
Runtime Migration of Stateful Event Detectors with

Low-Latency Ordering Constraints

Christopher Mutschler1,2 and Michael Philippsen1

{christopher.mutschler,michael.philippsen}@fau.de

1Programming Systems Group, CS Dept., University of Erlangen-Nuremberg, Germany
2Sensor Fusion and Event Processing Group, Locating and Comm. Systems Dept.,

Fraunhofer Institute for Integrated Circuits IIS, Erlangen, Germany

Abstract—Runtime migration has been widely adopted to
achieve several tasks such as load balancing, performance
optimization, and fault-tolerance. However, existing migration
techniques do not work for event detectors in distributed pub-
lish/subscribe systems that are used to analyze sensor data. Since
low-latency time-constraints are no longer valid they reorder
streams incorrectly and cause erroneous event detector states.

This paper presents a safe runtime migration of stateful
event detectors that respects low-latency time-constraints and
seamlessly orders input events correctly on the migrated host.
Event streams are only forwarded until timing delays are
properly calibrated, the migrated event detector immediately
stops processing after its state is transferred, and the processing
overhead is negligible. On a Realtime Locating System (RTLS) we
show that we can efficiently migrate event detectors at runtime
between servers where other techniques would fail.

I. INTRODUCTION

Runtime migration of system components is the method of

choice for load balancing, performance optimizations, fault

tolerance etc. [1]. But existing solutions do not work well

for distributed event processing systems (EPS) that are used

to analyze high data rate sensor streams with low latency. In

such systems input data streams usually have a data rate of

several thousand events per second, sources may be arbitrarily

spread, and events arrive massively out-of-order.

Consider the EPS in Fig. 1. An event detector (ED) that

runs on host N3 subscribes to four events (e.g. sensor read-

ings), namely A, B, C, and D, each generated at a different

point in the distributed environment. For simplification, these

events are detected with zero delay. However, for further

processing on host N3 they will be received with different

delays. For instance, A (5ms+20ms+30ms+5ms=60ms) and D

(5ms+30ms+5ms=40ms) have a much higher delay than C

(5ms+10ms+5ms=20ms). B has the lowest delay (0ms) since

it is detected a sensor reading device that is directly connected

to the same host and does not travel through the network. The

ED on N3 measures these delays at runtime and reorders the

events into a totally ordered event input stream. The size of the

reordering buffer is selected as low as possible to guarantee

event detection with lowest latency. The generated event is

detected with at least 60ms delay and may be subscribed by

another ED on another host for further processing.

To migrate this ED from N3 to N4 typical migration

approaches take a snapshot of the state of the ED, transfer

it, activate it on N4, and terminate it on N3. The problem is

that the state includes the measured event delays and the size

of the reordering buffer, both of which are affected by the

migration. After migration B now has a non-zero delay, the

delays of the events A and B increase by at least 10ms, and

C does no longer have a significant delay (since now it is a

local event). Hence, the previously measured event delays for

correct stream reordering are no longer valid, and although

the migration itself worked the system fails since the event

reordering is corrupt which often results in incorrect states.

The buffers for the reordering units of the affected EDs are

too small for correct ordering. Moreover, in a hierarchy of

EDs an upper level ED that subscribes the event generated by

the migrated ED may also see out-of-order events as its delay

may also have grown.

Other typical migration approaches are based on stream

forwarding, leave the reordering unit behind on N3, and

forward the correctly ordered events to the migrated ED on the

target host N4 until it properly calibrated its own reordering

unit. If certain events only occur sparsely, forwarding may be

needed for a long time before the new host itself can reorder

the event streams. The networking overhead would be high.

This paper presents a technique that transparently reorders

out-of-order events at the new host where existing approaches

inevitably fail. For that we meet the following requirements.

First, the forwarding of events must be kept at a minimum

to avoid high network load. Second, the old and the new ED

may not run in parallel and the old ED must immediately be

shut down to reduce processing load. Third, after the state has

been transferred the new host must derive correct parameters

for its ordering unit to achieve correct event detection.

The rest of the paper is organized as follows. Section II

reviews related work. Section III provides basic definitions

Fig. 1. Latencies in a distributed EPS.

