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Abstract—Software reprogramming enables users to extend
or correct functionality of a sensor network after deployment,
preferably at a low cost. This paper investigates the improvement
of energy efficiency and delay of reprogramming, at low resource
cost. As enabling technologies data compression and incremental
updates are used. Algorithms for both approaches are analyzed,
as well as their combination, applied to resource-constrained
devices. All algorithms are ported to the Contiki operating
system, and profiled for different types of reprogramming. The
presented results show that there is a clear trade-off between
performance and resource requirements. Furthermore, the best
reprogramming approach depends on the type of update. Exper-
imentally, VCDIFF, or the combination of Lempel-Ziv-77/FastLZ
for compression with BSDIFF for delta encoding, have been
identified as the best possible options.

I. INTRODUCTION

An important feature of networks of resource constrained

devices is reprogramming, i.e. the capability to change soft-

ware functionality at run time. Reprogramming is important

both during development, for fast prototyping and debugging,

and after deployment, for adapting functionality.

Software changes come in the form of updates, consisting

of new applications, bug fixes, operating system updates or

modified parameters. In remote reprogramming, updates are

assembled at a host machine outside of the network. Then,

the update has to be spread through the network, reaching

every intended node. Due to the large size of the updates and

high number of nodes in a network, most solutions for remote

reprogramming suffer from long delays and high energy usage.

In this paper, we explore means for reducing the size of

updates for remote reprogramming. Motivated by the fact

that the processor consumes significantly less energy than

the wireless radio, we investigate how much energy and time

can be saved by reducing the updates as much as possible.

Furthermore, the focus is on two approaches: 1) applying data

compression algorithms directly to updates; and 2) using in-

cremental updates, i.e. exchanging only the difference between

two consecutive software versions, captured in scripts called

deltas. Deltas have a highly compressible structure and they

can improve the performance of data compression algorithms.

We selected five data compression algorithms along with

three algorithms for incremental updates, and analyzed their

applicability on resource constrained devices. The applicability

is quantified through metrics which determine the resources
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required to host and execute the algorithms. Furthermore, we

analyzed the performance of each data compression algorithm

being used alone, or in combination with any of the three

incremental update algorithms. Surprisingly, our results show

that using only data compression can degrade performance,

while incremental updates always give improvements.

Our contributions are threefold. First, we give clear mea-

surements of how much resources are required to implement

each algorithm. Second, we emphasised the trade-off between

energy usage, delay and resource requirements in the selection

process for compression algorithms intended for resource

constrained devices. Finally, based on the results of the exper-

iments, we selected the best possible combinations between

data compression and incremental update, and populated a

decision tree for selecting the best combination given resource

and infrastructure requirements.

II. RELATED WORK

Optimizing software reprogramming has been extensively

studied in wireless sensor networks. Modular operating sys-

tems are an improvement over non-modular systems by sup-

porting dynamic linking and loading. This way, systems such

as Contiki [1], allow partial executables to be deployed and

executed at run time, without flashing the firmware. However,

since the partial executables contain symbol and relocation

tables, they can still be large in size for reliable transfer in

lossy wireless networks.

Apart from complete firmware reprogramming [2] [3],

alternative methods have been developed for updating non-

modular systems. Virtual machines and middle-ware layers

(Maté [4], OSAS [5]) overcome limitations of large updates

for distribution by running interpreted code. Since byte code

is much smaller compared to compiled binary code, updates

in these systems can be easily distributed. The downside of

this approach is that interpreted execution is slower and some

resources are always used by the virtual machine. And still,

the problem of large updates is present if the operating system

or the virtual machine engine need to be updated.

Another approach to reprogramming is to use incremental

updates of firmware images [6]. In [7], modified versions of

the rsync and XNP protocols are used for generating deltas and

their dissemination, respectively. Zephyr [8] adds application-

level modifications to decrease the difference between con-

secutive application versions, then produces deltas with rsync.

In [9], a tool similar to the UNIX diff is used to create
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deltas between versions. It extends the delta functionality with

two new instructions, which enable more efficient coding of

the differences. While these studies emphasise the benefits

of using incremental updates, they use solely one algorithm,

without evaluating whether a better option exists. In this paper,

we connect incremental updates with data compression to give

a broader view of options for optimizing the size of updates.

