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Abstract—In this article we expose a new field of application
of such a classical method of computational group theory as the
Sims’ algorithm. We introduce a symmetric block encryption
scheme based on a secret key which is a table of strong generators
of a permutation group. We discuss how the proposed scheme
can be adopted to be used as an authentication method.

I. INTRODUCTION

The aim of the current article is to introduce how strong gen-
erating sets of symmetric group Sn and the Sims’ algorithm[1]
can be used to design a symmetric-key encryption scheme for a
block cipher. We propose a scheme that uses strong generating
sets, given in the form of a table, as encryption key and the
cascade operation of the Sims’ algorithm (see Algorithm1)
in the decryption process. The input plaintext is divided into
blocks, each of size m, and each block is being encrypted
separately into a single permutation over n = 2m+1 elements.
The input string for decryption is a sequence of permutations
over n elements and the key is the above mentioned table. We
treat each permutation separately and recover a block of size
m from a single permutation.

At the first sight the proposed scheme has very low com-
putational complexity as it is based on simple permutation
multiplications and modulo operations on small numbers. The
need for cryptographic primitives with low computational
complexity is high in systems like wireless sensor network
for healthcare or military surveillances, where data security
and fast data delivery are crucial for providing a quality of
service. Security solutions for such systems must deal with
the trade-off between security and performance keeping in
mind low computational power of devices composing the
system (later is implied by the low cost requirements for
system components). Current cryptographic solutions, and
particularly the cryptographic primitives, are unsatisfactory for
such extreme resource-constrained systems, therefore there is
a growing body of work on lightweight cryptography [2], [3],
[4].

However the complexity analysis of the proposed scheme
and its comparison with the existing lightweight cryptographic
primitives is out of the scope of the present article and are left
for future consideration.

In section III we discuss how an authentication method can
be build based on the proposed scheme.

II. SYMMETRIC BLOCK CIPHER

In this section we present the proposed symmetric block
cipher after recalling some basic definitions from algebra that
can be found in many books such as [5], [6], [7].

A. Preliminaries

Definition 1: Subset S of a group G is a generating set of
G, if every element a ∈ G can be expressed as a combination
(under the group operation) of elements of subset S and their
inverses

a = xε11 x
ε2
2 . . . xεkk , xi ∈ S, εi ∈ {1,−1} , 1 ≤ i ≤ k

According to the above definition, it is possible to build
all the elements of a group by calculating all the possible
multiplications of elements of subset S. Of course this is
worth doing in case of finite groups only. Algorithmically the
presentation of a group as a generating set is not perfect as
it is not simple to build all the possible multiplications of
elements of set S, even if it is finite. Also the expression of
an element of a group by the elements of a generating set is
not unique and it is not possible to count the order of a group
by having its generating set. Another variant of a generating
set which does not have the above faults is a strong generating
set of a group, which plays a central role in our work. Strong
generating set for a group can be build by applying the Sims’
algorithm to a given generating set of a group. We give a
brief description of the Sims’ algorithm below. According to
Cayley’s Theorem; if G is a finite group with n elements, then
G is isomorphic to one of n-element subgroups of symmetric
group Sn. Therefore the algorithm description below is given
in terms of permutation groups.

1) Brief Description of Sims’ Algorithm: For building a
strong generating set of a group G ≤ Sn, Sims’ algorithm [1]
takes as input a generating set S of G. It stars with an empty
n × n table (Table I), where cells below the diagonal are
not used, all the diagonal cells contain the trivial permutation,
which maps any i into i, i = 1, . . . , n and the rest of the
cells are empty. Hereafter where we refer to a cell we mean
a cell over the diagonal. Sims’ algorithm repeatedly performs
an operation called cascade (Algorithm 1), which is being
applied to some permutation a when the table is partially filled
in i.e. some cells may have already contain a permutation.
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Algorithm 1 Cascade
1: procedure CASCADE(a, Tn×n) . Permutaion a and the table T of strong generators
2: Bn . Empty vector of permutations
3: b← a . Assign a to the current permutation b
4: for i = 1→ n do
5: if b(i) 6= i then . Check if b maps i into i
6: if T [i][b(i)] = null then . Check if the b(i)-th cell of the i-th row of the table T is empty
7: T [i][b(i)]← b . Update the empty cell
8: return T . Return the table
9: else

10: B[i]← T [i][b(i)]−1 . Update the vector containing the representation of a
11: b← T [i][b(i)]−1 · b . Update the current permutation
12: end if
13: end if
14: end for
15: return B . Return the representation of a
16: end procedure