978-1-4244-9529-0/13/$31.00 ©2013 IEEE

9th IEEE International Workshop on Sensor Networks and Systems for Pervasive Computing 2013, San Diego (22 March 2013)

609

about the applied time model, and sketches the key ideas of

the event ordering. Section IV then presents the details of our

migration algorithm. We carefully consider delay differences

and guarantee an in-order event processing at all times. We

evaluate our method under real-life conditions in Section V

and discuss the runtime migration when processing position

sensor data from a Realtime Locating System (RTLS) in a

sports application.

Runtime migration is needed for this use case. Assume that

we locate players in a soccer game and we apply event-based

processing on the position streams. Events such as ball hits,

goals, or fouls are automatically detected by the EPS and used

to assist referees of control camera control systems.

Soccer rule violations such as handball, fouls, etc. are

punished more severely if players are inside the penalty area.

There we not only need to process the players’ position events

in more detail but the EDs are computationally intense as, for

example, they (try to) derive the players’ intentions. Hence,

CPU loads get unbalanced and the system fails if EDs are not

migrated soon enough, see. Sec. V-B.

II. RELATED WORK

Recent related work on runtime migration is mainly found

in the area of virtual machines (VMs).

CR/TR-Motion [1] uses checkpoint/recovery and trace/re-

play to achieve a fast migration of VMs. Checkpoints from

the source VM are recovered at the destination, and call

traces from the source are replayed so that both machines are

consistent. However, the authors do not forward data and do

therefore not consider that the order of incoming commands

may be different at the new host.

Bradford et al. [2] deal with the transfer of a local persistent

VM state. After migration, network connections are redirected

to the new host and commands from old connections are

forwarded. The old VM is shut down as soon as all the old

clients are gone. However, in contrast to our approach, both

machines not only have to run in parallel while commands are

being forwarded, but the order is ignored in which commands

are received over the network.

MOSIX [3] is a cluster management system that supports

interactive processes and resource discovery for workload dis-

tribution. As MOSIX migrates processes and redirects system

calls it has the same disadvantages as the previous approaches.

Pipelined State Partitioning (PSP) [4] time-slices stateful

operators (multi-way window-based join operations) and then

distributes the fine-grained states over a cluster to form a

virtual computation ring. The states are relocated if CPU

loads are unbalanced. However, although the operator itself

is stateful, the states are not. Moreover, the authors assume

that input streams are equally ordered on each host.

Liu et al. [5] combine state spill and state relocation, and

use decision making to use one of them. However, both do

not work if events need to be reordered.

Endler et al. [6] provide a comparison of various handover

techniques for mobile devices from which new/old domain

service ensures a total order. However, both methods forward

Fig. 2. Distributed publish/subscribe EPS.

the complete event stream until the new service takes over.

Most of the previous approaches considers the order of

incoming commands and/or data explicitly. That is because

usually the source of the commands, i.e., the user’s work-

station, is static and commands are still received in correct

order. However, if we deal with multi-user VMs, problems

may occur if two users try to modify the same file. At the

original VM, user A’s command may be received first, whereas

at the migrated VM, user B’s command will be first. The

VMs are then out-of-sync. Approaches like CR/TR-Motion

would repeat the recovery and replay process in such unlikely

situations. However, for event detection such situations are

very likely and migration would probably result in endless

recovery and replay cycles.

III. PRELIMINARIES

Fig. 2 depicts our distributed publish/subscribe-based event

processing system. It is a network of several machines that

run the same middleware to process sensor readings that are

collected by a number of data distribution services (DDS), e.g.,

antennas that collect RFID readings. EDs are spread across the

machines. An ED communicates subscriptions, publications

and control information with the middleware that does not

know the ED’s event pattern; the ED is unaware of both

the distribution of other EDs and the runtime configuration.

The middleware implements a push-system with unknown

subscribers. At system startup the middleware has no clue

about event delays on other hosts but just notifies other

middleware instances about event publications.

As it is difficult to manually implement EDs that process

out-of-order events and developers often do not know the

delays that their code may face at runtime, the middleware

provides a personal event ordering unit per ED. For that, it

extracts a local clock out of the event stream, see Sec. III-B.