Data compression has been previously considered in sensor

networks, mostly for data gathered from sensors [10] [11].

In [12], several algorithms are compared on desktop machines,

for compressing data from two test beds. Similarly, in [13]

compression algorithms are compared on ELF executables for

the Contiki operating system. Since sensed data is less com-

pressible than binary data, the reported results do not apply

to software updates. Furthermore, during upgrades, only de-

compression is needed on resource-constrained devices. In this

paper, we extend our previous evaluation of data compression

algorithms for sensor networks [14] with multiple algorithms

for incremental update. Here we emphasise the importance of

the combination of both, and demonstrate which combinations

are preferable in different scenarios for reprogramming.

III. METHODOLOGY

There are two common approaches for reducing the size of

data in software updates: using data compression and incre-

mental updates. Next, we discuss both approaches individually.

A. Performing updates using data compression

Compression, and accordingly decompression, is added to

the update process as shown in Figure 1. It is an intermediate

phase with the aim to encode information with fewer bits than

the original representation. Data compression is done outside

of the sensor network, so only decompression is needed on

sensor nodes. Furthermore, since in executable data every bit

is equally important, only lossless algorithms can be used.

While many data compression algorithms are available,

most of them are inapplicable to sensor nodes due to high

resource demands. Previously [14], we identified five Lempel-

Ziv (LZ) variants as suitable for resource constrained devices.

We used the same algorithms for the experiments in this work

as well.

������

���	��
�	���

�����������

����	����	

���������

����������

������

Fig. 1. Overview of the update process when using data compression.

B. Performing updates incrementally

Most changes in software come in the form of incremental

updates, which either add additional functionality or modify

values of existing parameters. The old and new version share

most of the code base, and the difference between them is

significantly smaller than the size of the application itself.
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Fig. 2. Overview of the update process when using incremental updates.

Algorithms for delta encoding exploit this behaviour by

extracting and distributing only the differences between both

versions. The delta contains instructions and data, which are

used to reconstruct the new version from the old one, a process

called patching. Delta encoding algorithms differ in how the

delta is constructed and how the differences are detected.

Similar to data compression, the delta creation is done outside

of the sensor network, and only patching functionality needs

to be added on the sensor nodes. Next, the three most widely

used delta encoding algorithms are analyzed.

Rsync, and the corresponding RDIFF algorithm [15], use

non-overlapping fixed-sized blocks for matching identical data

between the old and new version. Both versions are segmented

into blocks, and for each one, a rolling-checksum and a MD5

checksum are computed. Based on these checksums, the delta

is constructed of either references to blocks that already exist

in the old version, or the entire content of new or changed

blocks. While the rolling checksum is implemented to be as

fast as possible, a MD5 checksum is not appropriate for sensor

nodes. A weakness of the algorithm is that if two blocks differ

in even one byte, the entire block has to be present in the delta.

VCDIFF [16] is a format for encoding the difference

between two data sets. The original idea for it comes from

the Lempel-Ziv 77 algorithm - the old and new version are

concatenated; then the resulting stream is compressed using

LZ77 or a similar algorithm. From the output, the first part,

which corresponds to the old version, is omitted, leaving

only the instructions for the decoder to decompress the new

version. VCDIFF features a detailed byte-code instruction set,

consisting of a small number of instructions, which can be

used in different addressing modes, accessing both the old and

the new data. In this paper, we use Xdelta [17] as an encoder

for generating VCDIFF deltas. It reduces the delta size by

optimizing the generated instruction set, removing completely

covered instructions and merging small instructions into one.

BSDIFF [18] uses two passes to construct deltas. In the first

pass, completely identical blocks are found in the two versions.

Next, the exact matches are expanded in both directions, such

that every prefix/suffix of the extension matches in at least half

of its bytes. These matches roughly correspond to modified

lines of code. The delta is then constructed of three parts: a

control block of commands for reconstructing the new version;

a diff block of bytewise differences between approximate

matches and an extra block, consisting of new data. When
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TABLE I
TEST SCENARIOS AND DATA SIZE OF FIRMWARE IMAGES AND ELF EXECUTABLES.

