFi hotspots, cell phone towers, etc).
These connections present the opportunity for devices with
shared goals and interests to collaborate and exchange data
[3] [4].

Transactions define a sequence of actions that must be
completed as specified by their program, or aborted completely
with no changes to memory [5]. First introduced in [6],
transactions adhere to the ACID properties [7] to maintain
the most rigorous consistency of operations attainable:

• Atomic - a transaction must complete in an appropriate
way, or all effects of the transaction must be discarded;

• Consistent - a transaction takes the collective system from
one consistent state to another consistent state;

• Isolated - operations performed for transactions are free
from interference by operations being performed on be-
half of other concurrent clients; and,

• Durable - once a transaction has completed successfully,
all its effects are saved in permanent storage.

These properties ensure that writes to memory result in the
intended outcome, even while multiple concurrent operations
are being performed or when one of the participant processes
becomes unavailable (either through a process crash, network
disconnection, or other undesirable event).

Distributed transactions (simply called transactions in this
paper for brevity) are important techniques to allow multiple
processes, called participants, to collaborate operations on a
shared set of data over a network [8] [9]. In order for ONs to
enhance their utility beyond exchanges of content or routing
data, a variant of distributed transactions should be supported.
Such a variant could be used to support mobile commerce,
mobile auctions or e-medicine for example.

ONs provide a challenging environment for deploying trans-
actions. As devices within ONs are mobile, connections among
them are erratic and susceptible to being dropped with no
warning. Devices are assumed to have no knowledge about
when, or if, they will meet again to resume collaboration.
Functioning exclusively under the strict ACID properties may
be unfeasible in such an environment. Relaxing the ACID
properties, similar to previous work on transactions in mobile
ad hoc networks (MANETs), is still insufficient to support
distributed transactions due to complications resulting from
the completely erratic status of the network. For transactions
to be viable in ONs, additional capabilities are needed.

II. RELATED WORK

Transactions on distributed data have been an area of
investigation in computer science since the 1980’s [8] [9] [10].
While methods used in traditional distributed systems on wired
networks have very limited applicability here, recent work on
transactions in mobile ad hoc networks is worth considering
in the context of opportunistic networks.

Many of the mobile transaction (MT) models proposed for
deployment in MANETs assume the presence of both mobile
hosts (MHs), devices that move around their environment,
and fixed hosts (FHs), stationary devices often operating on
high-throughput wired networks. MANET transactions can be
broadly categorized as follows [11]:

1) Complete execution on FH - Here, MHs simply submit
their transactions to fixed hosts, which complete the
transaction and return the results;

2) Complete execution on MH - In this case the transaction
is entirely executed on a single mobile host. The MH is
assumed to have all the necessary data to complete the
operation independent of other devices;

3) Distributed execution between a MH and FHs - This
model allows for some operations to be performed on the

U.S. Government work not protected by U.S. copyright

Work in Progress session at PerCom 2013, San Diego (19 March 2013)

377



MH, with other resource-intensive operations performed
by available FHs;

4) Distributed execution among MHs - This scenario as-
sumes no availability of FHs to offload operations to,
leaving the mobile devices to perform transaction oper-
ations exclusively between themselves; and,

5) Distributed execution among MHs and FHs - This case
could be considered the “fully distributed” scenario,
where all available resources of the MANET are coop-
erating to complete MTs. This scenario is an extension
of Category 3.

Category 4 proves the most challenging. In this scenario
there are no fixed, dependable hosts or networks available for
mobile nodes to utilize and is the most closely related to the
opportunistic environment. Opportunistic networks increase
the difficulty of Category 4 by utilizing unpredictable peer-
to-peer connections created when other nodes are present in
their immediate vicinity. Connections are assumed to be short-
lived and nodes will have minimal ability to self-organize.

Extant schemes for transactions in MANETs are unsuitable
to ONs [12]. While existing schemes have the ability to recover
from node faults and link faults [12] [13] , loss of connectivity
among nodes (e.g., a partitioned network) is treated as a
failure [5]. In ONs, lack of end-to-end connectivity is expected
behavior and thus the challenges of Category 4 become more
significant.

