
A reconfigurable distributed CEP middleware for diverse mobility scenarios

Piotr Kamisiński, Vera Goebel and Thomas Plagemann
Department of Informatics, University of Oslo, Norway

{piotr, goebel, plageman}@ifi.uio.no

Abstract—Sensor nodes and complex event processing (CEP)
are important and powerful means for gathering data and
detecting phenomena of interest in mission-critical pervasive
systems, e.g. for emergency and rescue operations. However,
the dynamic network does not allow using centralized CEP. To
address this issue, we present a component-based distributed
CEP middleware. Its main goal is easy reconfigurability to
different mobility scenarios. This is achieved by providing
an extensible collection of algorithms that are tailored for
specific scenarios. The middleware makes it possible to select on
demand the algorithms that are most suitable for the current
scenario. Our evaluation shows that the middleware works in
a broad spectrum of mobility scenarios. We also investigate the
trade-off between efficiency and reliability of distributed CEP.

I. INTRODUCTION

Complex event processing (CEP) is a powerful tool to
detect events of interest based on data from multiple data
sources, e.g. sensors. The user specifies events in form of
subscriptions. Given a set of subscriptions, the CEP system
processes data. When an event is detected, a notification
is issued and presented to the user. CEP is used in many
application domains, e.g. business process monitoring, or
automated home care [7]. The CEP solutions used there are
typically centralized, i.e. all data from sources is sent to and
processed by a central CEP system.

In some new application domains for pervasive comput-
ing, e.g. emergency and rescue (E&R) or environmental
monitoring, centralized CEP performs badly or does not
work at all. The main characteristics that contribute to this
are: possible network partitions, failures of computing nodes,
and diversity of scenarios (mobility, resources, workloads).

In E&R operations, it is not possible to rely on a network
infrastructure because it might not exist in remote areas, or
might be damaged or congested. Instead, data from sensors
can be collected via a mobile ad hoc network (MANET)
formed by devices such as smartphones, which are carried
by the E&R personnel. These mobile nodes can fail after a
mechanical damage or running out of resources, especially
battery. Furthermore, the MANET is prone to partitions
due to interferences and node mobility. Mobility is a norm
in E&R operations, where the movements of the person-
nel may follow very diverse patterns (mobility scenarios).
Thus, communication in these scenarios might be performed
through fundamentally different network paradigms, i.e. the
end-to-end paradigm for Internet-based networks, or the

Store-Carry-Forward paradigm for delay-tolerant networks.
The distribution of available resources on nodes across
the E&R area can be diverse as well. On many nodes,
resources may be scarce. Furthermore, the E&R personnel
may issue subscriptions that can vary with the diversity
and number of required data sources. Also, the sources can
have different sampling rates, leading to different amounts
of data that needs to be processed. Finally, in E&R, reliable
event detection is mission-critical. Missing or substantially
delaying the detection of an event may result in loss of lives.

The aforementioned characteristics make it extremely
important to design a CEP system that is efficient, reliable
and reconfigurable. It has to be efficient due to scarcity of
resources. Reliability is needed to cope with possible node
failures and network partitions. Finally, reconfigurability is
needed to adapt to diverse scenarios of mobility, resources
and workloads, and to balance efficiency and reliability in
these different contexts.

Centralized CEP is inefficient because all data from
sources, including the data that does not lead to the detection
of an event, needs to be sent to the central node. This can be
addressed via distributed processing. The idea is to divide
the complex subscription into parts, such that each part can
be processed independently on a different node, as close
to the source as possible. This way, irrelevant data can be
filtered out early.

The central node in centralized CEP is a single point of
failure. In distributed processing, this issue can be avoided
via redundant processing, i.e. processing each part of the
subscription on multiple nodes. If one of them becomes
unreachable, the others can still detect events. There is how-
ever an inherent trade-off between reliability and efficiency
because higher redundancy means also higher resource us-
age. We have to consider this trade-off in order to keep the
performance of distributed CEP at an acceptable level.

Due to the strong diversity of scenarios, it is infeasible
to use a single algorithm to reconfigure distributed CEP to
be efficient and reliable in all scenarios. Therefore, diverse
scenarios need to be addressed by different algorithms.