The middleware is thus generic and encapsulated, and does

not use the application-specific event definition of the EDs.

A. Time Model Semantics and Definitions

The time model we assume is that sensor events are time-

stamped from the same discrete time source before they are

sent to the network for processing. This requires synchroniza-

tion of all system units that directly communicate with the

610

sensors. However, this is not a great loss of generality because

applications that require a low detection latency usually have

the means to time-stamp sensor events when they are gener-

ated. For instance, in warehouse applications, the RFID readers

may synchronize over LAN, time-stamp the sensor readings

accordingly, and push the data packets as sensor events to

the network. In a locating system the microwave signals of

transmitters are extracted by several antenna units that are

synchronized over fiber optic cables [7].

We use the following terminology throughout the paper:

Event type, instance and time-stamps. An event type is

identified by a unique ID. An event instance is an instan-

taneous occurrence of an event type at a point in time. An

event has two time-stamps: an occurrence and an arrival, both

are in the same discrete time domain. An event appears at

its occurrence time-stamp ts, or just time-stamp for short. At

arrival time-stamp ats the event is received by a particular

EPS host. The occurrence time-stamp is fixed for an event at

any receiver whereas the arrival time-stamps may vary.

Out-of-order event. Consider an event stream e1, · · · en.
Events of type ID are used to set the local clock. Then ej is

out-of-order if there do not exist ei, ek, with ei.id=ek.id=ID
and ei.ats≤ej .ats so that ei.ts≤ej .ts≤ek.ts, i.e., ej .ats does
not fit between the two consecutive clock updates.

B. Self-Adaptive Ordering Units

K-slack [8] assumes that an event ei can be delayed for at

most K time units. Hence, the ordering unit of a particular

ED that takes a stream with potential out-of-order events and

produces a sorted event stream needs K as the maximal delay

of all subscribed events and a K-sized event odering buffer.

The dynamically generated ordering unit is mounted be-

tween the event input stream and the ED, extracts a local

clock clk out of the event stream, and delays both late and

early events as long as necessary to avoid out-of-order events.

While there are EPS that use programmer-configured K-

values, it is better to measure event delays at runtime and to

configure optimal K-values dynamically [9]. One reason is

that EDs in practice often form an event processing hierarchy

to detect the events of interest. For instance, to trigger smooth

camera movements by events, all the K’s must be as small

as possible but as large as necessary. Overly large K’s result

in large buffers and high latencies for EDs along the upper

processing hierarchy.

Notice that the migration of an ED not only affects the

input delays of the migrated ED but may also affect the input

delays of upper level EDs that subscribe events generated by

the migrated ED although the subscribers do not partipate in

the migration. Sudden increases of K may lead to out-of-order

processing on higher level EDs. Our migration algorithm also

addresses this problem.

IV. RUNTIME MIGRATION

As an ED stores status information, its migration requires

to send the state and to use it for initialization of the new ED.

This is similar to virtual machine migration, see Section II,

(a) Topology before. (b) Topology after.

Fig. 3. Event detector migration.

and is not discussed here any further.

Consider the network topology depicted in Fig. 3. Before

migration (Fig. 3(a)) an ED runs on host N1 and subscribes

three events A (published by N3), B (published by N2), and C

(published by N4). It generates event D (subscribed by N3).

When we migrate this ED from N1 to N2 (Fig. 3(b)), the

sources of the subscribed events remain the same, but their

delays most definitely change. The delay of B at the new host

N2 shrinks, because after migration B is a local event. The

delays of A and C may or may not shrink. Note that the delay

of D at N3 may also change even though the subscriber at N3

does not participate in the migration.

Unless delays shrink for all involved events, a naive migra-

tion is likely to fail because the migrated ED (or any ED on a

higher level of the hierarchy) no longer sees the subscribed

events in correct order as its K-sized ordering buffer that

worked well on the old host is too small for the new host.

As discussed before naive migration approaches cannot

be used to guarantee ordered input events for the migrated

ED. Because often CPU overload or buffer overflow trigger

migration we cannot run the new ED concurrently to the

old one until the new one has configured its K-value. Also

forwarding the reordered events from the old to the new host is

prohibitive as it may cause high network loads and processing

overheads for a long time if particular events occur sparsely.