The primary goal of our proposed work is to develop
improved transaction mechanisms that either tolerate delay
or mitigate effects of delay at additional cost. To the best
of our knowledge, we are the first to propose a mechanism
for distributed transactions in opportunistic networks. The
scheme presented in §III uses caching to mask disconnection
and delays. Our system of caching and resuming operations
after releasing mutual exclusion to shared objects is a novel
transaction methodology.

III. ARCHITECTURE

Our proposed architecture is specifically tailored to work
with the erratic connectivity inherent in opportunistic net-
works. Some details have been omitted due to space require-
ments.

In our system, each node assumes two roles:
1) Initiator - The node that initiated the transaction for con-

sumption by a local process. Any node in the network
can initiate a transaction; and,

2) Participant - Any node in the network that is partici-
pating in the sequence of read / write operations that
compose the transaction.

While schemes proposed thus far have not fully solved the
problems associated with distributed transactions exclusively
among MHs, existing techniques that relax ACID properties
but ensure high degrees of consistency can still be leveraged.

A. Relaxing ACID

The ACID properties were intended to work with poten-
tially faulty processes on relatively stable wired networks [7].

Mobile environments, especially ONs are not conducive to
satisfying the strict ACID properties.

While the goal of our system, as well as a number of
transaction systems developed for MANETs [11], is to attempt
to provide strongly consistent mobile transactions, in some
execution cases the consistency requirements must be relaxed
in order to provide any functionality at all. In order to
ensure transaction sustenance in such dynamic environment,
the initiator specifies the acceptable level of consistency prior
to starting the transaction. Based on the specifications, our
system allows the following outcomes:

• Abort - participant nodes will be informed of the accept-
able level of consistency required by the initiator. The
participants can determine if they can meet the required
specifications based on techniques discussed in §III-B. If
acceptable consistency cannot be met, the participant can
abort its portion of the transaction;

• Graceful degradation - if the initiator is prepared to
accept a lower degree of consistency for the transaction,
other participants can attempt to meet the decreased
standard or abort;

• Cost renegotiation - if the participants cannot achieve the
desired level of consistency specified, the participants and
the initiator renegotiate to meet consistency requirements
at additional cost. Cost is discussed in §III-C; or,

• Commit - if the strongest form of consistency is met by
participants of the transaction, the participants commit
the changes to permanent storage.

A dynamic system to accommodate varying levels of consis-
tency produced by a distributed transaction permits the system
to be flexible. The consumer’s needs will either be met to
within specification, or aborted with no changes to memory at
any participant.

B. Dependency Graphs

Nodes are assumed to know which pieces of distributed
data they will require when initiating a MT. Based on this
knowledge, a graph of dependencies is created to determine
which elements of distributed data need to be read and written
to complete the MT. This dependency graph is then shared
with participants, so that each participant knows its place in
the graph.

A node is assumed to have no a priori knowledge of future
connections. As a result, it cannot hold locks it initiated for
extended periods due to the following reasons:

• In the worst case, the departed node will never reappear
and the participant nodes will be deadlocked perma-
nently; or,

• In the preferred case, the node will reappear after a
brief period of time and resume operations. However, any
time spent waiting for the node to reconnect reduces the
potential for concurrency on the network and requires the
consumer to tolerate more delay.

In a concurrent environment, multiple transactions may be
in execution with new MTs being constantly initiated. New

378



A 

B 

write(item_1 @ B) 

write(item_1 ) 

read(item_2) 

read(item_2 @ B) 

C 

A 

B 

write(item_1 @ B) 

write(item_1 ) 

write(item_2) 

 [read(item_2)] 

read(item_2 @ B) 

C D 

write(item_2 @ B) 

A 

B 

write(item_1 @ B) 

write(item_1 ) 

read(item_2) 

read(item_2 @ B) 

C 

t1 
t2 t3 

Fig. 1: Example Dependency Graph

transactions must be allowed to proceed. We investigate three
issues related to transactions in ONs.

1) Conflicting Operations: A node may determine that it
needs to unlock an object to allow another transaction to
proceed before the waiting transaction has completed. In this
case, its portion of the dependency graph for the waiting MT
is cached. The dependency graph of the incoming transaction
is compared to the dependency graph of the waiting MT.
Should the incoming transaction require reads or writes to
objects locked by the waiting transaction, those objects can
be unlocked to permit the incoming transaction to proceed.

