
Improving Sensor Data Delivery During Disaster
Scenarios with Resilient Overlay Networks

Kyle E. Benson and Nalini Venkatasubramanian
Donald Bren School of Information and Computer Sciences

University of California, Irvine
Email: kebenson@ics.uci.edu, nalini@ics.uci.edu

Abstract—In this paper, we consider many-to-one communica-
tion, in particular Internet-connected sensors and their relation to
disaster response. We explore the application of resilient overlay
networks to aid these devices, or individuals if we consider
participatory sensing, in quickly and effectively routing around
geographically correlated failures in the underlying network
infrastructure, as would occur during a large-scale natural
disaster. We develop a formal model of this system, a heuristic for
choosing overlay paths without relying on any knowledge of the
underlying network infrastructure, and show its merit through
simulations using real Internet topologies.

I. INTRODUCTION

With the increasing availability and decreasing cost of
microelectromechanical systems (MEMS) sensors, several
projects have begun exploring the use of these devices in
Internet-connected distributed sensing efforts. The Quake-
Catcher Network [1] and Community Seismic Network [2]
utilize small inexpensive accelerometers attached to volun-
teers’ computers to monitor seismic activity. When they detect
abnormal ground motion, indicative of a possible seismic
event, these hosts report to a central server that processes
the information and determines if an earthquake has occurred.
Other such devices, whose information could help understand
regional impact of phenomena, include weather stations, pol-
lution detectors, and geiger counters [3].

We believe that the domain of disaster response could
benefit from the inputs of these community scale networked
sensors. Such sensor networks could potentially detect these
events’ onset and warn possibly affected individuals to find
shelter, as well as aid first responders through increased
situational awareness. However, network failures can severely
hamper these networks’ ability to gather useful information
in a timely manner, especially important for those aimed at
monitoring fast-moving destructive physical phenomena such
as earthquakes and floods. Such events often result in large-
scale geographically correlated failures in addition to serious
network congestion as individuals contact each other or request
help, exacerbating failures or tying up channels entirely.

Many previous projects have explored resilience to failures
in the Internet, although few have addressed large-scale ge-
ographically correlated failures. Most of these works aim to
formally model failures and identify strategies for designing
more reliable network infrastructure. For example, [4] stud-
ied regional failures by defining line segments that cut any
intersecting links in the graph representative of the network

R3 R1

R2

H3

Server

H4 H2

H1

R4

Internet

Fig. 1. An overlay routing example. Consider R1, R2, R3, and R4 are
routers. R1 (crossed out) has failed and host H1’s normal (shortest) path to
the server is unavailable. Instead, it can route through nearby nodes in the
order shown (R2, R4, H3, R4, R3, through the Internet and finally to the
server). H3 serves as an intermediary hop so that H1 can target a different
path along the underlying network, without the network knowing about it.

topology under consideration. Some of the most devastatingly
impacting link cuts possible in a particular network provider
were identified and categorized in [5] to aid in planning more
resilient networks. Both [6] and [7] discuss general challenges
to networked systems and discuss the proposed ResiliNets
framework, which aims to formalize the steps and strategies
involved in designing and maintaining more robust networks.

A. Resilient Overlay Networks

In this paper, we explore the creation and use of resilient
overlay networks (RONs) to address large-scale disasters and
the resultant failures that hamper sensor devices’, as well as
responders’, ability to deliver data over the Internet backbone.
Previous research [8], [9] has shown that these overlay net-
works can help route packets along alternative communication
paths when the primary one is damaged, unavailable, or simply
congested. This particularly helps while routing protocols still

978-1-6128-4937-9/13/$31.00 ©2013 IEEE

Third International Workshop on Pervasive Networks for Emergency Management 2013, San Diego (22 March 2013)

547

have not converged and established new end-to-end paths.
When a particular link becomes unavailable, whether due to

a physical failure or congestion, the network’s underlying rout-
ing protocols may take several minutes to find an alternative
route. Several case studies have identified serious problems
with routing over the Internet, such as [10] that discovered
several paths hopping to other continents unnecessarily after a
major earthquake in Taiwan. This paper also determined that
BGP policies significantly reduced Internet resilience due to
disallowing certain paths. Most visible failures were found
to not exceed 5-15 minutes in [9] and BGP route update
convergence was found to take up to 15 minutes after a fault
in [11]. During this time, some end-to-end connections may be
unavailable because certain paths are non-functional but others
may exist that the routing infrastructure is not yet aware of.