In the following, we present an algorithm that migrates

EDs at runtime and initializes their K-values according to

the timing delays at the new host. The introduced latency

is negligible. Never during the migration there are two ED

instances that consume CPU time. And most importantly, both

the old and the new ED instances as well as upper level EDs

see in-order events at any time. The old ED stops as soon as

its state has been copied, and networking overhead is minimal.

A. Cooperative Handover

The key migration idea is a cooperative handover in which

the new host not only subscribes the necessary input events

from their sources, but the old host also forwards those events

to the new host. The new host can then derive the correct

order by combining delay information from events that arrive

along two paths. Our algorithm consists of two different,

interleaved steps: (1) migration and (2) delay adaption and

echo cancellation. Fig. 4 depicts a sequence diagram of the

611

Fig. 4. Steps of the cooperative handover.

cooperative handover. Below we explain the two steps in detail

by taking up the example from Fig. 3.

Step 1: Migration. When we migrate an ED from N1 to N2,

we first need to move the ED’s state. However, the movement

must fulfill certain requirements. First, as any downtime of the

ED may add delay to the generated events it must be as short

as possible. Second, since the ED is continuously processing

events, we cannot just terminate it and move it. Instead, when

we close an ED on one machine, we need to restore the correct

state on another machine.

To implement the migration at first (t0) the new ED on the

target host N2 subscribes the required events A, B, and C, and

then sends a handover request to N1. N1 responds with two

packets. The first packet holds the current delay information

for each subscribed event. For example, let N1 responds

with the delays δ(A)=30ms, δ(B)=10ms, and δ(C)=20ms. The

packet also holds the current time-stamp ts so that N2 can

calculate df=clk-ts, i.e., the sub-delay of forwarding an event

to N2. Let df be 5ms for our example.

The second packet is the snapshot of the ED. Since local

clocks may vary between both machines, N1 must ensure that

N2 buffers all events so that it can recover the correct state

from this snapshot. If N1 did not processed an event since

t0, its current state is used for the snapshot and tsnap=t0.
Otherwise tsnap is set to the occurrence time-stamp of the last

processed event. After sending the snapshot, N1 terminates the

ED as N2 will take over.

For instance, at t0=clk=100 N2 sends the handover request

to N1. As N1 is continuously processing events, it may

already be busy with an event with time-stamp 180. When

the handover request arrives N1 takes the snapshot of the ED,

sets tsnap=180, sends the packet to N2, and terminates the

ED. N2 sets the state of the ED and processes any buffered

events with a time-stamp above 180 (only).

Step 2: Delay adaption and echo cancellation. With the

above migration step we can correctly move a running ED

from N1 to N2. Nevertheless, at N2 event delays and therefore

Fig. 5. Delay δ(e) of event e before migration, δ′(e) after migration; df
is the forwarding sub-delay.

Algorithm 1: Delay Adaption and Echo Cancellation.

Data: EDnew, df , DelayList delays, EventList echo
begin

for delay d : delays do

d← d+ df ;
EDnew.K ← K ← max(delays); // set K
Event e;
while e.receive() do

if e.id /∈ EDnew.GetSubscriptions() then

continue;

if e.isDirect() then
delays.at(e.id)← clk-e.ts;
Kn ← max(delays);
if Kn 6= K then

EDnew.K ← K ← Kn; // r.-fit K
NotifyDelayChange();

StopForward(e.id);
if echo.contains(e) then

echo.erase(e); // duplicate.

else

echo.add(e);
EDnew.pushToOrderingUnit(e);

suitable K-values may be different, as the delays of the

subscribed events may have changed. Instead of starting with a

freshK ′

D=0, it is initialized according to the delay information

received from N1 in the first packet, i.e., K ′

D = max(δ(A)+df ,
δ(B)+df , δ(C)+df) = max(30+5, 10+5, 20+5) = 35ms.

As shown in Fig. 5 the new host receives all events twice.

