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Abstract—The Quality of Information (QoI) can be evaluated
through the effect that the information will have on a system
which is of critical interest. Although QoI is often be discussed
in the context of sensor networks, this paper addresses QoI in
a new and important framework: the management of energy
distribution. We consider a system that combines constant
power generation by some conventional source, together with
renewable energy being generated and stored. The consumer
has some fixed contract with the conventional energy source and
obtains any excess needed energy from storage. We show that
imperfections in the interpretation or delivery of information
about the consumer’s instantaneous needs can lead to measurable
deficiencies in energy provisioning. The results are derived using
Energy Packet Networks which are a novel approach to modeling
energy systems based on queueing theory.

I. INTRODUCTION

Although we would like to think that the quality of the
information (QoI) we receive in our Information-Dense world
is high, one can actually argue that it is generally quite poor.
For instance, the bias placed by the political tendencies of
newspapers on the manner in which major news items are
presented in the press has been examined using database
theory [4]. Today most of the information that we receive via
the web represents the interests of the information providers,
rather than our own interests. Advertising via web auctions
[16] is fueling the choice of the information the web provides
to us, rather than our own needs and expectations. Advertising
and sensationalism influence the press and the media, and we
are surrounded by paid advertisements wherever we go.

Research publications are often influenced by the simpler
problems that we can solve, rather than by the questions that
we do not understand and need to address and by difficult
open problems. Higher education is increasingly based on a
substantial simplification, whether it is in the humanities or
in science and technology, so that students can be satisfied
into thinking that they understand the material. The high
cost of higher education means that language instruction for
foreign students is reduced to a purely operational level. The
instruction of students in foreign languages that they do not
fully understand means that instructors have to simplify the
content and impoverish their vocabulary, at the price of a
reduced quality of information. Even when language is not

a problem, because students have not mastered the language
of physics and mathematics, much of engineering education is
based on the use of operational identities, such as Ohm’s Law,
which ignore the actual physical processes that are involved.

In this paper we will address QoI in a novel context related
to energy management. With the advent of the Smart Grid,
the seamless interaction of energy production and distribution
with its control via computers and data networks is crucial.
By smart management of conventional (fossil and nuclear)
and renewable energy resources, together with energy storage
devices, as a function of instantaneous demand, it can reduce
the carbon imprint of energy and reduce the overcapacity of
the energy transport network. However such a system will be
increasingly sensitive to the QoI that it receives, as well as to
security risks that propagate through software and the Internet.

II. ENERGY PACKET NETWORKS

Energy markets are becoming evolving flexible with con-
sumers becoming able to select choose suppliers, while the
latter can dynamically select producers. Carbon takes also
provide incentives for renewable energy sources (RES) such
as wind and photovoltaic, and smart meters can provide
the facilities for fine grained management of energy supply
and demand where individual consumers can also become
suppliers of energy. The enabling technology in this area are
obviously data networks and distributed computer decision
systems [3], [7], and recent work has considered how such
networks can be optimised to save energy [23], [24]

The use of RES such as solar panels, wind power, tidal
flows, hydroelectric sources and geothermal power, come with
time variations which are unpredictable and can be aperiodic.
While more predictable characteristics are present at the
demand, one should also to a certain extent tune or schedule
the demand [19] to meet the supply, and forecasting demand
[6] using public data [20] has received considerable atten-
tion. To smooth out this interaction between dynamic supply
and demand, storage systems such as flywheels, batteries of
electric vehicles, the uninterruptible power supplies (UPS) of
data centres, compressed gas depots (GD), dams and water
towers (WT), can be used. Time varying ERS such as wind
[21] therefore encourage us to consider storage as a means to
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smooth the supply so as to fit demand [13], [26], [27], [28],
[30].