In RONs, routers try to find an alternative path when the
main one fails to deliver a packet, as shown in Figure 1. They
attempt to make contact with another node in the overlay
to see if that node is reachable and has a working path to
the desired destination. If it does, then the traffic is routed
through this intermediate node to the destination until a more
direct path becomes available or less congested. Adding this
level of intelligence to the routing infrastructure may incur
large amounts of additional complexity and cost, but it can
also be accomplished with simple end hosts in a peer-to-peer-
like fashion. Deploying end hosts for the specific purpose of
establishing a RON, or using those that are already part of
a distributed sensing effort for this purpose as well, could
possibly increase the reliability of a system without having to
modify any of the routers in the underlying physical network.

II. APPROACH

To lend focus to our work, we explored this problem in
the context of CSN [2]. In order to effectively identify and
categorize earthquakes in a timely manner, the small messages
sent by the seismic sensors, referred to as picks, must arrive at
the server for analysis within a few seconds at most, especially
if CSN is to be used as any sort of early warning system.
One expects possible disruptions of the telecommunications
infrastructure during a powerful seismic event and so this
scenario seemed a perfect application for our technique.

In this section, we describe our system’s formal model, our
design goals, and approaches to achieving them. Later, we will
describe how we extrapolated simulations from this design.

A. Model and Notation

Let G = (V,E) be the graph defining the network under
consideration, where V is the set of nodes representing routers
and end hosts and E is the set of undirected edges representing
physical links between two nodes. Let R be the set of regions
under consideration, f : V → R map each node to the region
it is located in, and CD ∈ C be the location of the disaster.
In this paper, we consider each region as a city and so f
assigns each v ∈ V to the city whose center is closest to the
location of v, which could be gleaned from GPS, IP address, or
user-specified data. Note that although these approaches may

not give perfectly accurate location information, the coarse
granularity of f means that they should reasonably suffice
for our purposes. Let S ∈ V be the server (sink) to which
each sensor node within RD attempts contact with during the
disaster. Therefore, if we let O ⊂ V be the nodes chosen for
the overlay network, then OD ⊂ O = {o ∈ O | f(o) = RD}
are the sensor nodes (RON clients) that report picks.

B. Failure Recovery

When some o1 ∈ OD has sensor data to report to S,
it first attempts a direct connection to S, but may detect a
possible failure in the network’s chosen path as evidenced by
a timeout. In response, o1 should try to connect via a working
alternative path through the overlay. Let P1 = (e1, e2, ...en)
be the sequence of edges along the path that the undelivered
message would normally take. The message should then travel
some path P2 = (e′1, e

′
2, ...e

′
m), P1 6= P2 instead to reach its

destination. In the case of an overlay, we have at least one
oi, which we generally refer to as o2 when discussing one-
overlay-hop connections, incident with some e′i, e

′
i+1 ∈ P2 to

aid in routing the message around the failed links in P1.
Note that ∃C ⊂ P1 ∪ P2 where C is a cycle. Indeed,

many previous works, such as [12], [13], identify cycles in a
network a priori to quickly establish alternate routes. However,
these approaches generally rely on complete knowledge of
the underlying network structure, as well as the failed link(s)
or node(s), because they targeted smaller internal networks.
Considering Internet-scale networks invalidates this assump-
tion as traceroute, the typical method of learning an external
network’s topology, provides somewhat unreliable data (due
to i.e. dynamically adapting paths, administrators obfuscating
internal nodes on a network, etc.) and so may not accurately
reflect the routes or failure location(s). Therefore, we aim to
identify heuristics for choosing overlay paths in this work.

While a timeout may not indicate a truly damaged path,
the packet may have been lost due to congestion or a poor
connection somewhere in the infrastructure. Therefore, it may
benefit o1, and others on the network as well, to try routing
around this path as an alternative may exhibit less latency and a
higher delivery ratio. This technique was proven quite effective
in [9], which found that “overlay networks can typically route
around 50% of failures.”

