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Abstract—Pervasive information consumers in open, loosely-
coupled systems, such as in Internet of Things and crowd-
sensing environment, will rely more and more often on streaming
information from sensory sources with whom they have only
ephemeral, transient relationships. In such settings, information
uncertainties arise as the trustworthiness of the sources and their
information become questionable. It is thus necessary to quantify
the quality of inferences made with such information to aid more
informed and effective decision making and action taking. One
of the aspects of trust assessment systems is to provide for such
quality metrics, however, these systems have been traditionally
applied in static situations. In this paper, we introduce TAF,
a trust assessment framework for streaming information that
leverages the rich toolkit of subjective logic operators to estimate
the quality of said inferences under information uncertainty. We
present the system architecture, describe its components and
provide some preliminary quality results for the framework.

I. INTRODUCTION

Pervasive sensory systems are deployed to collect informa-

tion whose analysis, processing, and fusion with other (back-

ground or not) information provides awareness to situations of

interest. Expressed in the form of hypotheses, these situations

of interest may range from simple (e.g., is it snowing?)

to elaborate (e.g., are terrorist groups colluding to launch

coordinated attacks at multiple locations?), and anything in

between (e.g., does patient A show signs of deteriorating

health, or is there a friend from the high-school years in the

vicinity?). Making use of the information collected, analysts
(humans or software agents) conclude (i.e., make inferences)

in favor or against these hypotheses and drive subsequent

decisions and actions in response to these inferences.

In order to make more informed decisions and take more

prudent actions, the quality of the inferences made needs to

be assessed and communicated appropriately. Specifically,

based on the quality of information (QoI) attributes [1] of

the information collected there is a need to assess the level

of trust that can be placed on the inferences made using this
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information so that subsequent decisions are reflective of the

uncertainties that may arise. The necessity of such inference

assessments will further increase as the information collection

and processing systems become more open and loosely-

coupled, such as in Internet of Things (IoT), participatory-

sensing, and other smart pervasive applications [2], [3], [4].

In this paper we further our initial work in [4], where we

had defined trust as representing the degree of belief that an

information consumer has that she can rely on the information

that a provider has provided her; we also touched upon the

concept of quality of inference (QoInf) [5] . Specifically, in

this paper, using the former definition as a point of departure,

we consider the QoInf of the inferences that could be made

by an analyst analyzing the incoming streams of information

reported by multiple sources of varying degrees of trust.

Investigating trust assessment over streaming data intro-

duces new challenges and runtime design options (such as

trade-offs between quality and latency) not encountered when

dealing with trust assessment schemes typically considered in

the literature (see next Section), which primarily deal with

static and quasi-static data. In assessing trust with streaming

information, the contributions in this paper are:

• The introduction of TAF, a trust assessment framework

for streaming information with uncertainties;

• The use in TAF of subjective logic opinions and operators

as measures of trust and QoInf based on the incoming

information; and

• An evaluation of related design trade-offs for a set of

hypotheses, source, and information report models.

This is an early work on this novel subject and the above

contributions reflect initial developments in the related topics

establishing the research area and presenting some preliminary

results. We note here that in our current work, we leverage the

power of subjective logic to represent trust and compute QoInf.

We will discuss subjective logic more later in the paper.

The paper is organized as follows: Section II highlights

related work in the area. Section III highlights subjective

logic and pertinent terminology. Section IV introduces TAF,

our trust assessment framework, while Section VI presents

some preliminary performance results. Finally, we conclude

in Section VII with concluding remarks.
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II. RELATED WORK

There are several studies regarding trust computation

models on static data such as the eBay recommendation

system [6], Netflix movie ratings [7], EigenTrust [8],

PeerTrust [9], etc. In [10], a non-streaming truth finder

system attempts to assess the credibility of reported facts

in social sensing applications, by applying a maximum

likelihood estimator to information received from multiple

sources. The real-time nature of Twitter and how sensory

information (tweets) from multiple users (sensors) could be

used to detect events is investigated in [11] but there is no

consideration of trustworthiness. Trustworthiness of streaming

data is considered in [12] but the emphasis is on trusting

the data based on consistency expectations for the purpose

of enforcing confidence policies in data-stream management

systems with no consideration of subsequent inferences.

III. SUBJECTIVE LOGIC PRIMER

We start with a brief primer on subjective logic (SL) to

introduce the necessary terminology that is used later in the

paper. For more details about SL, see [13].

