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Abstract—With the advent of wireless sensors and pervasive
environments, autonomic human activity recognition has re-
ceived substantial attention in research. In such environments,
many sensors are deployed on each object with the purpose to
collect sufficient data to recognize the activities of the object.
To perform activity recognition, low-level data streams from
the sensors are combined at the sink. A key challenge is
to recognize efficiently and with high accuracy the object’s
activities based on the low-level sensor data. However, there
is a trade-off between high accuracy and efficiency, caused by
the cost of delivering data samples from sensors to the sink.
The challenge is to determine sampling rates that satisfy the
required accuracy and minimizes the communication cost. We
formalize this problem of choosing sampling rates that satisfy
the required accuracy and minimize the communication cost.
We formalize this problem as an integer programming problem
and solve it by using Lagrangian relaxation with branch-and-
bound method. Evaluation results with a publicly available
dataset demonstrate the potential applicability of our approach.

Keywords-Quality of Information, Activity Recognition, En-
ergy Consumption.

I. INTRODUCTION

There has been a rising attention towards human activity
recognition using on body, object-placed or ambient sensors,
for application areas like health-care, assistive technolo-
gies, manufacturing or gaming. These applications apply
machine-learning techniques to classify signals gathered
from multiple sensors with different modalities. This re-
quires to process with high dimensional, noisy multimodal
streams of data with large variability caused by changes in
subject’s behavior. Therefore, several challenges arise at the
different processing stages ranging from feature selection,
classification, to decision fusion at a sink.

Due to the limitations of sensors, such as limited battery,
bandwidth, and measurement quality, the reported informa-
tion is usually a distorted version of the ground truth. To
estimate this distortion we use a metric, i.e. Quality of
Information (QoI), to measure the goodness of the high-
level activity recognition derived from low-level data streams
from the sensors. The inherent noise in the environment
can lead to insufficient QoI. Therefore, it is important to be

able to control the QoI. There are two basic approaches to
increase the QoI: (1) to increase the number of sensors: this
is likely to increase the QoI, and will never decrease it; (2) to
use different types of sensors which are sensitive to different
types of noise. However, pervasive systems are battery-
powered and the total energy consumption in these systems
is equal to the sum of the energy used for computation,
sensing, and communication. There is a trade-off between
energy consumption and QoI from the sensors. Therefore,
it is critically important to select for every sensing task
a set of sensors that minimizes the cost, yet satisfies the
user-specified QoI in a timely and efficient manner. The
accuracy is a function of not just a chosen sensor but also
the number of collected samples. Given the need to collect
information from sensors embedded in pervasive computing
environments, a promising approach to reduce the energy
usage of sensors relies on reducing the numbers of samples
collected at each sensor, or sending a reduced number of
samples to the sink. However, it is important to assure that
sending a reduced number of samples still leads to the
minimum required QoI.

To get more insight into the core idea of adapting the
number of samples to gain a user specified QoI, we con-
sider a concrete example of a system made for activity
and locomotion recognition in daily life: a person wakes
up, prepares and eats breakfast, cleans up the table and
dishes. Acceleration, gyroscope, ultrasonic and magnetic
field sensors are attached to the person’s body. These sen-
sors have different modalities and are concurrently used to
recognize an individual activity (e.g. getting up, breakfast
preparation, opening the drawer, fetching a bread) and a
mode of locomotion (e.g. walking, standing, running). If we
want the system to concurrently recognize locomotion with
90% accuracy and an individual activity with 80% accuracy,
we will find a solution with the specific number of samples
of data from each sensor to contribute to the final fusion. An
activity can be identified by the characteristics of the data
collected during the activity. The more samples collected
periodically, the higher the resolution of the data, which as
a consequence leads to higher accuracy of recognition. By
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increasing or decreasing the number of samples from each
sensor, the system can achieve the user specified QoI.