In the case of CSN, o1 could immediately send the pick to
some o2 ∈ O, o2 6= o1 and request that it be forwarded because
adding sensor data (less than 1KB) does not dramatically
increase the connection information request packet’s size. As
per the finding in [14] that the majority of end-host pairs can
establish paths with the same diversity in a single overlay hop
as in multiple hops, we only consider a single hop at this time.

C. Overlay Construction

To facilitate routing sensor readings (picks in our CSN
scenario) around network failures, we use end hosts with stable
(wired) Internet connections and ample power supplies as O.
We opt for this approach to avoid relying on Internet Service
Providers (ISPs) adopting and deploying new technologies. It

548

R2

H3

H4

H2

H1

Internet

R2

H5

H6

H7

Region 1 Region 2

Region 3

R2

H11 H9

H8R2

H12 H10

H13

Fig. 2. A network overlay. The dashed edges incident with the circled
node represent overlay connections. There are no direct physical connections
between these nodes, but they can reach each other through their respective
routers and the Internet with knowledge of each others’ IP addresses.

also opens the possibility to include more sophisticated func-
tionality, such as in-network processing of sensor readings,
in future renditions without overburdening systems that are
designed to route traffic at high rates.

Each oi ∈ O should scalably maintain information locally
about a subset of the other oj ∈ O | f(oi) = f(oj). Due to
the proximity of these nodes, they are more likely to maintain,
or quickly recover, connectivity during failures and so can
share the load of maintaining knowledge about the rest of the
network, sending this information to others when necessary.

In addition to this local knowledge, each oi must know
about some ok ∈ O | f(oi) 6= f(oj) to establish overlay
connections outside of the local area, like in Figure 2. When oi
contacts ok, the latter may also return information about some
other o′k | f(o′k) = f(ok) so as to provide an alternative in case
ok fails. This strategy resembles that used in the peer-to-peer
system Pastry [15], except that it uses the physical locations
of the nodes, f , to assign locations within the overlay.

In this manner, even if oi does not know of, or cannot
establish a connection with, any ok, it could contact one of
its neighbors o′i | f(o′i) = f(oi) that it does know in order
to hopefully learn about an ok, like how the shaded node in
Figure 2 could query its neighbors for the locations of other
nodes outside its area. Therefore, each o ∈ O shares the load
of storing each others’ addresses while still providing a quick
method for looking up an ok outside of the local region.

In our current simulations, we adopt a simplistic approach
of keeping full knowledge of O on each o ∈ O, which clearly
would not scale well in a real deployment, as opposed to only
maintaining a subset of O. As explained in [16], a scalable
method that ensures connectivity of the overlay with high
probability would be for each o to store information about
O(log(|O|)) other nodes. This paper discusses a technique for
establishing peer-to-peer connections based on locality, but did

not explicitly address geographically correlated failures. We
did not address the specifics of bootstrapping and maintaining
the overlay in this work and will do so in the future.

D. Route Selection

When requesting an overlay connection, o1 should consider
the location of o2 and the path between the two. If o1 knows
f(o2) and f(S) and has some idea of the spatial properties
of underlying network, it could choose a more stable overlay
path. One should note the possibility that P1 ∩ P2 6= φ, that
is, they share at least some edge. Choosing P2 to minimize
|P1∩P2| would likely decrease the probability of some failed
link or node being present in P2. Kim takes this approach in
[17], in which a node in the overlay considers the physical
distance between the routers along a path between two nodes.
Neighbors are chosen to have a lower path correlation than the
other candidates, thereby improving the likelihood of viable
alternative paths. This technique improves data dissemination
reliability during disaster scenarios, but it assumes complete
knowledge of the underlying network.

In this paper, we test a heuristic that only assumes knowl-
edge of the nodes’ physical locations. The Orthogonal Distant
Path Heuristic (ODP), depicted in Figure 3, maps each peer
o ∈ O to a point within a two-dimensional vector space, as
determined by the latitude and longitude of f(o). Let vr, vs, vo
be the vector locations of the reporting node o1, the server S,
and the chosen overlay peer o2, respectively. Let A be the
angle between the vectors vo − vr and vs − vo. Let D be
the minimum distance from vo to the line spanning between
vr and vs. When o1 detects a failure along the path to S, it
chooses the peer, o2, closest to vo such that A is as close to
orthogonal as possible. Furthermore, o2 is chosen such that
D is as close to ideal as possible, where the ideal distance is
that of an isosceles triangle with the vertices vr, vs, vo, where
vo satisfies the orthogonality described above. We define the
objective function of ODP as:

err(A)2 + err(D)2 (1)

where err(x) is the percent error of x from its ideal value.
When choosing an overlay path, ODP picks o2 to minimize
this function. Figure 3 explains our rationale for this heuristic.