Reports received from multiple sources can be unreliable,

making it hard to extract precise information about the ob-

served phenomena. This introduces uncertainty in inferencing

which may impact subsequent decisions and, hence, needs to

be addressed in a principled manner. Subjective logic is a form

of probabilistic logic, extending it to explicitly account for

uncertainty in opinions formed based on using evidences (the

report content) received from sources. Specifically, an opinion

ωx
h regarding a proposition (i.e., a hypothesis) h is a statement

about the degree of belief (bxh), disbelief (dxh), and uncertainty

(ux
h) about the validity of h held by the opinion owner x, where

bxh + dxh + ux
h = 1. In the special case of binary hypotheses

spaces (see next section), where there is concern only with

whether a hypotheses h is valid or not, we have corresponding

binomial opinions which can be represented in subjective logic

by the quadruple of nonnegative elements b, d, u, a:

ω =
(
b, d, u, a

)
, where: b+ d+ u = 1 and a ∈ [0, 1]. (1)

where we drop the x and h from the notation when these

are implied by the context. Note that disbelief represents the

level of belief in the negation of h and uncertainty represents

the level of ignorance regarding the validity of h. Finally, a,

called the base rate, represents the a priori probability about

the validity of h in the absence of any evidence.

SL provides an intuitive way to represent the belief an

entity has in another, and a way to aggregate evidence

to support such beliefs. Opinions about a hypothesis

can be mapped to a beta distribution representing the

distribution of the probability of the hypothesis to be true

based on evidences observed in support of or against the

hypothesis. SL provides a rich set of operators for combining

evidences and deriving corresponding opinions including

discounting, consensus, and conjunction. For

example, the discounting operator receives as inputs: (a)

the opinion ωy
e of agent y about a piece of evidence e (a report

s1 s2

si

sS analyst

s

rn(j+1)
rn(j)

rn(j-1)

rS(k)

Hypotheses
H = {h1, …,hN}
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rrrSSS )))(k)(k)(k)(k)rS(k)
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framework

streams of reports

r1(i+1)

r1(i)
r1(i-1)

Fig. 1. The system model.

in our case), and (b) the opinion ωx
y expressing the level of

trust that agent x has for agent y. It outputs ωx:y
e = ωx

y ⊗ ωy
e

expressing the opinion that agent x develops regarding

evidence e through his association with agent y, where

bx:ye = bxy b
y
e , dx:ye = bxy td

y
e , (2)

ux:y
e = dxy + ux

y + bxy u
y
e , ax:ye = aye .

The consensus operator fuses (independent) opinions about

a hypothesis, ωx�y
h = ωx

h⊕ωy
h, where (κ = ux

h+uy
h−ux

h u
y
h):

bx�yh =
bxh u

y
h + byh u

x
h

κ
, dx�yh =

dxh u
y
h + dyh u

x
h

κ
, (3)

ux�y
h =

ux
h u

y
h

κ
, ax�yh =

axh u
y
h + ayh u

x
h − (axh + ayh)u

x
h u

y
h

κ− ux
h u

y
h

,

We will use the discounting and consensus operators

later on in TAF for normalizing incoming reports; for more

on SL operators see [13].

IV. SYSTEM MODEL

Fig. 1 summarizes the general set-up under consideration

in this paper. It comprises an entity of interest (abstractly

noted as a region in the figure) for which an observer (the

analyst) wants to know (i.e., infer) if situations of concern

(the hypotheses) have occurred, and assess the quality of this

inference (QoInf). To aid her inference, the analyst collects

information reports that are streamed from multiple sensory

sources in the field capable of observing aspects of the

situation of interest. The sources may be owned by a number

of different organizations, and, as a result, the analyst treats

reports received from them with different levels of trust.

The purpose of TAF, our trust assessment framework, is

to aid the analyst’s inference process and the assessment of

QoInf. In the rest of this section, we present the key aspects

of the set-up in the figure, and then TAF will be presented in

the next section.

A. The hypothesis model

The analyst collects sensory information to ascertain the va-

lidity of a hypothesis h ∈ H, e.g., h = “snowfall at location l,
at time t.” We assume that h can be described by a finite set of

sub-events (also referred to as event features) {fe
1 , f

e
2 , . . . , f

e
n},

where the fe
i ’s are assumed as perceivable and measurable. For
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example, a snowfall event may be described by sub-events

such as temperature, precipitation, etc. Information

about such features describing an event can be derived from a

knowledge base. Generally, the various hypotheses in H could

be regarded as a set of (possibly) contending hypotheses, with

overlapping sets of features. In this paper, we consider a simple

binary hypothesis set H comprising a hypothesis h and its

negation (the null hypothesis).