Once the incoming transaction has completed, the process
compares the dependency graphs of the completed transaction
and the waiting transaction. The node then determines what,
if any, operations can still be completed for the waiting
transaction, if and when the node carrying the objects required
for it reconnects to the network.

If conflicting operations are found (e.g., the completed trans-
action wrote to an object locked by the waiting transaction),
the node will know what relaxation in the ACID requirements
it can still adhere to. If the reduced ACID requirements meet
the specifications provided by the initiator, the transaction can
complete with the lowered requirements. Otherwise, the node
can abort.

Figure 1 illustrates the following scenario with participating
nodes A, B, C and D:

1) At time t1, A writes item 1 at B, and C reads item 2 at
B.

2) At t2, C disconnects from B before the working trans-
action is committed, and D connects to B. B unlocks
item 2 to allow Ds transaction to complete and caches
node Cs read operation. Cs previous read of item 2 is
now inconsistent.

3) At time t3, D completes its transaction and disconnects
from the network. C reconnects with B and attempts to

complete its piece of the transaction. B notes that the
cached operation for C can no longer be completed as
specified.

2) Heterogenous Consistency Requirements: As multiple
participants can initialize transactions concurrently, conflicting
consistency requirements may become an issue. For example,
one participant may require an object to be written to with as
high a consistency as possible, whereas another process can
tolerate weaker consistency on that object and elect to proceed
with loosened requirements. This would effectively result in
one participant starving as its consistency requirements are
repeatedly undercut by other processes operating on the data.

Dependency graphs can find these conflicting interests and
can thus provide a mechanism for participants to negotiate an
acceptable plan to share data. The following illustrate a subset
of acceptable results:

• Participants requiring stronger consistency incur addi-
tional cost (§III-C) to cover the expense necessary for all
participants operating on that data to adhere to stronger
consistency;

• Participants permitting weaker consistency incur addi-
tional cost to assist the participant requiring stronger
consistency to meet its consistency demands;

• Participants permitting weaker consistency proceed to
read and write to tentative versions (a copy of the most re-
cently committed version), while nodes requiring stronger
consistency can read from their committed versions only;
or,

• The participant requiring stronger consistency can parti-
tion the data necessary for its strong transaction and only
work to arrive at network-wide consistency at determined
intervals.

In order to reduce delay to consumers, dynamic methods
for managing different consistency requirements would be
an important aspect of making distributed transactions in

379



opportunistic networks useful.

C. Managing Cost

Any MT management scheme in ONs has to be tailored
to work without fixed infrastructure. However, if an initiator’s
requirements in consistency or time cannot be met by the ON,
it can elect to incur additional cost by attempting to access
pre-existing networks. This section discusses how costs are
managed.

1) Time: Opportunistic networks are only suitable to delay-
tolerant applications but systems should still attempt to com-
plete operations as quickly as possible. If the initiator has
not completed the transaction, or has not obtained the desired
level of consistency, the transaction can be resubmitted to the
network and tried again. Developing an algorithm to precisely
specify how much additional delay a consumer is prepared to
tolerate will be addressed in our oncoming work.

2) Monetary: While our system is tailored to work without
reliance on pre-existing network infrastructure, fixed wireless
networks are effectively omnipresent in the developed world.
These fixed networks often require monetary payment for their
use (e.g., paying for access to WiFi or utilizing a cell phone
network provided by a wireless data subscription).

If a MH desires a higher level of consistency and elects not
to incur additional delay, our system will attempt to accommo-
date it by utilizing existing networks with a technique termed
“consistency on demand.” The following important questions
will be answered by our future work when addressing issues
with regards to using pay-for-service FHs:

• Which networks are available to route data between MHs
and how can these networks be used while minimizing
cost?

• Which participant pays for the use of FHs?
– The node requesting stronger consistency pays for

everything; or,
– The additional cost is shared, either evenly or based

on a ratio negotiated by the participants.
• How are monetary costs balanced with time costs, if the

user is also prepared to wait in order to obtain the highest
consistency possible?