III. EVALUATION METHODOLOGY

Due to security and privacy concerns, as well as the realistic
issue of powerful earthquakes fortunately occurring relatively
infrequently in the region covered by CSN, we opted to test
our design in a simulation environment first. We used the ns-3
[18] network simulator because its open source nature allowed
us to make extensive changes (described in the next section)
to the underlying system to fit our purposes.

A. ns-3 Changes and Additions

To generate realistic Internet topologies, we used ns-3’s
RocketfuelTopologyReader model that builds network topolo-
gies from the trace files compiled in the Rocketfuel [19]
project. This project mapped the nodes and links in several

549

R3
R1

R5

H3

Server

H4

H2

H1

R2

R4

R5
H5

R4

H6

L1

L2 L3

Fig. 3. When H1 tries to report data and finds its normal (shortest) path to the
server disrupted, it chooses H3 as an overlay peer. Because the angle between
lines L2 and L3 (A) is close to orthogonal and the minimum distance from
H3 to L1 (D) is large, the packet is more likely to find an alternate route and
not traverse portions of the normal path, which may be damaged or congested.
While D could be maximized to increase the probability of finding a different
path, this would actually decrease A and unnecessarily increase the latency.

Autonomous Systems (ASes), including some interconnections
between them. The biggest change made to ns-3 was expand-
ing upon this model, adding support for node locations for
the purpose of defining f . To map city names to latitude
and longitude coordinates, we used data from the GeoNames
database [20]. ns-3 currently cannot combine multiple ASes
in one simulation, but we intend to extend it in the future to
include this feature.

We encountered scalability issues when simulating very
large topologies (1000+ nodes) in ns-3 and so utilized the
known workaround of instead establishing routes on-demand
via NixVectorRouting and caching them [21]. We had to
modify this module to follow down links, which is how we
modeled failures in the network, as otherwise this method
would automatically route around them.

To further improve the speed of our simulations, we also
extended ns-3 to support running multiple simulations on the
same collections of objects. This allowed the simulator to
utilize more cached routes and not have to parse the topology
files and build the network in between each different run.

In addition to the above changes, we added an Applica-
tion model for RON clients and servers, including a packet
Header for storing information about the chosen overlay path
through which a packet should be routed. This enabled easy
installation of simulated RON overlay software on O and easy
manipulation of the parameters affecting their behavior for
testing different system designs. Whenever some o contacts
S, it replies with an acknowledgement (ACK) packet along
the same overlay path used to reach it.

B. Simulation Design

To evalute the effectiveness of using RONs for improving
Internet-connected sensors’ delivery ratios during large-scale

disasters, we chose a larger AS (Level 3, AS #3356) and
a large city (New York City). Here we describe the formal
structure of our simulation, including our failure model, and
the parameters that we defined.

From the network topologies, we choose each o ∈ O such
that degG(o) = 1. This lessens the possibility of choosing
backbone routers as end hosts are going to be connected to stub
routers within an AS, or at least to routers that link together
several local area networks (LANs). We install a RON client
application on each o ∈ O.
S is chosen at random from the nodes {s ∈ V | s /∈ O ∧

f(s) 6= RD} and a RON server application is installed on
it. We chose S as outside of the disaster region because we
assume that multiple servers might be available and that OD

are programmed to report to a server outside of their region
to prevent the data from being lost if S were to fail during
a disaster. In the context of CSN, each o′ ∈ OD reports to a
cloud-hosted server that is outside of California in an attempt
to ensure the data’s availability if a severe enough earthquake
were to partition the network.