Our main contribution is the architecture of a distributed
CEP middleware that can be reconfigured to a wide range of
scenarios. We present a prototype implementation and show
via emulation that the middleware can work well in diverse
mobility scenarios. Reconfiguration of distributed CEP in so
diverse scenarios has not been investigated before. A detailed

978-1-4244-9529-0/13/$31.00 ©2013 IEEE

9th IEEE International Workshop on Sensor Networks and Systems for Pervasive Computing 2013, San Diego (22 March 2013)

615

discussion of related work can be found in Section IV.
In this paper, Section II outlines the design of our

distributed CEP system. In Section III, we present our
implementation and the evaluation approach, and discuss the
results. Section IV discusses the related work, concludes and
gives directions for further research.

II. DESIGN

The general idea of distributed CEP is as follows. The
user submits a subscription via his node (the application
node). In order to distribute CEP across multiple nodes in
the network, the subscription is split into parts. This results
in a subscription tree, where the vertices are called partial
subscriptions. The leaves (atomic subscriptions) filter data
from sources, and the other vertices perform some kind of
data aggregation. Partial subscriptions are placed on nodes
in the network, called the processing nodes. Each partial
subscription can be placed on any node (or multiple nodes to
increase reliability). In particular, to save resources, atomic
subscriptions can be placed on nodes close to the data
sources. Partial subscriptions are processed on the nodes they
were placed on. Data flows in the direction from leaves to
the root of the subscription tree. A node that receives a data
tuple processes it with respect to all partial subscriptions.
If an event is detected, a notification is generated. In the
next processing step, the notification is interpreted as a data
tuple and used as input to the parent partial subscription in
the subscription tree. If the parent was placed on a different
node, the tuple is sent to that node first. Parents are processed
recursively until the top-level partial subscription is reached.
When that happens, a complex event is detected and a
notification is sent to the user. If there is a change in context,
i.e. resources, network topology, mobility scenario, or the
workloads, the initial placement of partial subscriptions may
become suboptimal and may need to be adapted.

In order to realize the described approach, we identify
the main concerns and propose a component-based archi-
tecture, such that these concerns are addressed in separate
components: CEP, Communication, Placement, Splitting,
Activation & Deactivation, Resource Manager, Data Store,
Dispatcher. The reason behind this division is to reconfigure
the different concerns independently of each other. This can
decrease the overall cost of reconfiguration.

Due to the diversity of the available resources and the
workloads encountered in our application domains, it may
be necessary to support multiple processing engines that
trade off expressiveness for resource usage. Therefore, an
important design decision is to encapsulate (within the CEP
component) an existing centralized CEP engine, rather than
extend a state-of-the-art distributed CEP system to fulfill our
requirements. Currently, we use CommonSens [7] as the
CEP engine, as it supports spatial and temporal operators
and the source code is publicly available.

A separate Resource Manager facilitates the support for
diverse scenarios of resource availability in other com-
ponents. They consult the Resource Manager instead of
requesting the information about resources independently
from the operating system or from other middleware nodes.
Thus, the cost of obtaining the information is decreased.

The Data Store allows to increase reliability of CEP by
storing all subscriptions and data tuples received by the node,
even if they are not going to be processed immediately.

The Activation & Deactivation component allows to in-
crease the efficiency and reliability of CEP by deactivating
certain subscriptions temporarily when resources are scarce
on the node. After re-activation, the old processing state is
restored, therefore historical data tuples do not need to be
processed again.

A. Component design

We present the functional design of the middleware com-
ponents (Figure 1). The arrows in the figure indicate commu-
nication between the components on a single node, and they
start from the component that initiates the communication.

The CEP component consists of an existing centralized
CEP engine and a buffer to address issues that arise due
to distribution, e.g. out-of-order arrival of data tuples. The
component receives as input partial subscriptions and data
tuples. The CEP engine processes data tuples against sub-
scriptions. The CEP component also provides information
about the workloads to other components, e.g. Placement.

The main tasks of the Communication component are
to enable communication among middleware nodes and to
provide cross-layer information about connectivity to other
components, e.g. Placement. To address diverse mobility
scenarios, the component can be populated with algorithms
that support different network paradigms: from traditional
IP protocols for well-connected networks, to delay-tolerant
protocols (e.g. epidemic routing [8] or message-ferrying [9])
for partitioned networks.

The Splitting component receives subscriptions as input.
A complex subscription is split into parts. The result is
a subscription tree, consisting of partial subscriptions and
information about the hierarchy, i.e. the parents and children
of partial subscriptions. The tree is returned as output.

The Placement component receives partial subscriptions
or data tuples as input. Then, it executes a placement algo-
rithm that selects the destinations where the subscriptions (or
tuples) should be sent for processing. In order to make this
selection, the algorithm may request cross-layer information
about resources (from the Resource Manager), network
(from the Communication component) and workloads (from
the CEP component). The Placement component can be
populated with algorithms that address diverse scenarios.
The component returns a list of subscriptions (or tuples)
and destination addresses.