An event e reaches N2 directly with a delay δ′(e) and it also

reaches N2 with a delay δ(e)+ df because it is forwarded by

N1. As soon as N2 receives an event along the direct route,

it can update its K by using δ′(e) instead of δ(e)+df . For
instance, a delay of δ′(A)=25ms for the first directly received

A reduces KD to max(25, 15, 25)=25ms.

While receiving events twice is advantageous for initializing

K and for setting up the reordering unit, echoed events would

pose problems for the ED. To make sure that the event ordering

unit only sees an event once, one of them needs to be dropped

so that only one event is in the ordered input stream of the

ED. Our echo cancellation works as follows: for each event

type there is a first time when the new host sees both an event

and its echo. Before that moment, events with lower delay are

passed along the ordering unit (and late events are dropped).

Afterwards, as soon as the direct event is received, to get rid

of the echos at the end of the transition phase, N1 is notified

that this event type does not need to be forwarded any longer.

Algorithm 1 gives the (abbreviated) pseudo code of the delay

adaption and echo cancellation.

The problem of sudden increases of K for EDs on upper

levels in the processing hierarchy is solved by pseudo events.

An ED’s ordering unit emits a pseudo event when its K
increases. The pseudo event carries the new delay to the upper

level EDs so that they can update their buffer sizes well before

they receive an event that may otherwise be too late. Pseudo

612

events are not used for event detection but only for resizing

buffer sizes further up the hierarchy.

This new cooperative handover performs safe migration of

EDs and simultaneously ensures a total event order for the

new ED. EDs are copied and immediately shut down because

the migrated ED iteratively calibrates its optimal K.

V. EVALUATION

We have analyzed position data streams from a Realtime

Locating System (RTLS) installed in the main soccer stadium

in Nuremberg, Germany. The RTLS tracks 144 transmitters

at 2,000 sampling points per second for the ball and 200

sampling points per second for players and referees. Players

are equipped with four transmitters, one at each of their limbs.

The sensor data consists of a time-stamp, absolute positions

in millimeters, velocity, acceleration, and Quality of Location

(QoL) for any direction [7].

Soccer needs these sampling rates. With 2,000 sampling

points per second for the ball and a velocity of up to 150

km/h, two succeeding positions may be more than 2cm apart.

Since soccer events like pass, double pass, shot on goal, etc.,

happen within a fraction of a second, event processing must

ensure that events are detected in time so that a hierarchy

of EDs can for instance control a system for smooth camera

movement or help a reporter to work with the live output.

A. Comparison with classic migration

For a comparison we replay recorded test match data and

process it in our lab’s virtual environment (an ESXi server with

a cluster of VMs, each with a 2 GHz Dual Core CPU, 2 GB

of main memory, and 1 GBit virtual network communication

configured to simulate a real networked environment).

In this setup, we migrate an ED for detecting a pass. It

subscribes to four different event types and emits the pass

event. Other EDs behave similarily.

Approaches that ignore the order of events [2], [10] only

copy the snapshot and inevitably fail. Approaches that run in

parallel [2], [5] until all delays are correctly measured are less

efficient than those that use stream forwarding [6]. We denote

the latter as classic approaches and compare our migration

with them.

1) Misdetection avoidance: A classic migration would

snapshot the ED on one host, ship it to and re-start it with

the current buffer size on the target host, and subscribe to all

the necessary events (this is better than an initial buffer size

of K=0). This only works well if all the subscribed events

arrive at the new host earlier than they used to arrive before

migration. If events take longer, the buffer is too small and

the ED will fail because it processes events out of order.

To demonstrate that this problem does occur in practice and

that our cooperative handover can deal with this issue, we

replay the test match data twice.

Fig. 6(a) shows the K-values of the ED migrated in the

classic way (first replay, dotted line, K starts at 40ms). This

ED fails 5 times within the first 17 seconds after migration.

Whenever it fails, K is increased to prevent future misdetec-

tions (as dynamic K-slack buffering would do). One event type

first shows up after 30s but did not increase K.

In comparison, in the second replay our cooperatively

migrated ED subscribes to the events twice. It receives the

events on the direct path (as the naively migrated ED does)

and a forwarded copy from the old site which includes the

forwarding sub-delay of 30ms. Hence, our technique makes

the ED start with a higher K-value (40+30=70ms) at the

beginning. And whenever direct events show up early, the K-

value is lowered. As shown in Fig. 6(a) our novel technique

avoids misdetections as the K-value is always large enough.