To represent failures during a disaster, we randomly chose
(with some probability) nodes and links within RD to fail
before starting the simulation. Formally, we chose VF =
{v ∈ V | f(v) = RD} and EF = {e = (v1, v2) ∈ E |
f(v1) = RD ∨ f(v2) = RD}, where v1 and v2 are the nodes
connected by e and with each node or link being chosen with
probability p(fail) , where p(fail) is a parameter defined in the
simulator and passed in at run-time. We tested nine different
p(fail) values: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. After
constructing routing tables, each v ∈ VF and e ∈ EF are
turned off in the simulation by setting each network device on
v, or connected to e, to down and not forward traffic.

In addition to the failure probability, we defined several
other parameters to change our systems behavior. First, we
specify the input Rocketfuel trace files for the particular AS
that we are studying. We also choose a RD from the R listed in
these files for the disaster to occur in. Furthermore, the clients’
timeout value and number of retries are given to control the
RON. When a connection attempt times out the first time,
o′ ∈ OD will attempt to contact some ok ∈ O if its retry
parameter is at least 1, where ok is chosen based on the current
heuristic under study. If this connection times out as well, it
will try a different node and so on until it either successfully
reaches S (receives an ACK over the overlay) or fails to do
so a number of times equal to this retry parameter.

For the timeout value we used 500ms because the round-
trip-time across the continental United States is typically 200-
300ms and utilizing an overlay node would increase this
further. Additionally, our model did not incorporate realistic
network delays from queueing, congestion, and channel errors
so the round-trip time to the server was typically much less
than 100ms, making a 0.5 second timeout quite conservative
for our simulation. Even if this value resulted in wasted retries,
one must remember that our use case demands fast delivery
times but does not cause much congestion due to small mes-
sage sizes. Therefore, making additional connection attempts

550

2 3 4 5 6 7 8 9 10
Time (seconds)

0.05

0.10

0.15

0.20

0.25

0.30

0.35
No

rm
al

iz
ed

 C
ou

nt
 Cumulative ACKs (pfail=0.2, AS=3356/Level 3, disaster=Los Angeles)

orthogonal
random
without RON

Fig. 4. Cumulative ACKs over time for failure probability of 0.2 in Los
Angeles, CA and AS 3356 (Level 3). Note that the ODP heuristic establishes
a few more connections later on than the random heuristic, but a few less
initially. The y-axis is normalized (by dividing by the number of actively
reporting nodes) so as not to bias against higher p(fail) values in which
many sensor nodes fail and cannot contact the server regardless of network
availability.

proactively may decrease response time without negatively
impacting the network significantly.

We set the number of retries to 20, resulting in a simulation
length of 10 seconds. We chose this simulation length because
we assume that the routers and switches within an AS will
likely be able to update their routing tables within 10-15
seconds. Furthermore, the sensors should upload their data
quickly to S for time-sensitive processing and response. We
will use longer simulation times when studying larger overlays
spread across several ASes due to route updates taking longer
to propagate across higher diameter graphs.

IV. EXPERIMENTAL RESULTS

For this paper, we compared two different heuristics: a
baseline random heuristic and the aforementioned ODP (Sec-
tion II-D). In the baseline random heuristic, overlay peers
are chosen randomly from all possible choices of o2 ∈ O.
A more effective heuristic should perform significantly better
than this one, which uses absolutely no knowledge of the
underlying network or other peers’ physical locations. To
study different scenarios, we varied the following parameters:
failure probability (0.1,0.2,...0.9) and disaster location (New
York, NY and Los Angeles, CA). Each set of parameters
was simulated 200 times and the results of these averaged
to lessen the impact of edge cases and better represent the
expected values. The results show considerable promise for
our application.

Figure 4 shows the two studied heuristics’ convergence
towards the percentage of failure recoveries that they are
capable of making. It also shows the number of ACKs in the
non-RON case to visualize the improvement over traditional
routing. The slope of the curves decreases over time because
sensors will stop attempting contact with S once they receive

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Failure probability

0.00

0.02

0.04

0.06

0.08

0.10

Av
er

ag
e

ut
ili

ty

 Heuristic Utilities (AS=3356/Level 3, disaster=Los Angeles)

orthogonal
random

Fig. 5. The computed average utility metric of the two heuristics for various
p(fail) values. Note the convergence of the curves on each other as p(fail)
increases and fewer redundant paths are left undisrupted.

an ACK. The ODP heuristic appears to make more recoveries
over time than the baseline random heuristic, but less in the
initial stages, indicating that some fine-tuning of ODP may
greatly improve its performance. If the simulations continued
indefinitely, we would likely see both curves converge on the
same value, but messages received that long after the event
may not be as useful for applications such as early warning.

