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Abstract—Cyber-Physical-Human Systems (CPHS) combine
sensing, communication and control to obtain desirable outcomes
in physical environments for human beings, such as buildings or
vehicles. A particularly important application area is emergency
management. While recent work on the design and optimisation
of emergency management schemes has relied essentially on
discrete event simulation, which is challenged by the substantial
amount of programming or reprogramming of the simulation
tools, the scalability and the computing time needed to obtain
useful performance estimates, this paper proposes an approach
that offers fast estimates based on graph models and probability
models. We show that graph models can offer insight into the
critical areas in an emergency evacuaton and that they can
suggest locations where sensor systems are particularly important
and may require hardening. On the other hand, we also show that
analytical models based on queueing theory can provide useful
estimates of evacuation times and for routing optimisation. The
results are illustrated with regard to the evacuation of a three
story building.
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I. INTRODUCTION

Cyber-Physical-Human Systems (CPHS) offer interesting

perspectives for the comfort, health and safety of users [1]

with applications in building energy efficiency [2], [3] and

emergency management [4], [5]. While there has been exten-

sive research regarding guidance systems, routing algorithms

and efficient task assignment algorithms [6], the operation of

such systems in degraded conditions often associated with

emergencies is generally overlooked. Recent work [7] shows

that while a majority of sensors provide information of limited

value, only a few strategically located sensors will critically

affect the CPHS’ performance and the outcome of an evac-

uation. While relevant analytical methods based on linear

control exist to study systems in degraded conditions, and in

particular: reliability and robustness [8], [9], redundancy [10],

[11] and fault-tree analysis [12], these methods do not handle

the complex and emergent aspects of a CPHS.

On the other hand, much work in this area relies on exper-

iments with purpose-built simulators such as the Distributed

Building Evacuation Simulator (DBES) [13], [14] which pro-

vides an approach that is similar in many respects to traditional

tactical modeling and simulation in the military domain [15].

Work on the design and optimization of emergency manage-

ment schemes based on discrete event simulation [16] is faced

by the substantial amount of programming that is often needed

when existing simulation tools are applied to a new problem,

and by the scalability and large computing time needed to

obtain useful performance estimates in realistic environments.

Thus this paper proposes a complementary approach that offers

fast estimates based on queueing theoretic analytical models

[17], [18], [19] as well as graph models and algorithms. The

use of probability and analytical models in this context is

not new [20], [21], [22], [23] but for a variety of reasons,

including the large computational costs of the early closed

network (finite population) models, such models appear to

have been abandoned in this area for the last decade or

more. The approach we take here uses open models whose

computational needs are very low and where useful formulas,

for instance for average traverse times and throughput, can be

obtained very rapidly [17], [19]. Such probability models are

particularly useful in situations where there is a substantial

amount of uncertainty [24], while graph models are useful

when there is a substantial amount of topological structure

such as the rooms, corridors, staircases in a building, or when

area related information will remain fixed for long periods of

time.

Combining the probability models for human movement

and congestion with graph theory for locations offers a way

forward to deal efficiently with the large and realistic rep-

resentations that are needed in CPHS. Our work suggests

that analytical models based on queueing theory can provide

fast estimates for the location of points of congestion, for

estimating the sensitivity of outcomes to the presence of

hazards in particular areas, and for routing optimization.

To illustrate the use of these approaches, we examine an

emergency evacuation of a three story building. The graph

models allow us to identify sensors that are particularly critical

and that would benefit from being hardened. The probability

model predictions are useful in estimating the evacuation times

and points of congestions and provide a basis to compare

results with simulations.
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II. GRAPH BASED CRITICAL SENSOR ASSESSMENT

In this section we show how graph theory can be used to

offer a rapid assessment of the critical locations for placing

sensors which will provide the high-value information during

an emergency evacuation. The two algorithms we propose

rank locations by degree of criticality, and use only a priori

knowledge solely based on a graph theoretic analysis of the

connectivity in a building.

Algorithm 1 – Identifying the most disruptive fire outbreak

locations This algorithm is inspired by the definition of critical

nodes as nodes which, if removed, will cause the greatest

increase in the shortest distance between two other nodes

[25]. Our approach differs from this standard definition and

actually ranks all nodes based on the number of shortest exit

paths from nodes where evacuees can be found which become

disconnected when the particular node is unavailable. The

ranking metric is linked to the “disruptiveness” of a location,

since the evacuee’s instinctive behavior is to follow the shortest

path to the nearest exit. For instance, if a fire breaks out

at a highly ranked node then more evacuees would need re-

routing and advice. The algorithm first creates a reference map

that records the shortest exit path from every node. Then it

iteratively removes each node from the building graph – to

simulate an area blocked by fire – and finds a new set of

shortest paths and compares them with the initial one. Each

change in the updated path corresponds to a disrupted shortest

path and the corresponding ranking metric is incremented. This

algorithm is modified so that only nodes whose elimination

actually changes the exit point or staircase are considered.