Test Description Type Starting size Final size

1 OS update (Contiki 2.3 → 2.4) Firmware 22,924 20,624
2 OS update (Contiki 2.4 → 2.5) Firmware 20,624 22,980
3 New application (OSAS 2.0) Firmware 22,980 39,112
4 Application update (OSAS 1.0 → 2.0) Firmware 37,796 39,112
5 Application update (OSAS 1.0 → 2.0) ELF executable 25.784 26.712
6 Parameter change (OSAS 2.0 → 2.1) Firmware 39.112 39.112
7 Parameter change (OSAS 2.0 → 2.1) ELF executable 26,712 26,712

the old and the new version are very similar, the diff block

consists of large series of zeroes, which are easily compressed.

All delta encoding algorithms use compression to reduce

the delta’s size. Therefore, by adding delta encoding, a sensor

node is reprogrammed as in Figure 2. It can be seen as a pre-

processor; an initial phase of data compression algorithms.

IV. EVALUATION

For algorithms running on resource-constrained devices,

four metrics are relevant: code size of the algorithm, memory

used during execution, energy and delay. The size of com-

pressed data and execution time are two additional factors

which directly determine energy usage and delay.

The reduction in size of the compressed data is quantified

through the compression ratio. It is defined as the reduction

in size relative to the uncompressed data:

compr ratio = (1−
compressed size

uncompressed size
) ∗ 100 (1)

Consequently, higher values mean smaller compressed files,

hence better performance.

Decompressing data requires a certain amount of processor

cycles. A high number of processor cycles would result in

large decompression times. As a result, regardless of processor

speed, this value should be as low as possible. The importance

of this metric is captured through the energy and delay models.

Memory is limited in resource-constrained devices. This

includes both memory required for holding the code, which is

stored in internal flash memory (ROM), and memory required

during execution, in RAM. Algorithms running on sensor

nodes must have a small code footprint, up to a couple of

kilobytes, and use little memory during execution.

We estimate energy usage through a model which uses the

amount of time spent during computation and transmission of

data [19]. This is a lower bound of the real energy usage;

we assume that forwarding is done immediately, without

additional processing, and we ignore MAC protocol behavior.

Adding those variables, will result in higher energy usage

for transmission, penalising communication even further. We

consider a star topology for update, where the central node

receives the update and then sends it to h neighbours. We

calculate energy usage of the central node as:

E = kerr ∗ ⌈
data size

payload size
⌉ ∗ (Erx + h ∗ Etx) + Ecpu, (2)

where kerr is the average number of times each packet is sent

due to errors in the radio medium, data size is the size of the

data for transmission, payload size is the maximum packet

size, Erx/tx is the energy required to receive/send one packet

and Ecpu is the energy required for post-processing. Commu-

nication energy is expressed as Erx/tx = trx/tx ∗ Irx/tx ∗ V ,

where trx/tx is the amount of time that the wireless radio is

in listening/sending state. We simplify the model by assuming

that during reception, the radio chip is turned on for the

same amount of time as during sending, though it draws more

current [20]. This corresponds to factory values of various

radio chipsets, such as the CC2420. Similarly, processing

energy is calculated as Ecpu = Icpu ∗ V ∗ tcpu, where tcpu
is the amount of processing time.

We estimate the time needed for the central node to receive

an update, apply it locally and distribute it to its neighbours,

with a similar model to the one used for energy estimation.

Again we estimate a lower bound of the delay, since we

assume that forwarding is done immediately, and that the MAC

protocol does not introduce additional overhead:

D = kerr ∗ ⌈
data size

payload size
⌉ ∗ (trx + h ∗ ttx) + tcpu. (3)

We consider three cases of energy usage and delay dur-

ing reprogramming: 1) neither compression nor incremental

updates is used (tcpu = 0); 2) only compression is used

(tcpu = tdcmp) and 3) both compression and incremental update

is used (tcpu = tdcmp + tpatch).
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Fig. 3. Minimum, maximum and average measured compression ratio.

A. Experimental setup and workflow

In our experiments, we use the Contiki operating system,

running on Crossbow TelosB nodes [21], with the Open

Service Architecture for Sensors (OSAS) [5] application. The

node contains an 8 MHz TI MSP430 microcontroller with the

Chipcon CC2420 radio transceiver. It has 48 KB program flash

memory, 10 KB of RAM and 1 MB external flash.
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Fig. 4. Time required for decompressing and applying a BSDIFF (a) and VCDIFF (b) patch.