Energy Packets and the analogy between the flow of energy
in the electric grid, and of the flow of data in the Internet,
has been mentioned as early as 1998 [8] and a hardware
implementation of an ”power packet” on an indoor power
line is described in [34]. Recent ideas have proposed an
analogy between the smart grid and the Internet [22] while
the implementation of an indoor power distribution network
which is inspired from a data network is described in [31].

The concept of an Energy Packet Network (EPN) is inspired
by work on neural networks and queuing networks [9], [10]
that include both the flow of a commodity, in the present case
energy in discrete amounts or energy packets (EP), and its
storage and consumption, and it includes a packet network that
controls the energy flow, storage and allocation [32], [33]. An
EP is a pulse of power and is the basic energy unit of content
of such a packet by E, small enough to being at the smallest
energy needs of the consumer. When a consumer turns of a
switch to initiate an energy transfer to a device, we can think
of this as a download of a certain number of energy packets
from a an ”energy server”; in a complex energy network, this
download may be received from an energy ”buffer” (a storage
device) or from a generator. The actual choice of the location
from which energy is being received by the consumer may be
conducted in some distributed fashion that tries to optimize
the instantaneous price, the energy network load, the carbon
cost and environmental effect, the energy network losses,
and so on. Thus the EPN will actually action two networks
simultaneously: the energy network, and the data network
that includes the communications and distributed decisions
that create the desired effect. Thus an EPN is a fine-grained
energy generation, storage and distribution system based on
discrete EPs. At the bio-nano level we know that cells can
receive energy in the form of sugar molecules, while in digital
electronics an EP may be as small as an electron or hole.

An EPN is controlled by one or more Smart Energy Dis-
patching Centres (SEDCs) which use the consumers’ requests,
the storage centres’ and generators’ state, to optimise the
energy flows by making use of the energy sources, the existing
pricing policies, and satisfying the demand while minimising
peak flows. The SEDCs will be based on computer control
to make and dispatch decisions via a packet communication
network. The aggregate choices made regarding the energy
flows can be represented by via routing probabilities for EPs
that are modified to optimize system performance, and the
EPN also includes the flow, delay and losses of data packets
that are used to convey for information and control. While
data packets constitute the ”triggers” of the mathematical
G-network representation [10] of the EPN, the EPs are the
”ordinary customers” of the queuing network.

III. MATHEMATICAL REPRESENTATION OF AN EPN

The EPN has a set of energy energy units whose generation
rate is g(i, t) in EP/sec at time t, where g(i, t) ≤ GM(i) which
is its maximum generation rate. The energy sources are either

renewable, in which case i ∈ R, or they are conventionali ∈ C.
The system has a finite storage capacity S(j) for the j-th
ST. Each storage centre has an energy conversion efficiency
0 < L(j) < 1 at its input so that on average the arrival
of B′(j) energy packets to this ST results in the storage
of B(j) = L(j)B′(j) EPs and it will return energy from
storage with an efficiency j(j) . Furthermore, in addition
to its maximum energy storage capacity, it will also have a
maximum rate at which it can store energy, and an energy
loss or leakage rate so that if storage is not replenished, the
B(j) EPs that it contains will be depleted after some time. In
addition, a ST will deliver energy at some rate α(j, t) < D(j),
less than the maximum rate D(j) at which it can deliver
energy. The c-th energy consumer module (CM) C(c) has a
consumption rate of m(c, t) in EPs/sec at time t. Some CMs
may also store energy locally.

The CMs are connected to an energy distribution network
(EDN) represented by a graph, so that link (u,v) of the directed
graph represents a power line that has an energy transport
capacity C(u,v) which is the maximum amount of energy that
can be transferred instantaneously from node u to node v, and
an efficiency 0 < c(u, v) < 1 which is the fraction of energy
introduced into the link that actually reaches the destination.
The nodes of the EDN may be production nodes, CMs, or STs.
Each CM will send its energy requests to a Smart Dispatching
Centre (SDC) which keeps track of the energy needs and
requests in an area and assigns flows from the STs and EGs
to the CMs. The SDCs also requests the EGs (including EHs)
to replenish the STs. Since the system as a whole depends on
constant sensing, monitoring, communication and decision, the
computer servers and network equipment will also constantly
consume energy and this will be included in the model.