Figure 1 illustrates the algorithm’s successive steps.

Algorithm 2 – Determining the Busiest Nodes during

an Evacuation Another definition of a critical node would

consider the most used or congested locations during an evacu-

ation as being the most critical. This algorithm iterates through

every possible departure point in the graph and increments the

ranking metric of each location visited along the shortest exit

path. Figure 2 is a graphical representation of its output.

Algorithm 1’s top-ranking nodes are scattered across the

building, covering corridor intersections or “bottlenecks” such

as staircases, and locations near the exits also achieve a high

rank. Algorithm 2’s top-ranking nodes are mostly found in the

vicinity of exits since the collection of all egress paths form

trees rooted at each exit, and the most visited locations are in

the trunk of each tree. Overall, the top five locations selected

by each algorithm are almost completely different, however

as the sample size is increased, the degree of overlap between

sets increases, as shown in Table I.

A. Improving the critical sensors

In fact, as we will see now, the algorithms presented in

this paper identify (through their locations) the most critical

sensors whose information is instrumental in devising the best

evacuation paths. Therefore the lifetime of such sensors in

Fig. 2. Graphical representation of the output of Algorithm 2, where line
thickness increases with visit count. Results shown for a subset of all building
locations

locations found in both sets

top 5 1
top 10 4
top 20 14

TABLE I
OVERLAP BETWEEN RESULTS OF BOTH ALGORITHMS

presence of an emergency (such as a fire) should be “hard-

ened”, e.g. by upgrading them with heat-resistant components,

or adding redundancy.

We will illustrate this by showing via simulation how

the proportion of successful evacuees increases when critical

sensors are hardened. In particular we identify the sensors

to be hardened using the top-ranked thirteen locations (out

of 240) identified by Algorithm 1 and 2, and the results are

given in Figure 3. Results are normalized against a best-case

scenario where all sensors are indestructible (green bars). A

worst-case scenario where all nodes fail under fire (red bars) is

also shown for comparative purposes. Both algorithms appear

to perform well with a slight advantage for Algorithm 2. This

can be explained by the fact that only seven locations out of

thirteen differ amongst the two sets. A detailed analysis of

the simulations also reveals that each algorithm may be best

suited for particular types of graphs:

• Algorithm 1 is most effective in intricate graphs fea-

turing staircases, corridors and partitioned space, where

an evacuation plan must be decided early based on the

designation of strategic areas.

• Algorithm 2 is best suited for open spaces, where bypass-

ing the fire is generally trivial and the critical decisions

relate to the availability of exits and how to approach

them.

The building graph which was used in this simulation happens

to be a blend of both types of spaces, which may explain why

neither of the algorithms has a clear advantage.
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Fig. 1. Algorithm 1: nodes with the same color will use the same floor exit. a. shows the reference map: no fire, b. shows a fire outbreak location which
will not modify anyone’s evacuation strategy, c. illustrates a fire outbreak location which will disrupt most normal evacuation patterns. The metric associated
with any fire outbreak point corresponds to the number of nodes whose color differs from the reference map (a.)
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Fig. 3. Graph-based algorithms’ result comparison

III. QUEUEING ANALYSIS

The queueing analysis techniques we suggest are based on

open models whose use is computationally very fast due to the

much simpler structure of their normalizing constants, whereas

earlier work focused on closed queueing network models [20].

We associate with each location L from which evacuees

may originate (e.g., a room in an office building) an “arrival

rate” λL of evacuees. Based on the set of evacuation paths,

and including possible probabilistic choices such as alternate

evacuation routes and egress points, it is straightforward to

compute for each significant node i in the building graph, the

total local arrival rates and paths going from L to i:

Λi =
∑

L

∑

π(L,i)

p(π(L, i))λL (1)

where p(π(L, i)) denotes the probability that an evacuee orig-

inating at L actually takes the path π(L, i). Each significant

section (i, j) has an associated average delay µij whose value

can change with the conditions in the building. For any edge,

the average traversal time will then include the congestion and

be given by [17]:

Wij =
µ−1
ij

1− ρij
(2)

where ρij =
Λi.pij

µij
and pij is the fraction of evacuees that

arrive at i and then take the section (i, j). The average traversal

time of a path, and the average evacuation time to any of

the exit points will then be obtained in a straightforward

manner by summing the appropriate traversal delays. The

relevant values of the ΛL for the duration of the evacuation

are computed by determining the estimate of the number of

potential evacuees at any given L and dividing by the time it

takes them on average to exit that node L (for instance the

time it will take five people to leave a given room).