We considered seven test scenarios for remote reprogram-

ming, shown in Table I. For each test case, both the initial

version and the new version are available. First, we compress

the new version directly. Then, we produce a delta using each

delta encoding algorithms, and apply compression to it. We

measure the compression ratio of the compressed delta with

respect to the size of the new version. Finally, we measure the

remaining metrics for decompression and patching.

All algorithms were adapted to be run on the TelosB nodes1.

Input and output data is stored on the external serial flash and

is accessed through the Coffee file system [22]. All tests were

executed 10 times, and timed using the Contiki clock module.

B. Results

Next we will discuss each of the aforementioned metrics.

1) Compression ratio: Compression ratio is a factor which

gives a strong indication what to expect from a compression

algorithm in terms of energy and delay savings. As illustrated

on Figure 3, due to the diverse input samples, the compression

ratio varies significantly between different test cases.

In general, the compression ratio metric implies that incre-

mental updates make significant difference in the performance

of compression algorithms. Depending on the approach and

type of updates that need to be compressed, between 37% and

99% compression ratio can be achieved. Most compression

algorithms behave similarly, with not more than 10% differ-

ence between them. The obvious exception was Run Length

Encoding as the worst compressor.

Using BSDIFF showed higher compression ratio compared

to the other delta encoding algorithms in all except the last two

scenarios, in which VCDIFF produced smaller deltas. RDIFF

was consistently inferior to the other two algorithms, and was

therefore omitted from the subsequent experiments.

2) Memory requirements: This metric determines the mem-

ory resources required to add decompression and delta encod-

ing support. It can be divided in two parts - memory required

for holding the code, which is stored in internal flash memory

(ROM), and memory required during execution, in RAM.

Table II shows code size and memory usage for the de-

compression and incremental update algorithms, ported to the

Crossbow TelosB motes. The code size corresponds to the size

1The source code of the algorithms are available at http://www.win.tue.nl/
∼mstolikj/compression/. The port of VCDIFF to the MSP430 microcontroller
was kindly provided by Nicolas Tsiftes.

of the .text segment of the ELF binary. Memory is the sum of

static memory and maximum stack used during execution.

From the table, it is evident that Run Length Encoding,

Lempel-Ziv 77 and LZJB are lightweight in terms of both code

size and memory usage during execution; FastLZ has a larger

code base, but still uses little stack space. Finally, Sensor-

LZW has the largest code base and uses the most memory of

all decompression algorithms.

The memory footprint of BSDIFF is small, both in code

size and memory usage. On the other hand, VCDIFF has

a significantly larger code base, along with large memory

footprint, mostly for storing the instruction cache.

TABLE II
CODE AND MEMORY FOOTPRINT OF DIFFERENT ALGORITHMS, USING A

TWO BYTE BUFFER

Algorithm Code (bytes) Memory (bytes)

fastlz 878 145
lz77 376 144
lzjb 424 140
rle 198 131
s-lzw 1.281 2502

bsdiff 560 158
vcdiff 2.261 1714

3) Processing requirements: The time required to decom-

press the BSDIFF/VCDIFF deltas is shown in Figure 4. In

all cases, Sensor-LZW was the slowest algorithms. LZ77 and

LZJB had similar execution times, while RLE had significantly

worse performance while decompressing VCDIFF deltas. This

comes down to the nature of the VCDIFF algorithm - run

length encoding is done while the delta is generated. Finally,

on average, FastLZ was the fastest algorithm.

BSDIFF and VCDIFF have comparable execution time

when 128 byte buffers are used. VCDIFF is slightly faster

in the last two test scenarios (parameter change), due to the

smaller delta produced.

4) Energy estimation: For reprogramming one node, using

only compressed updates (Figure 5c) is more energy efficient

than sending data directly, only when FastLZ is used. The

additional processing introduced by LZ77 in some cases pays

off; all other algorithms require more energy.