In this paper, we propose a model to control the QoI by
adapting the number of collected samples. Continuing our
previous work [1], we consider another aspect of system-
guaranteed QoI and make two main contributions. First,
we formalize the problem of collecting samples from se-
lected sensors in a way that satisfies the minimum QoI
of the concurrent activities. We formalize the problem in
terms of an integer-programming problem and solve it
using Lagrangian relaxation and branch–and–bound method.
Second, we develop and evaluate a practical method for the
calculation of the QoI function using the F-measure function
that maps the number of samples to the QoI for each sensor
and uses Bayesian formulation to fuse the total resulting QoI
of the achieved recognition. By using a publicly available
dataset [2], we show the applicability of our approach in a
practical demonstration.

The rest of the paper is organized as follows: Section II
defines the sampling and classification process, and proposes
a joint optimization problem. Section III describes our
Lagrangian relaxation and branch-and-bound algorithm to
solve the resulting integer-programming problem. Evaluation
is presented in Section IV. Section V reviews related work,
followed by the conclusion in Section VI.

II. PROBLEM FORMULATION

A. Sampling Rate and Sending Rate

Energy-efficient operation is critical in pervasive comput-
ing environments. For battery-powered sensors, the energy
consumption is determined by the amount of computation,
sensing and communication. Reducing energy consumption
at the sensors can be achieved through reducing the number
of samples collected at the sensors or sending a reduced
number of samples to the sink. We aim to determine the
minimum number of samples that must be sent to the sink
in order to achieve the minimum QoI. The sampling rate
defines the number of samples per unit of time taken from a
continuous signal to make a discrete signal. The maximum
sampling rate is determined by the A/D converter on the
sensor. We define the sending rate as the number of samples
sent by the sensor, out of 100 generated samples. We use
a mask for each 100 samples of data to determine which
samples will be sent to the sink. If the sink requires a higher
accuracy, it can increase the sending rates by pulling more
samples.

B. The Classification Process

We assume a model in which samples from different
sensors are transmitted to a sink. At the sink, features from
each data stream are extracted and fed into a classifier. We
propose to perform fusion at the decision level. This has
many advantages, such as having the same representation.
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Figure 1. Schematic representation of our classification process

At this level, the values from all sensor streams are prob-
ability values, and are therefore independent of the chosen
features and sensor data. At the other levels, the values are
inhomogeneous, originating from different types of sensors.
The schematic representation of our method is shown in
Figure 1. For classifiers, we can use any simple and standard
classification methods.

C. Sensor QoI Function and Sensor Fusion

The QoI provided by a sensor network is related to the
accuracy of the entire classifier process, from collecting
data to delivering the final result to the user. The higher
the accuracy, the higher the QoI provided. In the literature,
different metrics are used for QoI with respect to timeliness
and confidence. Bisdikian [3] analyzes the impact of signal
and system parameters on QoI, such as the sampling rate,
while Hossain et al. [4] propose to use certainty, accuracy,
timeliness and integrity as QoI attributes and model them
statistically. In our paper, the QoI at each sensor reflects the
recognition accuracy as a function of the sending rates. The
overall QoI is then computed from the sensor QoIs using a
Bayesian formulation.

1) Sensor Fusion: We fuse data streams from all selected
sensors to make the final decision. The overall QoI of
recognizing a specific acitivity is computed using a form
of Bayesian formulation [5], which is given as:

QoI(θ) =

∏
si∈θ qoi(si)∏

si∈θ qoi(si) +
∏
si∈θ (1− qoi(si))

(1)

with 0.5 ≤ qoi(si) ≤ 1

where θ is an arbitrary subset of the sensors. This formu-
lation assumes that the qoi of each sensor is statistically
independent of the others. It satisfies the key properties that
a QoI(.) function must have:

-The value of the function always falls between 0 and 1.
-By requiring that each qoi(si) ≥ 0.5, the function

increases monotonically, i.e., incorporating data from addi-
tional sensors does not decrease the QoI.