B. The report model

As previously stated, an analyst in her assessment of the

validity of a hypothesis h is aided by a stream of reports

r1, r2, r3, . . . coming from a collection of sources S . A report

is annotated with attributes, including time, location, event,
and source, that aid in associating it with a specific hypothesis.

Furthermore, a report from a source s is assumed to contain

the source’s opinion (as defined in SL) ωs
fe
i

about the event

feature fe
i of h.

C. The source model

The analyst makes inferences about hypotheses based on

reports that she receives from a set S of sources having varying

degrees of trustworthiness. Information sources are described

by a set of observable features {fs
1 , f

s
2 , . . . , f

s
l }, which could

be used to infer their pattern of behavior. We take as a working

assumption, that there may be some correlation between source

features and source behaviors. For instance, features such as

ownership, expertise, location, etc., may influence the way a

source behaves in a particular context. Here we take source

behavior to mean the kind of report or opinion they provide.

With TAF, we exploit such correlations to enhance our

situational assessment. In particular, TAF employs the diversity
model described in [14] to stratify the sources into a set G
of different groups according to their perceived similarity in

features and behavior. The diversity model defines a function

that maps all known sources in the system to a set of groups

by exploiting their features and past reports. The analyst x
maintains an opinion about the reliability of each group g ∈ G,

and uses this to determine the confidence placed on reports

obtained from members belonging to the different groups. For

example, the analyst may have learned over time that sources

such as sensors with feature battery:Low typically provide

unreliable opinions about an event, and therefore groups all

such sources, and subsequently exploits this model in future

encounters with members of the group. For more details on

group formation based on the diversifying of sources, see [14].

1) The source reporting behavior: It is possible that

sources may report opinions about events they have observed

differently from their truly perceived opinion with the

intention to mislead, or report erroneously due to a partial

or imperfect knowledge of the environment. The ability of

the analyst to minimize the effect of unreliable reports on

her formed opinion about situations of concern would greatly

enhance the confidence in the system. For instance, the rate of

false alarms or undetected events could be greatly minimized

when unreliable reports do not influence the opinion formed

normalize

diversity 
model

source 
trust

KB

r-batch
processing

inference
& QoInf

information
sources

no

data

control

streams
of reports

assessment
runtime

KB: knowledge base
DE: domain expertise

runtime-scale feedback

transaction-verification-
scale feedback

enough
?

DE

source 
selection

output
yes

more 
input

r-batch: N=5

window window

jumping windowsreport arrivals

time

(a)

(b)

Fig. 2. (a) Trust Assessment Framework (TAF); and (b) Jumping window
operation.

about a hypothesis h. We will assume that sources are either

reliable providing truthful opinions about h, or unreliable
providing untruthful opinions instead. It is assumed that

sources belonging to the same group generally tend to

report in a similar way. Therefore, for a group that has been

identified as reliable, its members would also be expected

to provide reliable reports. However, it is also assumed that

group behavior is not 100% applicable to all sources in

the group, which introduces some further uncertainty in the

opinions maintained by the analyst about groups.

V. TRUST ASSESSMENT FRAMEWORK

The trust assessment framework (TAF) aids the analyst in

managing and processing the incoming streams of reports to

infer the validity of a hypothesis of concern as well as qualify

this inference (QoInf). TAF makes use of SL opinions and

operators to attain these.

Fig. 2(a) highlights the components of TAF. It comprises a

report processing part that outputs the desired inferences; this

is the lower part of the framework noted as the assessment
runtime. It also comprises a collection of management compo-

nents that adjust the operation of the assessment runtime based

on the reports received–the solid-line block noted as runtime-
scale feedback–and the correctness of the inferences made–the

dashed-line block noted as transaction-verification-scale feed-
back. These two management components operate at different

time scales, a faster one that reacts to reports collected at

runtime to adjust to operational assumptions made at runtime

and a slower one that reacts to operational assumptions that

persist at large (including the assumed models themselves).

More specifically, the framework operates on the reports

arriving from various sources as well as background knowl-

edge (noted in the figure as knowledge base KB) about the

assessed situation to form an opinion about the state of world.