Our system will also consider the heterogeneous cost associ-
ated with different participants utilizing different connections.
For example, node A may be connected to node B with a free
Bluetooth connection, while node B is attached to node C with
a for-pay cellular data connection. Our system will balance
the applicable monetary considerations for all participants
and thus previous work with heterogeneous connections in
transaction systems for MANETs can be leveraged [11].

Attempting to dynamically utilize accessible connections
to the Internet will add flexibility in cases when users are
prepared to tolerate delays within an ON, but occasionally
desire more immediate results.

3) Energy: Energy is an important consideration in our
algorithms as mobile hosts are assumed to be battery powered.
An initiator electing to spend additional time reattempting an

aborted transaction results in the additional drain on the battery
of both the initiator and participants. An initiator attempting to
use fixed network infrastructure will also incur additional cost
on the battery, as using WiFi or cellular data networks requires
more energy than shorter-range radios such as Bluetooth.

Our algorithms for managing cost will balance energy
requirements with both time and monetary cost parameters.
Finding balance in cost will give the user the most optimal
results available and allow our system to suit as wide an
audience of end-users as possible.

IV. CONCLUSION

Opportunistic networks show interesting potential to use
mobile wireless devices to their maximum potential. While
ONs present a challenging networking environment, important
distributed system paradigms can still be employed. This
work proposes a system to facilitate distributed transactions
in opportunistic environments.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science
Foundation under grant CNS-0834493. Any opinions, findings,
and conclusions or recommendations expressed in this paper
are those of the author and do not necessarily reflect the views
of the National Science Foundation.

REFERENCES

[1] S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant network,”
SIGCOMM Comput. Commun. Rev., vol. 34, pp. 145 – 158, Aug. 2004.

[2] L. Pelusi, A. Passarella, and M. Conti, “Opportunistic networking: Data
forwarding in disconnected mobile ad hoc networks,” vol. 44, no. 11,
pp. 134 – 141, Nov. 2006.

[3] M. Conti and M. Kumar, “Opportunities in opportunistic computing,”
vol. 43, no. 1, pp. 42 – 50, Jan. 2010.

[4] C. Eary and M. Kumar, “Delay tolerant lazy release consistency for
distributed shared memory in opportunistic networks,” in World of
Wireless, Mobile and Multimedia Networks (WoWMoM), 2012 IEEE
International Symposium on a, Jun. 2012, pp. 1 –6.

[5] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed
Systems: Concepts and Design, 5 ed. Boston, MA, USA: Addison-
Wesley, 2012.

[6] B. Lampson, “Atomic transactions,” in Distributed systems: Architecture
and Implementation. Vol 105 of Lecture Notes in Computer Science,
vol. 2. Springer-Verlag, 1981, pp. 254 – 259.

[7] T. Harder and A. Reuter, “Principles of transaction-oriented database
recovery,” ACM Computer Surveys, vol. 15, no. 4, 1983.

[8] B. Liskov, “Distributed programming in argus,” Communications of the
ACM, vol. 31, no. 3, pp. 300–312, 1988.

[9] S. Shrivistava, G. Dixon, and G. Parrington, “An overview of the arjuna
distributed programming system,” IEEE Software, vol. 8, no. 1, pp. 66–
73, 1991.

[10] J. Mitchell and Dion, “A comparison of two network-based file servers,”
vol. 25, no. 4, pp. 233–245, 1982.

[11] P. Serrano-Alvarado, C. Roncancio, and M. Adiba, “A survey of mobile
transactions,” Distrib. Parallel Databases, vol. 16, no. 2, pp. 193 –230,
Sep. 2004.

[12] B. Ayari, A. Khelil, and N. Suri, “On the design of perturbation-resilient
atomic commit protocols for mobile transactions,” ACM Trans. Comput.
Syst., vol. 29, no. 3, pp. 7:1–7:36, Aug. 2011.

[13] ——, “Partac: A partition-tolerant atomic commit protocol for manets,”
in Mobile Data Management (MDM), 2010 Eleventh International
Conference on, May 2010, pp. 135 –144.

380