Moreover, K of the migrated pass ED is just 17% too large at

the beginning (70ms instead of 60ms) and melts down quickly.

This is a small price tag for perfect detection.

2) Bandwidth and shipping cost reductions: An idea to

make the classic migration avoid misdetection is to leave the

event ordering unit behind on the old host and to forward the

ordered event stream to the new host where the events can then

be processed in order. On the target host we only measure the

event delays of directly received events, and let a new ordering

unit take over as soon as K is properly derived.

In the example of Fig. 6(a), the classic migration with event

forwarding sorts the events on the original host for 30 seconds

with a delay of K=40ms before they are forwarded to the

target host with an additional forwarding delay of df=30s.
The total delay on the target host is 70ms. This goes on

for 30s, before the migrated ED can switch to the newly

configured reordering unit (K=60ms). This results in the same

correct detection that our cooperatively migrated ED achieves,

but without the early meltdown of K, i.e., with a higher

accumulated latency.

Moreover, latency is not the only disadvantage of the

classic migration with event forwarding. The main problem

is the network bandwidth that event forwarding consumes.

Forwarding of all events for the first 30s takes 13,337 packets,

just for this single pass ED. In contrast, our novel cooperative

migration can stop sending events of a certain type, as soon

as one event of that type has reached the migrated ED along

the direct path. In the example, a total of only 51 packets

need to be sent, i.e., cooperative migration can save 99.6% of

the network bandwidth and shipping overhead of the classic

technique with event forwarding. For other EDs that we see

in practice there are even larger savings. For some of the EDs

of the soccer application it takes as long as 5 minutes before

at least one event of every type has appeared, i.e., before the

classic technique can stop forwarding of all events. The results

shown here generally hold for other EDs because the number

of forwarded events is limited by the number of subscriptions.

Each type is only forwarded until the new host received it

once. Hence, a statistical consideration is not necessary. Our

migration only has the overhead of the K-slack buffer at the

old node which is negligible.

The overhead of the correct but inefficient classic migra-

tion with event forwarding is prohibitive since migration is

triggered often because of bandwidth or load bottlenecks.

613

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30

 40

 50

 60

 70

 80

 90

 100
K

 i
n

 m
s

time in s

K with delay adaption
misdetection

K of classic migration,
 updated upon misdetection

(a) Delays and K after state transition.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80

C
P

U
 l
o

a
d

 i
n

 %

time in s

Host 1
Host 2
Host 3

(b) CPU loads without migration.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80

C
P

U
 l
o

a
d

 i
n

 %

time in s

Host 1
Host 2
Host 3

(c) CPU loads with migration.

Fig. 6. Evaluation results when applying migration.

B. Use Case

The real environment in the stadium consists of several 64-

bit Linux machines, each with two Intel Xeon E5560 Quad

Core CPUs at 2.80 GHz and 64 GB of main memory that

communicate over a 1 GBit fully switched network.

For the evaluation we pick up the use-case described in

Sec. I. Fig. 6(b) shows a timeline of the CPU load on three

hosts. At the beginning, EDs are somehow distributed over the

machines with a rather balanced load. After about 25 seconds,

the load on host 1 rises rapidly because after a corner kick

many players run into the penalty area. This triggers many

EDs and increases CPU consumption. Without migration, CPU

1 gets fully loaded and the system fails as it can no longer

perform event detection although the other two machines run

at a moderate load. Note that in Fig. 6(b) the system fails

at after about 53 seconds when it hits 100% load. The drop

of the load afterwards is an artifact of the use case. Due

to the misdetections of some EDs, other EDs misdetect as

well and reach simpler and invalid states. The system keeps

misbehaving for a long time after the peak. With migration,

there is no peak and no such misbehavior. Migrating EDs to

hosts 2 and 3 smoothes load distribution, see Fig. 6(c).