To evaluate each heuristic, we defined a utility metric for
a node that uploads its data (receives an ACK) at time t
(seconds) as:

u(t) =

{
0, if ACK never received
1
t , if ACK received at time t(seconds)

(2)

This metric assigns a higher utility to earlier connections
because of the time-sensitive nature of the data. If the server
receives this information earlier, it can process it and act
sooner, whereas the message may not be of much use later
on, or it could have been delivered without an overlay if the
routing infrastructure has updated its default routes. For each
simulation run, we average this metric over all nodes in the
simulation to get its expected value.

Figure 5 shows the effect of varying p(fail) on the utility
of the two heuristics. Once again, ODP appears slightly more
effective than the baseline random heuristic, but only up to
p(fail) of approximately 0.2. Not surprisingly, the utilities of
both heuristics decrease as p(fail) increases and leads to less
opportunities for establishing alternate routes.

Interestingly, this figure shows that a higher failure probabil-
ity is not necessarily proportional to the computed utility met-
ric. Higher p(fail) values increase the chance of long-haul links
necessary for connecting with other cities being disrupted,
which means that fewer sensors can contact the server via
RON peers. During our tests, we found that most topologies
and locations would establish very few, if any, connections

551

for much higher p(fail) (0.7-0.9). Obviously, RONs can only
help in so far as physical paths through the network still exist,
but they can certainly help discover them quickly, especially
if suitable alternatives are decided ahead of time.

To empirically compare our heuristics, we used a two-
sample t-test to compare the mean utilities for the 200 samples
drawn from the distributions created by the two heuristics.
We consider each combination of p(fail) values and disaster
locations as separate populations because these choices greatly
affect the mean and variance of the delivery ratio and time at
which ACKs are first received. We hypothesized that the ODP
heuristic would improve the utility metric because it would be
more likely to find a viable alternative path sooner than the
baseline random heuristic. We therefore let the null hypothesis,
H0, be that the mean utility metrics for both distributions are
the same and the alternative hypothesis, Ha, be that these
means are indeed different. The results of the tests indicate
a statistically significant difference for p(fail) values of 0.1
and 0.2 in both disaster locations. Therefore, we can reject
H0 for these cases and claim with high confidence that ODP
improves the expected utility in these scenarios. However,
the lack of significant improvement for higher p(fail) values
necessitates further testing and refinement of the objective
function (perhaps by relaxing the rigidity of the location
requirements or assigning more weight to one than the other).

V. CONCLUSION AND FUTURE WORK

In this paper, we explored the application of resilient overlay
networks to the domain of Internet-connected sensing during
regional failures due to large disasters. We developed a formal
model for organizing the overlay nodes and choosing alternate
paths. We presented the results of our initial simulations and
ODP heuristic that prove the utility of this approach.

We plan to continue this project to further refine our
techniques and explore alternative approaches. In particular,
we are studying the process of building overlay paths a priori,
using more advanced heuristics than the ones proposed here
(possibly with partial knowledge of the underlying network
structure), to improve recovery time during a disaster. We
also plan to develop heuristics that make overlay peer choices
on-line, using knowledge of perceived failure locations and
information exchanged with other nodes during an event to
more quickly reestablish failed connections. We are also work-
ing towards addressing AS interconnections and the resilience
issues inherent with BGP route updates as we continue this
project.

In the future, we plan to investigate the possibility of includ-
ing wireless and mobile devices in the overlay to establish a
multi-network environment. This could lead to delay-tolerant
protocol designs and would likely increase the effectiveness
of the overlay during disaster scenarios, especially when
modeling continuing and moving failures.

ACKNOWLEDGMENT

This work was supported by National Science Foundation
award nos. CNS 1143705 and CNS 0958520. The authors

also thank Mani Chandy and Julian Bunn at Caltech for their
discussions related to CSN and this work.

REFERENCES

[1] E. Cochran, J. Lawrence, C. Christensen, and A. Chung, “A novel strong-
motion seismic network for community participation in earthquake
monitoring,” Instrumentation Measurement Magazine, IEEE, vol. 12,
no. 6, pp. 8 –15, Dec 2009.