Therefore a queuing network analysis of the system can be
constructed having energy production, storage and consump-
tion. The energy flow probabilities are q(u, v), the fraction
of energy leaving node u which is directed towards node v,
while p(u, v) = q(u, v)c(u, v) is the probability than an EP
leaving u actually arrives at node v. Q(v, u) is the probability
that when node v consumes or dispatches energy to some other
node, then it requests energy from some node u. The renewable
energy sources (RES) are represented by Poisson flows and the
energy consumption of CMs is represented by exponentially
distributed random variables of parameter c(k) for the k-th
CM. As a result we will write equations that represent the
equilibrium behavior of the EPN using G-network theory, and
predict both the effective computation and communication
rates that result from the needs of the workload and from
energy availability at the CMs, and also the amount of energy
of different types (including RES) that is composed by the
system, the average amount stored, the average amount lost in
leakage and transport, and so on.

IV. INFORMATION QUALITY AND ENERGY PROVISIONING

The performance model we propose focuses on the energy
flows in the system and allows us to evaluate many of the
quantities of interest including the amount of energy being
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stored in each part of the EPN, the average flow of power
on each of the links of the transport network, the probability
that a request for power is not satisfied, and the average delay
between the time that a request is made until the instant at
which the power delivery begins. The model can also be used
to estimate the performance risks and enhancements offered
by an EPN in terms of performance measures of interest.
Since it incorporates both the power transport network and the
EPNs communication network, it can also be used to focus on
system failures which may occur because of failures in the
communication network.

As simple example, we will consider a system consisting
of a steady source of energy (e.g. a thermal or nuclear power
plant), a source of renewable energy, a storage system (e.g. a
dam), and a fast ramping source of energy that is called upon
when the energy needs exceed the available energy from the
steady source, the renewal energy and the storage system. An
imperfect packet communication network is used to inform the
different system units, and we use the possible loss of data in
the communication network to illustrate the effect of imperfect
QoI.

We consider a source of non-renewable (e.g. nuclear or
fossil) from which, the system we are considering, is contrac-
tually set to receive energy at a rate c units per unit time (e.g.
MWatts) which has been selected as a result of energy demand
forecasts and of the different system components, such as the
storage unit, the renewable energy supply, back-up fast ramp
energy devices which are available when all else fails.

A. Modeling the Power System as a G-Network

Due to other unpredictable needs, our system’s energy
demand is a random process which makes requests in excess
of this value c. The excess has a rate of D units per unit time.
A RES source (e.g. wind or phovoltaic) generates a random
supply of energy units at a rate λ which is placed in a storage
unit (e.g. a dam, compressed air storage unit, water tower,
battery) which can store at most S energy units (e.g. Giga-
Joules). The stored energy will be used when the demand
exceeds the fixed level c. The storage unit has a loss rate of
µ through leakage, but in addition, storage of the renewable
energy also results in the loss of a fraction of L of the
energy during the conversion (e.g. from electricity generated
by a renewable source to water that has been pumped into
a dam), while extraction of energy from storage also results
in a loss of a fraction l. The energy from storage cannot be
extracted at a rate grater than α since the storage unit (e.g,
a dam), has a generator whose maximum energy production
rate is α. Similarly, if the storage unit is a battery, it has a
maximum output current and a fixed voltage, which together
will determine the battery’s maximum output power. If the
storage unit is empty, then we can call upon a source of energy
(such as a gas turbine) that generates at rate β.

V. THE SYSTEM WITH PERFECT INFORMATION

We first consider the system we have described under
perfect conditions regarding tha available information, so that

every part of the system behaves correctly and instantaneously
based on other events in the system. The mathematical model
is based on an EPN, which is a novel queuing analysis of an
energy generation, storage and energy consumption system.