616

The Resource Manager monitors resources (e.g. battery)
on the local node and possibly remote nodes. It also keeps
information about the known data sources. A data source is
described by the following properties: i) the data source ID,
ii) the names of data tuple attributes, iii) the address of the
middleware node the source is connected to (the data source
node). Other components can request this information.

The Activation & Deactivation component receives par-
tial subscriptions as input. It requests information about
resources from the Resource Manager and decides whether
the subscriptions shall be processed on the local node.
The subscriptions for which the decision is affirmative are
relayed to the CEP component.

The Data Store receives and stores subscriptions and data
tuples. They can be requested by other components.

The Dispatcher receives subscriptions (complex or partial)
and data tuples as input and is responsible for relying them
to the other components in the right order.

Figure 1. The component architecture of the middleware.

B. Configuration of placement

The key idea for supporting diverse mobility scenarios is
to provide different placement algorithms that work well in
different scenarios. From this collection of algorithms, one
can be selected that is most suitable for the current scenario.

One fundamental question is: how many algorithms are
needed for a potentially unlimited number of mobility
scenarios? As a first step towards answering this ques-
tion, we divide the space of scenarios into classes and
for each class we design an example placement algorithm
that works well in that class. Division into classes may
follow different criteria. For simplicity, we use relative node
mobility and node density. This results in four classes, where
each criterion can have the value ”low” or ”high”: LM-
HD (Low Mobility, High Density), LM-LD (Low Mobility,
Low Density), HM-LD (High Mobility, Low Density), and
HM-HD (High Mobility, High Density). We have designed
three placement algorithms: Topology Tree (TA) for LM-HD,
Remote Areas (RA) for HM-LD, and One-Hop Neighbors
(OHN) for HM-HD. We omit the LM-LD class because there
is no connectivity between the application node and the data
sources, and therefore placement cannot be performed. In
this paper, we show that it is possible to support diverse
scenarios with multiple algorithms. Therefore, the presented

algorithms do not need to be optimal and we do not
compare their performance with existing algorithms. We
proceed to describe the main ideas behind our algorithms.
For each of them, we assume that the Resource Manager
at the application node has complete information about data
sources. Currently, placement is attempted only once by each
algorithm and reconfiguration is started manually.

Topology Tree (TT). We assume that the Communica-
tion component at the application node has knowledge of
the entire network topology. Placement is performed by a
centralized algorithm, initiated at the application node. The
key idea is to increase the efficiency of CEP by placing
partial subscriptions on nodes as close to data sources as
possible.

The algorithm starts by placing atomic subscriptions on
the data source nodes. The remaining partial subscriptions
are handled level by level, starting with the lowest level
of the subscription tree and going incrementally up to the
root. For each partial subscription, the following steps are
executed. First, the lower-level partial subscriptions (the
current subscription’s children in the subscription tree) are
determined, together with the addresses of the nodes where
these partial subscriptions are placed. Second, the hop-by-
hop routes to these nodes are retrieved from the Communi-
cation component. Third, starting from the first hop in all
routes, i.e. the application node, the addresses of hops are
compared. If they match, the next hop is checked. The last
matching hop is the node where the partial subscription shall
be placed. The reason is that this node is closest (by the hop
count) to the nodes where the children are placed.

The algorithm adds to each partial subscription the ad-
dresses of the nodes where the parent subscription is placed.
The Placement components at the processing nodes store
those addresses and use them later to determine where to
place data tuples.

Placement of data tuples is performed with a single algo-
rithm, regardless which algorithm the partial subscriptions
were placed with. The algorithm looks up the addresses of
the nodes where the parent subscription was placed. These
are the nodes where the data tuple shall be placed.

Remote Areas (RA). We assume at least two network
partitions, and at least one message ferry. The Communi-
cation component at the application node does not know
the entire network topology, and with some (or all) data
source nodes it can only communicate via ferries. Placement
is performed by a decentralized algorithm, initiated at the
application node. The key idea is to determine which partial
subscriptions can be placed directly by the application node,
and which must be placed by different nodes.

The algorithm works in two stages. In the first stage, the
application node places with the TT algorithm the partial
subscriptions for which the destinations are in the local
partition. The remaining partial subscriptions are grouped
into subtrees that concern single remote partitions. The

617

application node places these subtrees in the appropriate
partitions. Finally, the partial subscriptions that concern
more than one remote partition are placed redundantly on
each message ferry. The purpose of this redundancy is to
increase the reliability of CEP in case a ferry fails. The sec-
ond stage of placement consists of independent placements
within remote partitions. In each partition, one selected node
deploys the TT algorithm to perform local placement of the
partial subscriptions belonging to the subtree.