2) Sensor QoI Function: Let Rθ = {r1, r2, ..., rk} be
the collection of sending rates for a selected sensor subset
θ that is used for recognizing a single activity. The sending
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rates are required to be integers since they also represent the
numbers of samples in the mask, which need to be sent to the
sink. While finding a function that maps the sending samples
to QoI requires exponential time, some function forms have
proved to be more efficient in fitting inputs to outputs. In
our practical case, a QoI function for each individual sensor
si is represented by an inverse exponential distribution,

qoi(si) = αiexp(−
βi
ri
) (2)

where αi and βi are sensitivity constants for sensor si. The
constants are determined using curve fitting through the least
square regression technique. A larger αi indicates a higher
contribution from sensor si. In order to meet the restrictions
0.5 ≤ qoi(si) ≤ 1.0, each sending rate ri must be chosen
from an interval rmin ≤ r ≤ 100 where rmin can be found
using Equation 2 with qoi(si) = 0.5.

D. The Cost Model

The cost of recognizing a single activity depends on both
the sensor sending rate and the multi-hop transmission cost
from the sensor to the sink. We assume that this cost is a
linear function of the number of hops in the uplink path
from the sensor to the sink. The cumulative cost function of
the set of selected sensors θ is given by:

Costθ = γ
∑
si∈θ

hiri (3)

where γ is a scaling constant and hi is the hop count.

E. Joint optimization for concurrent activity detection

In pervasive environments, activity recognition needs to
support not only a single activity recognition but also a
multiple activity recognition with complex patterns, such as
consecutiveness and concurrency. Concurrent activities are
activities that happen at the same time, but are reported
potentially by different underlying sensors. We formulate
the simultaneous recognition of the activities as a multi-
objective optimization problem. Given a set of sensors θ,
the optimization problem is to choose the sending rate
values r1, r2,...,rθ such that, when used together to detect
the concurrent activities, we minimize the total cost while
ensuring the user-specified accuracy of QoI for each activity:
Cost(θ, ri), subject to: QoIj(θ) ≥ (QoIj)min with ri ∈

{(ri)min, 100} and ri are integers.
The above multiple-objective optimization of (θ, ri) is

applied to J concurrent activities, where j ∈ [1..J ]. There
are different sensitivity constant values αij and βij for each
sensor si and concurrent activity j. Given that QoI functions
for all sensors and all activities have the same form but with
different constant values, we get:

min γ
∑
si∈θ hiri, subject to for all j ∈ [1..J ],∏
si∈θ

αijexp(−
βij
ri

)∏
si∈θ

αijexp(−
βij
ri

)+
∏
si∈θ

(1−αijexp(−
βij
ri

))
≥ (QoIj)min

with ri ∈ {(ri)min, 100} and ri are integers.

III. PROPOSED METHOD

Our problem is an integer programming problem that is
classified as NP-complete [6]. To solve our problem we
use Lagrangian relaxations to obtain bounds in branch–and–
bound algorithms for integer programming.

A. Branch and Bound

The branch–and–bound algorithm is a divide and conquer
approach that dynamically constructs a search tree, each
node of which represents a sub-problem. We summarize
the steps of the branch–and–bound method for finding the
optimal integer solution as follows.

1) Find the optimal solution with the integer restrictions
relaxed with Lagrangian Relaxation.

2) Build a feasible solution tree. At the first node, the
lower bound is the relaxed solution Cost((rrelaxed)i)
and the upper bound is the rounded-up integer solution
Cost(d(rrelaxed)ie). The optimal integer solution will
be selected between these two bounds.

3) Create two new subsets to eliminate the fractional part
of the solution value. Two branches are produced at
the variable rlf with the lowest fractional part: one
for rlf ≤ b(rrelaxed)lfc and the other for rlf ≥
d(rrelaxed)lfe.

4) Solve the relaxed integer programming model as La-
grangian relaxation with the new constraints added at
each of these nodes.

5) The relaxed solution is the lower bound at each node,
and the existing minimum integer solution at any node
is the upper bound.