The formed opinion is constantly updated as more evidence

is received about the assessed situation, until some stoppage

condition is met. In TAF, incoming reports are first filtered

out if they come from highly untrusted sources as may be
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indicated by the operational state of the source diversity model

(see Section IV-C) currently in effect. Subsequently, each ad-

mitted report is normalized (SL-discounting) based on current

knowledge about the reporting source, as well as knowledge

about the domain. Assessment can be made immediately with

an input report or done in batches. These two alternatives are

noted in the figure as r-batch processing, where an r-batch

represents the collection of reports processed at each stage

of the TAF inference making operations; an r-batch of size

N = 1 implies inferences are updated after each report.

In the batch mode, a number N of input reports is first

accumulated and assessment is made once on the accumulated

reports. We are currently considering r-batches formed by

(non-overlapping) jumping windows containing a fixed size

N of reports, see Fig. 2(b) where N = 5. During r-batch

processing, the reports within an r-batch are correlated with

each other in an attempt to assess the situation of interest.

We assume here that reports about the same physical property

should be highly correlated with each other. When this is

not the case, we may either infer a change in the underlying

process observed, or the presence of unreliable sources in the

set. However, we also recognize that sources may be correlated

in some manner based on their features. In this case, the

outcome of the information fusion may be wrongly skewed,

and therefore not reflect the ground truth. As mentioned in

Section IV-C, TAF tackles this issue by exploiting diversity

modeling, which stratifies sources in groups and reduces the

effect of overrated evidence supplied by similarly behaving

groups of sources by using only a subset of the sources thusly

identified. Finally, should the QoInf made using the evidence

in an r-batch is not sufficient, processing of additional input

may be required.

Next we describe how beliefs about hypotheses are updated

based on received streams of reports.

A. The inferencing process

Dealing with streaming information entails inferring which

of the hypotheses is active and updating the beliefs in them

continuously. Hence, in her attempt to infer the prevailing

hypothesis, an analyst will persistently be concerned with

either basing her inferences on the reports received thus far

or deferring the inferencing until additional evidences are

accumulated in hope of improving QoInf.

The inference mechanism in TAF comprises two stages: (a)

identifying when something of interest could have occurred,

signifying the possible change of the prevailing hypothesis;

and (b) determining the validity of such a change (the “infer-

ence”) and subsequently computing its QoInf. Due to space

limitations, we elaborate only the second stage. Regarding

the first stage, we state here that TAF currently uses the

information-theoretic Kullback-Leibler (KL) distance to deter-

mine whether the probability distribution of evidences in favor

or against the hypothesis gathered from a collection of reports

in one r-batch is significantly different from this distribution

in the following r-batch.

By identifying a possible change of the underlying system

dynamics, inference and trust assessment procedures could

be adjusted to reflect the current situation thereby avoiding

the use of stale information in these cases. Furthermore,

such identification may cause feedback in the system, where

for instance, the trust scores of reporting sources could be

updated based on their reports in the last processed r-batch,

see runtime-scale feedback in Fig. 2(a). However, due to the

fact that there is plenty of uncertainty in the system, e.g.,

sources in an r-batch may report erroneously, we may employ

additional steps in the process. For example, in the process of

computing the KL distance in a window, we may also consider

the trustworthiness of the sources reporting in the window.

We next describe the process of trust computation over r-

batches determined by the aforementioned jumping windows,

see Fig. 2(b), and the dynamic update of belief based on

reported opinions.

B. Trust computation over jumping windows

To fuse opinions from different sources and make inferences

based on the reports received, we use r-batches defined over

non-overlapping jumping windows containing N successive

reports from the incoming stream. For each such r-batch, TAF

uses the source diversity model and SL opinion operators to

conduct fusion of opinions based on the profiles of sources

for which reports have been received in the window.

Specifically, the reports from the sources are first partitioned

into different groups corresponding to the identified profiles of

the sources. Then the SL consensus operator is applied to

each of the groups in order to derive a consensus opinion for

the reports in each group. Then, the SL discount operator

is applied to the result obtained in each group to normalize

the derived group opinion. The normalized opinions from all

groups are then combined with each other using again the

SL consensus operator to obtain the overall opinion from

all the reports in the current window. This fusion approach

minimizes the adverse effect of unreliable sources that may

happen to be present in the majority in a given window.