TABLE I
THE EMPTY TABLE THE SIMS’ ALGORITHM STARTS WITH

1 2 3 . . . n
1 e
2 � e
3 � � e
... � � �

. . .
n � � � � e

Cascade either fills an empty cell of a table with the “correct”
permutation, i.e. the permutation in the cell with row number
i and column number j maps i into j, or goes through all
the rows of the table and gets a representation of a by the
permutations which are already in the table, by taking exactly
one permutation from each row (it can be a trivial permutation
for some rows). We give a detailed description of Cascade
operation later in Algorithm 1. The Sims’ algorithm has two
stages, during the first stage cascade is being applied to all
permutations from S. As a result some of the cells are assigned
a “correct” permutation. In the second stage cascade is applied
to all the pairs of permutations which have been filled in a table
during the first stage. After the second stage the algorithm is
done and the table contains a strong generating set of G. Each
element of G can be expressed as a multiplication of elements
of the resulting table by taking exactly one permutation from
each row starting from the first one. After building the table of
strong generators of G, representation of any element a ∈ G
can be achieved by applying cascade to a.

Definition 2: Generating set given by the output table of
the Sims’ algorithm is a strong generating set.

B. Encryption Key

Our encryption scheme is based on a secret key, which is
a n × n table of strong generators of symmetric group Sn
(as per Sims’ Algorithm). Each permutation in a table is over
n = 2m+1 elements, where m is the size of a input block to
encryption algorithm. All diagonal cells of the table contain

the trivial permutation e (i.e. e(i) = i, 1 ≤ i ≤ n, where p(i)
stands for the image of i under the permutation p).

Originally the cells of the table are filled by randomly
chosen permutations from the sets

Tij = {p ∈ Sn|p(k) = k, 1 ≤ k ≤ i− 1, p(i) = j}

where Tij contains all the permutations that can be assigned
to the cell with row and column numbers i and j respectively
(please note that we do not use the Sims’ Algorithm for key
generation). Obviously, this table is a strong generating set for
the symmetric group Sn, and any permutation over n elements
can be generated by the elements of this table. The cardinality
of a set Tij is (n − i)!, thus the number of possible tables
(keys) is

n−1∏
i=1

((n− i)!)(n−i) =
n−1∏
i=1

(i!)i (1)

C. Encryption Algorithm

The input for the proposed encryption algorithm is a binary
string divided into consecutive blocks consisting of m bytes1

and each block is being encrypted separately. We do not
use the last row of the table (key), as it contains the trivial
permutation only. Encryption of a block is done as follows. For
each byte of a block we fix two permutations from consecutive
rows of the table, one from each row. Formally we read the
first byte in a block and treat it as an unsigned integer, i.e. an
integer x1 such that 0 ≤ x1 ≤ 255. We compute

s1 = x1 mod (n− 1) + 2

where x1 mod (n− 1) stands for the remainder when x1 is
divided by n− 1. We have that 2 ≤ s1 ≤ n and we pick the

1Here we use a byte as a unit for simplicity, one can fix any number of
bits N , however this will change few parameters of the algorithm
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permutation that occupies the s1 − th cell in the first row of
the table. Then we compute

s2 = x1 mod (n− 2) + 3

and pick the permutation that occupies the s2−nd cell in the
second row of the table. Thus we fixed two permutations from
the first two rows of the table using the first byte of the input
block. We continue this way choosing two permutations for
each byte of the input block. For the kth byte xk we compute

s2k−1 = xk mod (n− 2k + 1) + 2k

to pick a permutation from the (2k − 1)th row and

s2k = xk mod (n− 2k) + 2k + 1

to pick a permutation from the 2kth row. As a result we fix
2m = n− 1 permutations by picking exactly one permutation
from each row of the table. We calculate the multiplication of
the fixed permutations starting from the first one and obtain
a single permutation, which is the output code for the block.
Thus the output code for the entire input string is a sequence
of permutations over n elements.

D. Decryption Algorithm

The input string for the decryption algorithm is a sequence
of permutations over n elements and the secret key is the table
described above. We take the permutations one by one and
perform the following action to recover the original bytes. One
block of m bytes is being recovered from one permutation.
We take the first permutation and apply cascade operation
of the Sims’ algorithm to obtain the representation of the
permutation by elements of the table (the key). Because the
presentation of an element by a strong generating set is unique,
we are guaranteed to get the same permutations that were
used during encryption. Thus, we find the cells that contain
the permutations returned by cascade, one permutation per
row. If s1 is the number of a cell in the first row and s2 is
the number of a cell in the second row then we recover the
first byte x1 using the Chinese reminders theorem; x1 is the
solution of the system{

x1 = (s1 − 2) mod (n− 1)

x1 = (s2 − 3) mod (n− 2)