6) If the process produces a feasible integer solution with
the lowest lower bound value of any ending node, the
optimal integer solution has been reached. If a feasible
integer solution is not found, we branch from the node
with the lowest lower bound and repeat from step 3.

B. Lagrangian Relaxation

A standard approach for relaxing integer programming
problems is to omit the integrality restriction. In our case,
this means replacing the integer sending rates with real
values. Based on this we propose the following Lagrangian
Optimization problem for the steps 1 and 4:

minimize γ
∑
si∈θ

hiri+

J∑
j=1

λj

[ ∏
si∈θ αijexp(−

βij
ri

)∏
si∈θ αijexp(−

βij
ri

) +
∏
si∈θ (1− αijexp(−

βij
ri

))

− (QoIj)min

]
. (4)

To solve this we take the logarithm of each constraint and
take derivatives of the Lagrangian with respect to each ri
and λj .
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IV. EVALUATION

A. Experiments

To examine the validity of our approach and understand
the relationship between sending rates and QoI, we experi-
ment with an emulator that mimics the samples that a sensor
would have reported, given the trace and the sending rates.
The classification result is compared to the ground truth.
This trace-driven approach allows us to resemble real-world
evaluations in a controllable and reproducible manner.

For demonstrating our approach, we use the Opportunity
dataset [2] as the input for the emulator. The data was
recorded in a highly instrumented environment, including 72
sensors of 10 modalities in 15 wireless and wired networked
sensor systems while the subjects are performing morning
activities. We use a subset of 6 body-worn accelerometer
sensors in the lower part of the right upper arm (RUA ), the
left hand (LH), the right lower arm (RLA), the right upper
knee (RKNˆ), the left upper arm (LUA) and the right upper
arm (RUA) from the dataset, corresponding to 4 subjects.
The aim is to recognize the subjects’ gestures and modes of
locomotion.

We use Quadratic Discriminant Analysis (QDA) as a
supervised learning technique to train the classifier with data
that was manually labeled for modes of locomotion, gestures
and high-level activities. The data from three axes of each
sensor is fed to one classifier. Experiments are performed
using both the mean and the variance of the activity time
window. We tested our method on one of the four subjects
using 10-fold cross-validations.

B. Performance and Energy Consumption Measurement

The QoI can be evaluated by measuring the accuracy
of the classifier. There exist different ways to measure the
performance of activity recognition. The simplest is the
accuracy (i.e. correctly predicted samples/the total number of
samples), which is highly affected by the sample distribution
across activity classes. Alternatively, the F-measure, taking
into account the precision and recall for each class, can give
a better assessment of performance. Furthermore, to counter
the class imbalance, classes can be weighted according to
their sample proportion:

F1 =
∑
i

2wi
precisioni · recalli
precisioni + recalli

(5)

where i is the class index and wi is the proportion of samples
of class i: wi = ni/N . The ground truth for the measurement
comes from annotated activity labels provided by the dataset.

We evaluate the relationship between sending rates, QoI
and energy consumption. The power consumers of a sensor
node are mainly computing, sensor, and wireless modules.
Sample collection mainly affects power consumption of the
sensing and wireless modules, but in this paper we focus
on the power consumption of the wireless module, i.e.,

the sensor saves energy by sending a reduced number of
samples by request from the sink. If the sink needs more or
less samples, it will issue another request with an updated
sending rate. We consider for our experiment a general
one-hop Body Sensor Network with the star topology. We
calculate the total energy consumption E based on the
number of transmitted and received packets.

E = (BD +BH) · (NTX · PTX +NRX · PRX) · T (6)

where BD and BH are respectively the number of data and
header bits in a packet, NTX , NRX are the transmitted
and received numbers of packets, T is the bit time in
seconds (or the reversed data rate), PTX is the power of
the transmitter in mW , and PRX is the power of the
receiver in mW . In the dataset, the data was collected using
two wireless protocols: Bluetooth and Zigbee. Without loss
of generality, we calculate the energy consumption using
the Zigbee standard [7], which considers IEEE 802.15.4-
compatible transceivers operating at 2.4 GHz with a data
rate of 250 kbps, PTX = 35mW , PRX = 35mW , BD = 27
bytes and BH = 16 bytes.