One way of reaching an early estimate of the possibly

prevailing hypothesis would be to exploit the features of the di-

versity model. Assuming momentarily that all the sources in a

specific group were to maintain the same opinion over different

windows with very little uncertainty, we could easily converge

upon (i.e., reach) an inference earlier by exploiting domain

knowledge about the distribution of the sources in the system.

However, we recognize the fact that not all the sources in a

specific group might maintain the same opinion as their group

members. A possible cause of this might be in the accuracy of

the underlying diversity model. To this end, we apply the fol-

lowing steps. After deriving the consensus in a specific group,

we compare the belief b and disbelief d components of the de-

rived opinion to find out what the group’s view is about the sit-

uation. For instance, if b > d, then the group would be consid-

ered to maintain a belief in a hypothesis. Conversely, if d > b
the group would be taken to maintain a disbelief in this hypoth-

esis. Based on this observation, the analyst uses a different pa-
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rameter ωg,w to associate the level of uncertainty in the belief
of a group. This in a sense is a measure of the degree of confor-

mity to the group opinion by its members. If the uncertainty

is very high, then this might be an indication to recompute

the underlying diversity model. However, if the uncertainty is

observed to be very low in successive windows, the analyst

could use this to inform its decision on the accuracy of its

estimate. For example, assuming b > d in the derived group’s

opinion, ωg,w = (bg,w, dg,w, ug,w) is obtained as follows:

• bg,w: percentage of reports having b > d;

• ug,w: otherwise, i.e., ug,w = 1− bg,w.

As we are only concerned with how members of a group

conform to the group’s opinion, dg,w is set to zero.

It should be emphasized here that the ωg,w does not reflect

the belief an analyst has in a hypothesis. It only serves to

estimate the uncertainty involved in developing this belief

based on the sources seen reporting thus far. If the uncertainty

is sufficiently low between different windows, then this could

serve as a good estimate for predictions on the expectation of

reports yet to arrive in the stream.

VI. NUMERICAL RESULTS

Our evaluation focused on the effectiveness of TAF in

guiding the analyst in the decision making process. In

particular, we measure the robustness of the framework in the

presence of reports from unreliable sources who coordinated

in reporting. We also measure the trade-offs in the use of

different window sizes in the computation of trust and making

inferences about different hypotheses.

A. The simulation setup

Our simulation setup consists of information sources that

provide reports to the analyst in response to an event occurring

at a random time. We consider the binary hypothesis space of

whether or not the event occurred. The diversity model learns

the best way to stratify sources, such that sources reporting in

a similar manner are grouped together. The diversity model is

instantiated in an offline mode, but used in real time in TAF.

Sources provide reports based on the group or profile they are

identified with. The reports from each profile are modeled after

a truncated gaussian distribution with a reliability parameter

that specifies its mean, and a std parameter that specifies its

standard deviation. Based on this parameter, the SL opinion

which serves as a source’s opinion about an event is formed.

Each profile is also assigned a confProb parameter that spec-

ifies the conformity probability of a source to its group. The

system uses this parameter to select sources that do not con-

form to their profile behavior; these sources report randomly,

without any pattern whatsoever. The analyst maintains pro-
fOpinion, a personal opinion about the different profiles, which

is used as an a priori source trust to normalize the reports from

sources in each of the profiles, and updated over the system’s

lifetime. The system at each point maintains the percentage of

reliable and unreliable sources, and it does this by assigning

different proportions to the different profiles, based on their

reliability level. The trust assessment framework works in a

TABLE I
EXPERIMENTAL PARAMETERS

Parameter Test values
Number of information sources 1000
Fraction of unreliable sources (%) 10, 20, . . . , 100
Number of profiles 3 profiles: p1, p2, & p3
Profiles: reliability (reliability) p1 = 0.9, p2 = 0.2, p3 = 0.9
Profiles: standard deviation (std) 0.05
Profiles: conformity (confProb) 0.9
Window size (windowSize) 1, 10, 20, . . . , 100

window-based manner, and the parameter windowSize defines

the number of reports the system operates on at any given time

(i.e., the size of an r-batch). The eventThreshold is defined

and used by the KL distance algorithm to prompt the system

about underlying system evolution. The parameter list with

their default values is shown in Table I.