The EPN includes a queue QR which represents the storage
of the energy generated by the RES. It has Poisson arrivals
of rate (1 − L)λ, the effective arrival rate of EPs to the
energy storage centre, and its maximum storage capacity or
queue length is S. If the storage is full, the incoming flow of
renewable energy will ”spill over” and be lost.

Another queue QD with Poisson arrivals of rate D will
represent the unsatisfied demand. QD has Poisson arrivals f
rate D representing the energy demand, and has departures of
EPs which represent requests sent to the storage QS in the
form of ”negative customers” [10] each of which will in turn
deplete an EP from the storage to represent the satisfaction of
the request. Note that the conversion loss at the output of the
QS can also be represented via the probability l. When QS
is empty, then the fast ramp generator will turn on.

G-network theory leads to the following equations for the
stead-state probabilities Q and r, that QD and QS, respec-
tively, contain at least one unit of energy in demand for QD
or stored for QS. Let us first assume that S =∞. Then

Q =
D

rα(1− l) + (1− r)β
(1)

since when the storage is non-empty (probability r) the
demand will be served by the stored energy at rate α multiplied
by the probability that a conversion loss does not occur (1−l),
while if the storage is empty then the fast ramp generator will
be turned on and satisfy the demand at the rate β. If S = ∞
then the probability that the storage is non-empty is given by:

q =
λ(1− L)
Qα + µ

(2)

because the store is filled by the RES at rate λ(1−L) and it is
depleted by leakage at rate µ and by the energy demand at rate
Qα. Note that the fact that there may be a energy conversion
loss at the output of the storage unit does not reduce (quite to
the contrary) the rate at which the storage is depleted. If the
storage system has finite capacity, then we will have:

r = q
1− qS

1− qS+1
(3)

When the energy storage capacity is finite S < +∞, we can
also readily compute the spillover rate Λs of renewable energy
from r:

Λs = λqS 1− q

1− q(S+1)
(4)

Also, the average amount of stored energy for finite storage
capacity is given by:

Es =
q

1− q
− (S + 1)qS

1− q(S + 1)
(5)

If the storage unit has no leakage we will have µ = 0 and the
load factor for the RES storage centre is: ρ = λ(1− L)/α.
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Thus when the energy storage centre has unlimited capacity
and no leakage loss we obtain:

Q = min[1,
D

β
+

λ(1− L)
α

− λ(1− L)(1− l)
β

] (6)

q = min[1,
1

1 + α
β [ D

λ(1−L) − (1− l)]
(7)

with 0 ≤ Q ≤ 1, 0 ≤ q ≤ 1.
Thus a system that is set to operate at a satisfactory

operating point, should have Q ≈ 0 so that the excess demand
is always satisfied, and enough reserve q > 0 so that when
there is excess demand then there is also enough stored energy
so that demand can be rapidly satisfied. With an unbounded
storage and no leakage, the average stored energy is:

E =
β

α[ D
λ(1−L) − (1− l)]

(8)

provided that λ(1−L)(1−l) < D, i.e. when the effective rate
at which renewable energy is stored is just below the excess
demand. Thus for an energy demand rate d, the production
rate c has to be selected so that it is just set just below the
level needed c = d − λ(1 − L)(1 − l) − ε for a very small
ε to satisfy demand. The system then operates just below the
needed capacity.

VI. THE EFFECT OF POOR QOI

If the demand exceeds the set generation rate c, a message
will be sent to the energy storage centre requesting the transfer
of energy, and assume that the system has a fine grained
control process so that a message needs to be sent for each
successive EP that is needed from storage. If the message
is delayed this will affect the system. Even more so, if the
message is lost or misinterpreted with probability (1−p), this
will obviously affect the energy system. If the message does
arrive correctly, but the time delay between the instant when
the message was sent and the time when the power transfer
starts to be made at the storage centre is significant, then we
will observe a system disfunction.