One-Hop Neighbors (OHN). We assume that the ap-
plication node has at least one one-hop neighbor that will
at a certain time have direct connectivity with the data
source nodes. Placement is performed in a centralized way.
The application node places atomic subscriptions on the
respective data source nodes. It places the remaining partial
subscriptions redundantly on each one-hop neighbor, in
order to increase the reliability of CEP in case a mobile
processing node fails or moves away permanently.

III. EVALUATION

We have made a proof-of-concept implementation in
order to evaluate the middleware. The goal is to show
how reconfiguration of the middleware components can
improve the reliability and efficiency of distributed CEP
in different mobility scenarios. We evaluate the middleware
via emulation. The network is a MANET of IEEE 802.11b
nodes. Their initial positions, links and mobility traces are
simulated by the ns-3 network simulator, running on a
Linux workstation. Each ns-3 node is visible to Linux as a
separate TAP device. To each device, we attach an instance
of Linux Containers, inside which we run the middleware
and the OLSR routing daemon. We use OLSR because it is
proactive and maintains on each node full information about
the topology of the network partition. OLSR is the source
of cross-layer information for the TT and RA algorithms.

A. Evaluation approach

Mobility scenarios. We define six scenarios (two per
class). In each scenario, there are at least seven stationary
nodes: six data source nodes and one application node. The
communication data rate is 11 Mb/s.

Both LM-HD scenarios happen in the area of 100x60 m2,
which can correspond e.g. to a factory building. We assume
the transmission range of 20 m. According to Aschenbruck
et al. [1] and our own MANET testbed experiments, this
range is realistic for communication indoors or in the
presence of obstacles. The first scenario features a static
chain network topology of 20 nodes. The second scenario
features a topology of 30 nodes that move according to the
RWP mobility model, at the speed of 0.25 m/s, with no
pause time. All nodes are most of the time reachable from
one another via unicast routes.

The HM-LD scenarios feature 11 nodes that form four
network partitions. Four message ferries roam between the

partitions. One data source is in the same partition as the
application node. The first scenario happens e.g. in the ruins
of a building. The area size is 300x60 m2 and the partitions
are 100 m apart. Nodes have the communication range of
20 m. Ferries move at the speed of 2 m/s (rescue personnel
on foot). The second scenario happens e.g. in an area of an
avalanche. The area size is 1500x800 m2 and the partitions
are 500 m apart. The communication range is 250 m. Ferries
move at the speed of 10 m/s (e.g. snow scooters).

The HM-HD scenarios have the same area sizes and
communication ranges as the HM-LD scenarios. There are
respectively 23 and 8 mobile nodes. All nodes move accord-
ing to the RWP mobility model with the speed of 2 m/s and
no pause time. Note that, on average, the communication
ranges of the nodes in the first scenario cover a lower
percentage of the area than in the second scenario.

Subscriptions and workloads. It is infeasible to test
the middleware with every possible subscription. Therefore,
we divide the space of all subscriptions into classes and
use for evaluation one subscription from each class. As the
criteria for division, we use selectivity and complexity of
the subscription. Selectivity is the ratio ni

no
, where ni is

the number of tuples that arrive as input for processing,
no is the number of tuples that result from processing the
subscription. Complexity is the number of levels in the
subscription tree. For simplicity, each criterion can have
the value ”low” or ”high”, yielding four possible classes of
subscriptions: LS-LC (Low Selectivity, Low Complexity),
LS-HC (Low Selectivity, High Complexity), HS-LC (High
Selectivity, Low Complexity), HS-HC (High Selectivity,
High Complexity). For the evaluation, we use four sub-
scriptions (CS1-CS4 respectively), one from each class. The
subscription complexity is 2 for CS1 and CS3, and 4 for CS2
and CS4. Selectivity is determined by different predicates:
low selectivity by the OR predicate, and high selectivity
by the combination of the AND predicate and temporal
constraints. For each subscription, we use a workload that
allows to detect 5 complex events. Each data source sends
data at the rate of 1/s.

The experiment. The application sends the complex
subscription. We let the partial subscriptions propagate to
the processing nodes. Then, the data sources send data. For
subscriptions CS1 and CS2, this takes 10 s, for CS3: 201
s, and for CS4: 310 s. After the data is sent, we wait until
all events are detected or until 2800 s has elapsed. There
are 288 configurations of: mobility scenarios (6), placement
algorithms (4), subscriptions (4), and tuple buffer sizes (3).
We run 5 iterations of each.