C. QoI and Sensor Communication Overheads

First, we evaluate the trade-off between QoI, energy
consumption and sending rate. We use the emulator to
analyze two main tasks: an activity recognition (24 classes
of activities, e.g. Open Fridge, Close Door, Reach Cup...)
and a locomotion detection (Stand, Walk, Sit, Lie). Figures
2–4 show the power consumption and the corresponding
QoI for recognition of activities for different sending rates
for the accelerometer sensors in RKN , LH, LUA. The
results for sensors RLA, RKNˆand RUA are similar. As
figures demonstrate, in general there is a continuous increase
in accuracy and energy consumption as the sending rate
increases for all of the sensors. Table I shows the estimated
coefficients (αi and βi) for each sensor of Subject 1 in the
activity recognition task. The QoI functions fit quite well
to the data from the dataset. The total energy consumption
increases linearly as opposed to the nonlinear increase in
the QoI function. This suggests that as energy consumption
increases, the system will get a decreasing gain in accuracy.
For instance, for activity recognition at the sending rate of
20%, we get QoI of 60% instead of 70% for the sending
rate of 100% (Figure 3). We can conclude that if we want
to sacrifice 10% of accuracy, we can reduce the cost by 80%.

Figure 5 shows the corresponding values for locomotion
activity recognition for the sensor in LUA. The figure shows
that the data fluctuates slightly, but in general the data
follows the distribution function. Thus, we can use the
QoI function for the optimization in the next steps. The
coefficients (αi and βi) for locomotion recognition for each
sensor of Subject 1 are listed in Table II.
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D. QoI and Sensor Communication Overheads for Multiple
Subjects

We continue to investigate the trade-off between the
sending rate and QoI for the four subjects. Using a single
sensor, we focus on the sensitivity of the trade-off to
individual activity patterns. Using our emulator, we replayed
the four subjects with different activity recognition and
different sending rates. Figure 6 depicts the variation in the
communication overhead and the accuracy of the accelerom-
eter sensor in the RUA of the different subjects. There
are significant differences across the subjects. In particular,
Subject 2 has the lowest accuracy for his activity when using
an accelerometer on the RUA. The difference from the three
other subjects is about 20%. In conclusion, we can say that
the QoI highly depends on the personalization of the subject.

E. QoI and Sensor Overheads for Concurrent Activities

As mentioned, we have investigated QoI and Energy
Consumption versus sending rates for two main tasks: ac-
tivity recognition and modes of locomotion. We used our
optimization approach to find a set of sensors and their
sending rates to minimize the cost while maintaining a QoI
of at least the specified objective QoImin.

First, we use the optimization to find how many samples
each sensor has to contribute to the final fusion task of
the activity recognition. We notice that in order to guar-
antee that the QoI for each sensor is larger than 0.5, the
lower bounds for sampling rates are {7, 9, 7, 41, 17} for the
sensors {RUA , LH, RLA, RKNˆ, LUA} . In Figure 7,
we plot the minimum Energy Consumption for the activity
recognition for different values of QoImin. The total energy
consumption increases only marginally as QoImin increases
from 50% to 80%, and sharply increases as QoI increases
from 80% to 94%. This result also supports our previous
observation that if we are willing to sacrifice a small
amount of accuracy, we can get a large reduction in energy
consumption in return.