B. Robustness

We evaluated the robustness of the fusion scheme in the

presence of malicious sources. As indicated in Table I, we ran

test cases with the proportion of malicious sources increasing

from 10 to 100, and in each case we kept the window size

for which assessment is made fixed. We tested the robustness

of the fusion scheme by first normalizing reports received

in a given window by the trust of the reporting sources,

before carrying out fusion of the collective opinions, and

updating the belief of the analyst. We call this approach

the trustOnly approach. We compared the trustOnly approach

to diversity modeling, which takes the diversity among the

sources reporting in the stream into consideration before

carrying out fusion. The diversity model approach first carries

out a local fusion based on identified profiles of the reporting

sources before combining the (normalized) outcomes from the

different groups. The result shown in Fig. 3 illustrates the

performance of the different approaches with varying degrees

of unreliable sources. The belief and uncertainty of opinion

formed by the analyst is reported in each case; note b+u < 1.

At first glance, Fig. 3 seems to imply that the trustOnly
approach outperforms the diversity model approach when the

number of malicious sources are small. This is the case,

because trustOnly assumes independence among the reporting

sources, and therefore quickly converges on its uncertain

parameter when more reports are received. However, this

approach quickly falls over as more organized unreliable

reports are provided by the sources, which misleads the analyst

into settling towards the opposing hypothesis, when that is

actually false. However, the diversity model manages this

gracefully, because it uses the correlation among the sources to

guide its inference. When the proportion of unreliable sources

increases, instead of misleading the analyst, the approach

reflects this anomaly in the high level of uncertainty attached

to its opinion. This is an important and useful indicator, since

instead of taking a contrary action, the system could be driven

to seek further evidence to reduce the uncertainty. One way of

achieving this could be by adjusting the bound of the window

in real time to allow more reports to be assessed.

The 5th International Workshop on Information Quality and Quality of Service for Pervasive Computing 2013, San Diego (22 March
2013)

479



1u
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2b

2u

1: trustOnly
2: w/diversity
b: belief
u: uncertainty
windowSize: 10

% of unreliable sources

Fig. 3. Quality of inference (b&u) with increasingly unreliable sources.

belief (b)

Uncertainty (u)

windowSize N

Fig. 4. Quality of inference (b&u) with varying report window size.

C. Design trade-off

Next we studied the behavior of the system with different

windowSizes N used in the assessment and the initial results

are shown in Fig. 4. In each case the belief and uncertainty

maintained in an inference is shown. In the figure, there

is a clear distinction in the accuracy of estimate when

the windowSize parameter is less than 15. This could be

explained by the fact of the smaller number of pieces of

evidence (reports) available, making it challenging for the

inference engine to effectively make a good assessment of

the underlying situation. This changes as the window size

increases, and more reports are available to disambiguate the

uncertainty in the environment. However, opting for large

window sizes may still cause poor performance in cases

where the underlying environment changes rapidly, thus,

possibly having the system acting with stale information.

VII. CONCLUDING REMARKS

Trust assessment is expected to become an important com-

ponent in open, loosely-coupled pervasive environments such

as the Internet of Things, machine-to-machine systems, and

crowd-sensing. The information needed by these dynamically

evolving systems will be streamed by a number of sensory

sources of questionable and uncertain trustworthiness. As a re-

sult, inferences that are made using such information will be of

questionable and uncertain quality as well. For these environ-

ments, we have proposed TAF, a trust assessment framework,

which, unlike traditional trust assessment systems, operates on

dynamic, multi-class and multi-attribute source systems that

stream uncertain information to potential consumers.
The framework exploits the subjective logic toolkit of

operators to process opinionated reports about observed events

that give credence in favor or against situations (hypotheses)

of interest and quantify the quality of inference that can

be made. Instances of TAF also make use of the diversity

model of sources to discriminate sources in groups based

on their features and behavior. It then discounts and filters-

out seemingly unreliable or colluding sources to improve the

quality of derived inferences.
This is an early work in the area. Our study so far

has identified the key components of the trust assessment

framework and introduced the subjective-logic-based toolkit

to handle the computational aspects of trust assessment with

uncertain streaming information. In the course of our study,

we have also identified a number of issues that will need fur-

ther investigation. These include more extended performance

analysis, the consideration of dynamically adapting window

sizes at runtime, the study of the performance trade-offs with

respect to the windowing process, the system sensitivity to

the accuracy of the underlying models used, investigating

various stopping criteria to stop processing incoming reports

and inferring instead with regard to a hypothesis, and so on.
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