As n−1 and n−2 are co-prime the Chinese reminder theorem
gives us the x1. All the solutions of the system differ by an
integer, which is a multiple of (n − 1)(n − 2) and we are
guaranteed that there is a solution in [0, 255] as per encryption
scheme. The next byte x2 is being obtained by the same way
from the third and fourth permutations. This time the system
is as follows {

x2 = (s3 − 4) mod (n− 3)

x2 = (s4 − 5) mod (n− 4)

the system for the kth byte is{
xk = (s2k−1 − 2k) mod (n− 2k + 1)

xk = (s2k − 2k − 1) mod (n− 2k)

and by Chinese reminder theorem2

xk =((s2k−1 − 2k)(n− 2k)[(n− 2k)−1]n−2k+1+

(s2k − 2k − 1)(n− 2k − 1)[(n− 2k − 1)−1]n−2k)

mod (n− 2k + 1)(n− 2k)

Thus, we recover initial m bytes one by one.

E. Analysis

1) Notes On The Implementation: The implementation of
the above scheme requires some accuracy and attention. One
should choose m in such a way as to reduce the redundancy as
much as possible and ensure the complete randomness of the
encryption table. One can use a table that does not generate
all the permutations over n elements, but a subgroup of a
symmetric group. On practice it would be better to use only a
part of the table, excluding some number of the lower rows of
the table, which have very few cells. However, these questions
are out of the scope of the present article, which has to expose
a new field of application of the Sims’ algorithm.
One can implement the scheme by choosing l > n = 2m+ 1
and using a l × l table that generates the symmetric group
Sl as encryption key. For encryption of a block of m bytes
2m rows can be chosen from the table randomly in such a
way that the indexes of two consecutive rows that are used
to encrypt the same byte of the block are co-prime to ensure
the correctness of decryption procedure. From the rows that
are not used for the encryption of the current block the trivial
permutation e will be chosen. This way the ciphertexts for
the same block of m byes encrypted with the same key in
different sessions may differ from each other, meanwhile the
cascade operation of decryption process will still point out
all the permutations that were used during encryption process
and the trivial permutation for unused rows.

2) Statistics: The fact that the output of the scheme is a
sequence of permutations leads to a very statistically uniform
string. Our tests showed that standard compression software
such as zip or rar fails to compress the output generated
by the scheme. Thus non-random patterns are missing in the
ciphertext and statistical analysis on the output of the scheme
will fail. It is also a good idea to compress the input string
first and then encrypt.

3) Ciphertext only attack: In a ciphertext only attack an
adversary has access to a set of ciphertexts and tries to
deduce the corresponding plaintexts or the encryption key
[8]. In a ciphertext only attack against proposed scheme
an adversary knows the size n of the encryption table and
possess a set of permutations P = {p1, ..., pk}. The attack
is considered successful if he finds the encryption key or the
cell numbers that were used for calculating permutations in P
(this will allow the attacker to perform the decryption process
of the scheme). All the tables/keys of the scheme are strong
generating sets of the symmetric group Sn which means that
all the tables can produce the set of permutations P with equal
probabilities and therefore they are indistinguishable, and there

2In the formula [a−1]b stands for multiplicative inverse of a modulo b.
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Algorithm 2 Encryption
1: procedure ENCRYPT(Xm, Tn×n) . Plaintext X and encryption table/key T
2: P ← e . Assign a trivial permutation to the current permutation P
3: for i = 1→ m do
4: s2i−1 ← xi mod (n− 2i+ 1) + 2i . Calculate the index of the first permutation for the i-th byte
5: s2i ← xi mod (n− 2i) + 2i+ 1 . Calculate the index of the second permutation for the i-th byte
6: P ← P · T [2i− 1][s2i−1] · T [2i][s2i] . Multiply the current permutation with the fixed permutations
7: end for
8: return P . Return the ciphertext
9: end procedure

Algorithm 3 Decryption
1: procedure DECRYPT(P, Tn×n) . Ciphertext P and encryption table/key T
2: Xm . Empty vector of bytes
3: Q2m . Empty vector of permutations
4: Q← Cascade(P, T ) . Perform cascade to get the representation of P
5: for i = 1→ m do
6: s2i−1 ← Lookup(Q[2i− 1]) . Find the index of the cell on the 2i− 1-th row containing the permutation Q[2i− 1]
7: s2i ← Lookup(Q[2i]) . Find the index of the cell on the 2i-th row containing the permutation Q[2i]
8: X[i]← ChineseTheorem(s2i−1, s2i, i, n) . Calculate the i-th byte of the plaintext
9: end for

10: return X . Return the plaintext
11: end procedure

is no way for an adversary to find the correct table among all
the possible tables (the number of tables is given by (1)).