On the other hand, the combination of any compression

algorithm with either BSDIFF (Figure 5a) or VCDIFF (Fig-

ure 5b) results in significant reductions in energy usage. For

test cases 1 to 5, highest energy savings are achieved using
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Fig. 5. Energy estimation using only decompression (c) and both patching and decompression (a, b). (Constants: h = 1, kerr = 1, payload size = 114,
buffer size = 128). ”Direct” shows the energy usage of transmitting the data directly, without processing.
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BSDIFF with LZ77 or FastLZ, while for test cases 6 and 7,

the lowest energy usage is registered using VCDIFF.

VCDIFF has good performance even without using an

additional compressor. In fact, only FastLZ reduced the energy

usage in all test cases. In the parameter change test cases,

since the VCDIFF delta fits in one packet, there is no need to

additionally compress it.

5) Delay: For reprogramming one node, using only com-

pressed updates (Figure 6c) is much slower than sending the

data directly. Slightly improved results are obtained when

incremental updates are used - the processing time is larger

than the transmission time. This is evident both for BSDIFF

(Figure 6a) and VCDIFF (Figure 6b) in test cases 1 to 5. Using

only VCDIFF is the best option in these cases.

In test cases 6 and 7, the processing overhead is significantly

smaller compared to the transmission savings. Therefore, using

LZ77, FastLZ or LZJB with BSDIFF, as well as only VCDIFF,

is faster than transmitting the entire binary data.

If we vary any of the constants used in Figure 6, as shown

in Figure 7, it is clear that compressed incremental updates

are preferable to complete transfers in large networks.

C. Discussion

The presented results suggest that reprogramming can be

improved in terms of energy efficiency and time required for

update by using data compression and incremental updates.

Improvements vary depending on the selection of algorithms.

Simply adding compression does not lead to lower energy

usage or faster updates. In fact, some compression algorithms

can degrade performance.
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Fig. 8. Guidelines for selecting the best option for incremental update.

In contrast, using incremental updates showed solid results

in all test cases. Up to 95% in energy savings were registered,

along with 95% faster updates. Even though highest improve-

ments were found during parameter reconfiguration, the fact

that a 35% reduction in energy consumption was the minimum

measured in specific configurations, gives strong arguments for

using incremental updates in wireless sensor networks.

Selecting the best approach for incremental updates depends

on the particular system. The four important factors that influ-

ence the selection are available resources, update type, network

size and optimization goal (energy or delay). The choice is

between using BSDIFF with either LZ77 or FastLZ, or using

only VCDIFF. The decision tree, populated by recursively

partitioning the gathered results, is shown in Figure 8.

The memory footprint of VCDIFF is a lot higher than

BSDIFF with either LZ77 or FastLZ. Therefore, if resources
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Fig. 7. Influence of number of nodes (h) on delay.

are scarce, VCDIFF is the least acceptable solution. On the

other hand, VCDIFF has incomparable performance in terms

of both energy usage and delay when parameter changes are

considered. If most updates are of this type, then VCDIFF is

the option to use. In case updates are more heterogeneous,

the number of nodes in the network is small, and delay is a

priority, then VCDIFF is again the best option. When energy

usage is a priority, or the network is fairly large, then BSDIFF

with LZ77 gives the best performance. Finally, when memory

is scarce, the network is small and delay is a priority, then

BSDIFF with FastLZ is the preferred option.

V. CONCLUSION

In this paper we investigated two approaches for efficient

update distribution in networks of resource constrained de-

vices. Firstly, we evaluated the performance of general pur-

pose data compression algorithms applied directly on binary

data. Secondly, we compared three algorithms for incremental

update and combined them with the previously analyzed

compression algorithms. Further tests were done on wireless

sensor nodes, measuring memory requirements, code footprint,

execution time, energy usage and delay.

Results show that data compression in combination with

incremental update can significantly decrease energy usage

and delay in reprogramming wireless sensor networks, but a

bad choice can also increase it. The best option to perform

incremental updates depends on multiple factors, for which we

have provided a decision tree. Best performance was measured

when using either the VCDIFF delta encoding algorithm, or

the combination of BSDIFF for delta encoding and LZ77 or

FastLZ for decompression.

Significant improvements can be reached by optimizing the

incremental update process. One approach would be to adapt

the original data in such way that it becomes as constant

as possible between different versions. This can be achieved

through function call indirection [8], extracting and ordering

of global variables etc. As a result, the delta scripts would be

much smaller, hence easier to compress.
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