[2] (2012, Jul) Community Seismic Network.
http://www.communityseismicnetwork.org/.

[3] (2012, Aug) Pervasive computing for disaster response. http://www.cacr.
caltech.edu/projects/PerDis/.

[4] S. Neumayer and E. Modiano, “Network reliability with geographically
correlated failures,” in INFOCOM, 2010 Proceedings IEEE, march 2010,
pp. 1 –9.

[5] A. F. Hansen, A. Kvalbein, T. Čičić, and S. Gjessing, “Resilient
routing layers for network disaster planning,” in Proceedings of the 4th
international conference on Networking - Volume Part II, ser. ICN’05.
Springer-Verlag, 2005, pp. 1097–1105.

[6] J. Sterbenz, E. C andetinkaya, M. Hameed, A. Jabbar, and J. Rohrer,
“Modelling and analysis of network resilience,” in Communication Sys-
tems and Networks (COMSNETS), 2011 Third International Conference
on, jan. 2011, pp. 1 –10.

[7] J. P. G. Sterbenz, D. Hutchison, E. K. Çetinkaya, A. Jabbar, J. P. Rohrer,
M. Schöller, and P. Smith, “Resilience and survivability in communica-
tion networks: Strategies, principles, and survey of disciplines,” Comput.
Netw., vol. 54, no. 8, pp. 1245–1265, jun 2010.

[8] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient
overlay networks,” in Proceedings of the eighteenth ACM symposium on
Operating systems principles, ser. SOSP ’01. New York, NY, USA:
ACM, 2001, pp. 131–145.

[9] N. Feamster, D. G. Andersen, H. Balakrishnan, and M. F. Kaashoek,
“Measuring the effects of internet path faults on reactive routing,”
SIGMETRICS Perform. Eval. Rev., vol. 31, no. 1, pp. 126–137, Jun
2003.

[10] J. Wu, Y. Zhang, Z. M. Mao, and K. G. Shin, “Internet routing resilience
to failures: analysis and implications,” in Proceedings of the 2007 ACM
CoNEXT conference, ser. CoNEXT ’07. New York, NY, USA: ACM,
2007, pp. 25:1–25:12.

[11] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed internet
routing convergence,” SIGCOMM Comput. Commun. Rev., vol. 30, no. 4,
pp. 175–187, Aug 2000.

[12] K. Nakayama, N. Shinomiya, and H. Watanabe, “An autonomous
distributed control method for link failure based on tie-set graph theory,”
Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 59,
no. 11, pp. 2727 –2737, nov. 2012.

[13] D. Stamatelakis and W. Grover, “Theoretical underpinnings for the
efficiency of restorable networks using preconfigured cycles (p-cycles),”
Communications, IEEE Transactions on, vol. 48, no. 8, pp. 1262 –1265,
aug 2000.

[14] J. Han, D. Watson, and F. Jahanian, “Topology aware overlay networks,”
in INFOCOM 2005. 24th Annual Joint Conference of the IEEE Com-
puter and Communications Societies. Proceedings IEEE, vol. 4, march
2005, pp. 2554 – 2565 vol. 4.

[15] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems,” in
Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms Heidelberg, ser. Middleware ’01. London, UK, UK:
Springer-Verlag, 2001, pp. 329–350.

[16] L. Massoulie, A.-M. Kermarrec, and A. Ganesh, “Network awareness
and failure resilience in self-organizing overlay networks,” in Reliable
Distributed Systems, 2003. Proceedings. 22nd International Symposium
on, oct. 2003, pp. 47 – 55.

[17] K. Kim and N. Venkatasubramanian, in 2010 IEEE Global Telecommu-
nications Conference GLOBECOM 2010.

[18] (2012, Jun) ns-3. http://www.nsnam.org/.
[19] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP

topologies with Rocketfuel,” Networking, IEEE/ACM Transactions on,
vol. 12, no. 1, pp. 2 – 16, Feb. 2004.

[20] (2012, Dec) Geonames. http://www.geonames.org/.
[21] (2010, Apr) Bug 521 - Ipv4 global routing inefficient. https://www.

nsnam.org/bugzilla/show bug.cgi?id=521.

552