4) Chosen plaintext attack: In a chosen plaintext attack
it is assumed that an adversary has a capability to choose
arbitrary plaintexts and get corresponding ciphertexts. The
goal of an adversary is to gain some information which reduces
the security of the scheme [8]. We discuss a scenario where an
adversary tries to deduce the encryptin table (or a part of it) by
choosing plaintexts and obtaining corresponding ciphertexts.
Instead of picking a random plaintext an adversary can fix
one cell on each row of the encryption table and choose
a plaintext X in way such that during the encryption of
X permutations located in the chosen cells will be used to
calculate the ciphertext P of X , i.e. an adversary can obtain
the product of permutations that are located in the cells of
his choice. Assume an adversary wants to obtain a product of
permutations located in the cells s1, ..., si, ..., s2m where si is
the index of a cell on the i-th row of the table. By picking the
k-th byte xk of the plaintext X = x1x2...xm in a way such
that {

s2k−1 = xk mod (n− 2k + 1) + 2k

s2k = xk mod (n− 2k) + 2k + 1
(2)

and obtaining the ciphertext of X an adversary will get a
permutation P = ys1 ...ys2m which is a product of permuta-
tions located in the cells s1, ..., s2m and adversary tries to find
ysi , i = 1, ...2m . The bytes of X can be calculated from (2)
with the help of Chinese reminder theorem.

Assume the adversary repeated the procedure of choosing a

plaintext described above l times and obtained the equations

P1 = y11 · y12 · . . . · y12m
P2 = y21 · y22 · . . . · y22m
· · ·
Pl = yl1 · yl2 · . . . · yl2m (3)

where yij is a variable that represents a permutation from the
j-th row of the table (for all i = 1, ..., l). For some i1, j and
i2, j the corresponding variables can be identical, i.e. yi1j =
yi2j if adversary wants so.

Having the family of equations (3) adversary can form a
system of this equations and try to find a single solution
which will give him the permutations used in the table. The
difficulties he faces is that the variables yij and the constants
Pk are from the symmetric group Sn which is a non-abelian
group and due to [9] the problem of finding a solution to a
system of equations consisting of such variables is NP-hard
problem. Note that a solution to a system is not enough as
the adversary needs to have such a set of equations so that a
single solution to the system exists.

It worth mentioning that if one uses an implementation of
the scheme with a bigger than n × n table (as discussed in
II-E1), then an adversary can not fix the cells of a table and
pick a corresponding plaintext that will be encrypted by the
use of permutations contained in the fixed cells as the rows
for an encryption session are picked randomly.

III. AUTHENTICATION SCHEME

Below we discuss how the proposed scheme can be used
to design an authentication method. Consider the parties
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A1, ..., Am and B, where users Ai, 1 ≤ i ≤ m want to
authenticate themselves at B. Initially B is given a table (or a
set of tables) that generate a subgroup of a symmetric group Sn
and users Ai are supplied by permutations of this subset. When
Ai wants to authenticate himself, he sends a permutation to
B that belongs to subset of B. The later performs cascade to
this permutation and verifies the decency of Ai. B may ask for
more than one permutation from Ai to prove its decency. The
attacker C that does not know the subset of B and does not
possess a permutation that belongs to the subset of B faces the
problem of guessing the subgroup assigned to B. Assuming C
knows the n his only strategy is to send a random permutation
(assuming B will not accept the identity element) to B in a
hope that it will belong to the subgroup of B. The probability
of success is ∼ m/n! where m is the order of B’s subgroup.
B may be given more than one subgroup and/or can ask for
more than one permutation to prove user’s decency (assuming
that B will not accept any permutation that is a combination of
already accepted permutations). Of course the parameters m,n
and subgroups of B should be chosen carefully to minimize
the probability of successful attacks.

IV. CONCLUSION AND FUTURE WORK

The current work aims to expose a new field of application
of such a classical method as Sims’ algorithm. We presented
a symmetric block encryption scheme that is based on strong
generating sets of permutation groups and we discussed how
the proposed scheme can be used for authentication pur-
poses. At the first sight our scheme has a low computational
complexity and we point out its complexity analysis and
comparison with the existing lightweight encryption schemes

as a future work. The formers are required in the systems with
low computational resources like RFIDs and wireless sensor
networks[10], [11].
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