A. The Effect of Delayed Information

If the energy storage centre is empty then the fast ramp-
up generator will also be turned on by sending a message
through the communication network with the same probability
of message loss and increased total delay for the generator to
start producing the required energy. The communication delays
will change the system’s performance so that the delayed
arrival of critical information by themselves modify α and
β into α′ and β′, respectively as follows:

1
α′ =

1
α

+
1
δ
,

1
β′ =

1
β

+
1
δ

(9)

so that

α′ = α
δ

α + δ
, β′ = β

δ

β + δ
, (10)

B. Delayed Information with Message Loss

However, if one deals with a message loss with probability
p, assuming that an application level end-to-end protocol is
used to authenticate arriving messages and then insure that in
the energy system that we consider any lost messages are re-
sent by the source and eventually received, the parameter δ
will be modified by the loss of messages as follows:

1
δ′

= (1− p)
1
δ

+ p[
1
δ′

+ R] (11)

In the above expression, R is some average delay that
elapses between the actual loss of a message and the instant
that the the source determines that the message has not been
correctly received and the message is retransmitted by the
source. Furthermore we can imagine that several losses may
occur until message is correctly received. Therefore we have:

1
δ′

=
1
δ

+ R
p

1− p
(12)

so that:
α′ = α

δ′

α + δ
, β′ = β

δ′

β + δ′
, (13)

This leads to:

Q′ =
D

[r′(α′(1− l) + (1− r′)β′]
(14)

and the storage system load factor is:

q′ =
λ(1− L)
Q′pα′ + µ

(15)

By placing α′ in the place of α and β′ instead of β in
all the expressions of Section V, we can estimate the effect
of communication message loss and the resulting computer
control system delay. For instance, the average value of the
stored energy when the energy storage centre has no leakage
loss and its capacity is unbounded, is given by:

E′ =
β′

α′[ D
λ(1−L) − (1− l)]

= E
δ′ + α

δ′ + β
(16)

so that the net effect of information delay and loss can be
studied directly from these expressions.

In particular, when δ′ >> α, β, i.e. when the communi-
cation delays are small despite possible message losses, we
have:

E′ ≈ E.[1 +
α− β

δ′
] (17)

so that depending on whether α > β or not, E′ will be larger
or smaller than E in the presence of communication delays
and possible message losses.

VII. CONCLUSIONS

While conventional sources of electrical power have relied
on the physical properties of the electric grid, where char-
acteristics of the network itself such as voltage, current will
signal back to the generators when additional power is needed,
modern systems rely increasingly on the information obtained
from metering at different levels, both to control power flows
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and to determine pricing. In this paper we have focused on
the effect that the Quality of Information related to metered
data will have on the adequate supply of power. Using an
example where an additional source of power together with
energy storage are used to compensate for random surges in
consumption, we have shown that the degree to which the
power network meets the needs of the consumers is directly
related to the precision with which the information regarding
power consumption can be correctly conveyed to the different
system elements. In future work we expect to address the
manner in which network attacks [12], [18] can impair the
fast adaptive management of energy systems. We also plan to
analyse the impact of the performance and quality of service of
data networks on the ability of the smart grid to meet the needs
of its customers. Future work will also examine how mutiple
distinct user classes [5], [9] with different energy needs can
together make the best use of smart network management,
and whether adaptive techniques initially designed for packet
network [17] can also be used to dispatch energy.

REFERENCES

[1] E. Gelenbe and R. R. Muntz “Probabilistic Models of Computer Systems
- Part I (Exact Results)”, Acta Informatica, 7: 35-60, 1976.

[2] E. Gelenbe ”Diffusion approximations, waiting times and batch arrivals”,
Acta Informatica, 12: 285-303, 1979.

[3] E. Gelenbe and K. C. Sevcik ”Analysis of update synchronization for
multiple copy data bases”, IEEE Transactions on Computers, vol. 28
no. 10, pp. 737-747, 1979.
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