Second, we find the sending rates needed to recognize
the two tasks at the same time: activity recognition with
the sensor subset {RUA , LH, RLA, RKNˆ, LUA} and the
modes of locomotion with {RKNˆ, LUA}. As we see, the
tasks share two sensors. We use two different constraints
QoImin for locomotion and activity recognitions, with the
values 90% and 80% respectively. The optimization yielded
the sensor sending rates {18, 15, 18, 41, 19} which satisfy
QoIlocomotion = 97.82%, QoIactivities = 80.31% and
E = 5.6378 mJ . We conclude that our optimization
approach successfully calculates the optimal sending rates
while guaranteeing that the system can classify the different
concurrent activities with the required specific accuracies.

V. RELATED WORK

The trade-off between sensing and communicating over-
head and the quality of reconstructed data in wireless sensor

Sensor RUA LH RLA RKNˆ LUA
αi 68.9089 70.2952 72.6076 54.8727 62.5572
βi 1.9925 2.9803 2.5514 3.7677 3.7406

Table I
SENSITIVITY CONSTANTS OBTAINED BY CURVE FITTING FOR ACTIVITY

RECOGNITION

Sensor RKNˆ LUA
αi 92.2889 87.9588
βi 0.6511 0.7219

Table II
SENSITIVITY CONSTANTS OBTAINED BY CURVE FITTING FOR

LOCOMOTION RECOGNITION

networks has been widely studied in the literature, e.g.,
[8], [9]. We focus on the two most relevant works, i.e. the
relationship between the sampling rate and the accuracy of
detecting transient events [10], and the connection between
the quality of inference and the sensor’s tolerance range
[11]. These works and ours consider the trade-off between
sampling rates and QoI and try to leverage the QoI function
with sampling rates as input. However, [10] investigates
event detection and [11] context recognition, while we
investigate activity recognition. Zadehi et al. [10] suggested
to build a model to capture the accuracy of event detection
given a set of sensors. In contrast to this, we focus on
joint optimal determination of sampling rates from a sensor
subset. Roy et al. [11] deal with the quality of inference
with the tolerance range or precision of data value as inputs.
From our implementation experience, their work encounters
the problem of mapping tolerance ranges to QoI if they use
standard classification techniques. If it is necessary to pull
more data to provide a higher accuracy, the approach cannot
easily trace which samples were skipped. Our work does not
have this limitation.

VI. CONCLUSION

In this paper, we propose a model to control the QoI
by adapting the number of samples collected from sensors.
Based on this model, we minimize the communication
cost of collecting the samples from each sensor, while
guaranteeing that the user-specified QoI is achieved. We
formalize this as an integer programming problem and
solve it with branch–and–bound method with Lagrangian
relaxation. Using an exponential distribution function, we
formulate the QoI of each sensor as a function of its
sending rate. Evaluation with traces from a public dataset
demonstrates the significance of the trade-off between QoI
and communication cost, e.g., 10% reduced accuracy gives
80% reduced communication cost. Thus, a considerable
amount of energy can be saved by accepting marginally
lower accuracy.

In this work, we only consider the exact solution using
branch and bound. In future work, we will extend our
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Figure 2. QoI and Energy Consumption vs.
Sending Rates for Right Upper Arm Activity
Recognition (RUA )
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Figure 3. QoI and Energy Consumption vs.
Sending Rates for Left Hand Activity Recog-
nition (LH)
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Figure 4. QoI and Energy Consumption vs.
Sending Rates for Left Upper Arm Activity
Recognition (LUA)
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Figure 5. QoI and Energy Consumption vs.
Sending Rates for Left Upper Arm Locomotion
Recognition (LUA)
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Figure 6. QoI and Energy Consumption vs.
Sending Rates for Activity Recognition for
Multiple Subjects (RUA)
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Figure 7. Optimization of the Energy Con-
sumption for Different Objectives Qoimin

approach with an approximation solution which relaxes any
discreteness constraints on the sending rates and then rounds
the solution to get more efficient in computation. There
are also other open issues to solve, such as investigating
how sending rates influence a complex query that consists
of multiple predicates. These predicates include not only
concurrent activity predicates but also And, Or, consecutive
activity predicates. We will also investigate non-uniform
sampling for a single query with different accuracies for
different predicates.
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