The expression (2) is a steady-state value, which is equiv-

alent to assuming that the overall duration of an evacuation

is much longer than the time it takes to traverse any of

the individual sections of the graph model of the building.

Furthermore this formula is based on a Jackson network

representation [17] of steady-state which assumes Poisson

arrivals and exponential service times.

In order to compare the queuing analysis with the simula-

tor’s results, we use identical µij rates and the same building

graph. The set of L “source” nodes corresponds to the offices

where users tend to reside in normal conditions (i.e. when there

is no emergency) in the simulated environment. The π(L, i)
values guide the flow of users down the shortest path to the

nearest exit, similar to the evacuees in the simulation. Figure 4

shows the results of the queueing analysis and the simulation

results. The scatter plot shows the time taken to reach the

nearest exit (Y axis) based on the time at which a node on

the first-floor lobby (Fig. 4(a)) or at a second-floor hallway

intersection (Fig. 4(b)) is visited. The plot shows the output

of 10 iterations of simulations involving 120 building users,

with initial locations randomized at each run. Both scatter plots

clearly show a gradual increase in congestion at the beginning

of the evacuation, until the network reaches its saturation point
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and the evacuation times become somewhat steady. The red

line shows the corresponding steady-state node-to-exit delay

obtained by the queueing analysis.
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(a) First-floor lobby node
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(b) Second-floor hallway intersection

Fig. 4. Time needed to reach the exit based on the time at which the node
of interest was visited. The red line shows the steady-state value predicted by
the queueing network analysis

In the examples of Figure 4 we see that it leads to an

over-estimation (worst case) of the average traversal times

when compared to the simulation results. This is not surprising

because:

• (a) The simulation itself needs to build up to the steady-

state value which is far more congested than the initial

state (as seen in Figure 4) from a starting state when the

evacuation paths are empty, and

• (b) All of the section traversal times are assumed to be

deterministic in the simulation and this will yield shorter

average queueing delays.

Thus we suggest that such analytical models are particularly

useful for worst case estimation, which is very important in

the design and evaluation of emergency procedures.

The deterministic section traversal times in the simulation

are obviously optimistic because different people will actually

have different walking speeds, and furthermore the panic and

other (e.g. fire, smoke) conditions in an emergency will render

things far more random. Thus paradoxically, the analytical

model will actually provide a more accurate rendering of what

may be really happening during the latter parts (worst case) of

an emergency when congestion starts to occur and the behavior

of the various agents is far more random.

We also considered ranking the criticality of the nodes based

on their utilization (ρ) rates and compared this list with the

results of the graph-based methods presented in the previous

section. It appears that the same nodes appear in the top 10%

ranking list, however the precise order is different across all

three (two graph based and one queueing based) methods.

IV. CONCLUSIONS

In this paper, we suggest the use of analytical techniques

based on queueing network models and graph theory in order

to improve the planning of building evacuations. The graph

theory techniques that are proposed can be used to identify and

then selectively reinforce sensors covering the most critical

areas, and identify relatively few locations where hardened

sensors can allow us to approach near-optimal evacuation

performance. To this effect we have proposed two algorithms,

and both have been shown to provide the type of performance

improvements that were hoped.

In future work we propose to examine the use of adaptive

evacuee routing techniques [26], [27] that can help reach better

outcomes, together with probabilistic modeling techniques

[28]. Multiple class approaches [29], [30] will be needed to

represent and deal with the distinct mobility needs of different

categories of users, such as emergency personnel, normal

evacuees, or people who are hampered in their mobility or who

use wheelchairs. The synchronisation between different system

components will need to be studied [31]. In many such cases,

one would also need to develop augmented reality simulations

[32] that offer a more accurate representation of obstacles and

of realistic evacuation conditions.

We also plan to conduct additional simulations and exper-

imentation with such analytical techniques in the context of

different types of building topologies, with the objective to:

• Compare the performance of the graph-based algorithms

in either flat, open-space areas or intricate, multi-storey

buildings to validate the hypothesis that the algorithms

presented are better suited to some types of graphs.

• Devise more complex evacuation scenarios so that the

performance gap between optimal and realistic scenarios

is widened. The relative ease of evacuating the building

resulted in rather high performance in the worst-case

scenario, meaning that there is only limited scope for

improvement.

Future work on graph-based algorithms will also take into

consideration a realistic distribution of users in the building,

and let densely-populated nodes have a greater influence on the
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metrics. However, the distribution of users will rapidly change

throughout the simulation and it is unclear whether basing all

calculations on the density map at t=0 will lead to sustained

improvements. While providing a simple and effective method

to identify critical devices in a fire-monitoring sensor network,

the algorithms presented in this paper cannot handle cases

featuring multiple and simultaneous fire outbreaks, nor do

they account for fire expansion or evacuee movement and

congestion. Further research will aim at developing extensions

that address these issues.
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