Hence, when CPU loads get unbalanced and event pro-

cessing becomes critical for the performance, our technique

transparently migrates EDs that continue to process events

correctly. In the test matches, it only took a few ms to migrate

an ED completely. The longest forwarding time we have seen

for the migrated ED was 2.1 seconds. On average, the data

size of a migrated ED state was 81 Bytes. The largest was

183 Bytes (player positions, time-stamps of previous events).

If EDs are migrated with techniques that run EDs in

parallel [2], [5] the loads on nodes 2 and 3 increase as in

Fig. 6(c), but node 1 behaves as in Fig. 6(b). With classic

migration based on stream forwarding [6] we see similar CPU

loads as in Fig. 6(c). However, the difference is the immense

networking overhead that lasts for a long time.

VI. CONCLUSION

In distributed publish/subscribe-based systems there arise

needs to migrate EDs from one host to another at runtime

due to various reasons such as load balancing or performance

optimization. The presented method migrates stateful EDs at

runtime while low-latency time constraints are kept valid. To

guarantee correct event order we use delay information from

the old host and runtime measurements on the new host to

calibrate the event input buffers of the ordering units. The

introduced network overhead is negligible and the method

works well on a Realtime Locating Systems (RTLS) in a

soccer application. Our algorithm also solves migration issues

known from sensor networks. EDs can be considered to run on

sensor nodes and events need to be transferred in the network.

Future work will optimizes the ED distribution by heuristics

and try to further reduce the duration of forwarding.

ACKNOWLEDGEMENTS

This work is supported by the Fraunhofer Institute for

Integrated Ciruits IIS whose RTLS called RedFIR we have

used. We are grateful to the researchers at the Fraunhofer IIS

for sharing their work and system with us.

REFERENCES

[1] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu, “Live migration of virtual
machine based on full system trace and replay,” in Proc. 18th ACM Intl.

Symp. High Perf. Distrib. Computing, (Garching, Germany), pp. 101–
110, 2009.

[2] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg, “Live wide-
area migration of virtual machines including local persistent state,” in
Proc. 3rd Intl. Conf. Virt. Exec. Env., (San Diego, CA), pp. 169–179,
2007.

[3] A. Barak, A. Shiloh, and L. Amar, “An organizational grid of federated
MOSIX clusters,” in Proc. 5th IEEE Intl. Symp. Cluster Computing and

the Grid, (Cardiff, UK), pp. 350–357, 2005.
[4] S. Wang and E. Rundensteiner, “Scalable stream join processing with

expensive predicates: workload distribution and adaptation by time-
slicing,” in Proc. 12th Intl. Conf. Extending Database Technology Adv.

in Database Technology, (Saint Petersburg, Russia), pp. 299–310, 2009.
[5] B. Liu, M. Jbantova, and E. A. Rundensteiner, “Optimizing state-

intensive non-blocking queries using run-time adaptation,” in Proc. 23rd

Intl. Conf. Data Eng. Workshop, (Istanbul, Turkey), pp. 614–623, 2007.
[6] M. Endler and V. Nagamuta, “General approaches for implementing

seamless handover,” in Proc. 2nd Intl Workshop Principles of Mobile

Computing, (Toulouse, France), pp. 17–24, 2002.
[7] T. v. d. Grün, N. Franke, D. Wolf, N. Witt, and A. Eidloth, “A

real-time tracking system for football match and training analysis,” in
Microelectronic Systems, pp. 199–212, Springer Berlin, 2011.

[8] M. Li, M. Liu, L. Ding, E. Rundensteiner, and M. Mani, “Event stream
processing with out-of-order data arrival,” in Proc. 27th Intl. Conf.

Distrib. Comp. Systems Workshops, (Toronto, Canada), pp. 67–74, 2007.
[9] C. Mutschler and M. Philippsen, “Distributed Low-Latency Out-of-

Order Event Processing for High Data Rate Sensor Streams,” in 27th

Intl. Conf. Par. & Distrib. Processing Symp., (Boston, MA), May 2013.
[10] M. Liu, M. Li, D. Golovnya, E. Rundensteiner, and K. Claypool,

“Sequence pattern query processing over out-of-order event streams,”
in Proc. 25th Intl. Conf. Data Eng., (Shanghai, China), pp. 784–795,
2009.

614