Metrics. We use two metrics to measure the reliability
of CEP. The first is the number of true positives (NTP), i.e.
the number of correctly detected events. If the application
node receives more than one notification of a single event,
the excess number is expressed by the number of duplicates
(ND). We measure efficiency using the overhead (OV)

618

metric, i.e. the total size (in bytes) of the messages sent
or forwarded by middleware nodes. For clarity, OV does
not include beacons from OLSR and epidemic routing. The
notification delay (D) depicts both reliability and efficiency.
It is measured for the first notification of each event and is
defined as the difference between the time the last relevant
reading was received from a data source, and the time the
event notification was received by the application.

B. Results

The evaluation shows that distributed CEP works reliably
and efficiently when we use the placement algorithm tailored
for the current scenario class. Applying a different algorithm
generally leads to missing events or increased traffic in the
network. In a few configurations however, more than one
placement algorithm performs well.

Figure 2 contains the average values and tolerance in-
tervals of NTP, ND, D and OV for one mobility scenario
from each class, under the assumption that out-of-order data
tuples are buffered indefinitely. The confidence intervals are
computed for confidence level of 95%.

The OHN algorithm works in all configurations, however
it works best in the HM-HD scenarios. In the LM-HD
scenarios, OV is much higher (3-20 times, depending on the
subscription) than with the TT algorithm due to redundant
processing. However, we observe redundancy leads to lower
D (5-30 times) in the scenario with slow mobility. In
this scenario, the network topology changes occasionally
(on average, once every 2 s) and packet loss may occur
when sending data tuples, especially via multi-hop routes.
Redundancy means that tuples may be sent via multiple
routes. Some of them may be stable, allowing a delivery with
few retransmissions and therefore a low D. This observation
shows that the mobility scenario is in fact near the border
between the LM-HD and HM-HD class. Increasing the speed
of nodes pushes the scenario into the HM-HD class, where
the TT placement algorithm no longer works. In the HM-LD
scenarios, OV is high with the OHN algorithm, due to the
fact that one of the one-hop neighbors of the application
node is stationary. Since several partial subscriptions are
processed on that node, many data tuples need to be sent
to it from remote partitions. In the HM-HD scenarios with
the OHN algorithm, the unstable network and high node
density lead to a high OV that varies significantly across
different runs of the experiment.

The RA algorithm works in LM-HD and HM-HD, but
only for subscriptions with low complexity (CS1 and CS3).
The reason that it does not work for subscriptions with high
complexity is that the algorithm attempts to place some
partial subscriptions on message ferries, which only exist
in the HM-LD scenarios.

As expected, duplicate notifications are encountered in
configurations where the top-level partial subscription is

processed redundantly (the OHN algorithm). ND for sub-
scriptions with high complexity is significantly higher (5-
10 times) than for subscriptions with low complexity. The
reason is that in the former case there are more partial
subscriptions. When processing a partial subscription results
in a data tuple, this tuple is sent to the nodes where the parent
subscription is placed. Processing each replica of the parent
subscription may result in a further data tuple. This proce-
dure continues recursively until the root of the subscription
tree is reached. Therefore, the number of generated data
tuples grows exponentially with the subscription complexity.

In centralized CEP (”C” in Figure 2), performance de-
pends heavily on the number of data tuples to send. If it is
high, as for selective subscriptions CS3 and CS4, the packet
loss due to network partitions may lead to retransmissions,
thus increasing OV and D. Some tuples are not delivered dur-
ing the experiment, leading to missing events, e.g. NTP=4
for CS2 in the first LM-HD scenario. For CS4 in HM-HD
scenarios, the number of simultaneous transmissions causes
saturation of the simulator and inability to deliver enough
tuples to detect any event (i.e. NTP=0). For CS2, centralized
CEP has significantly lower OV (up to 11 times) than
with the RA or OHN algorithm, however D is 1.5-2 times
higher. The reason is that less data needs to be sent through
the network, but there are fewer connectivity possibilities
because the data is sent directly to the application node.

In the presented experiments, we have assumed that out-
of-order data tuples are buffered indefinitely. If the buffer
holds tuples for a shorter time, NTP drops for selective
subscriptions (e.g. NTP=1 for CS4 in the first HM-LD
scenario, RA algorithm, buffer time = 0 s). The reason
is the semantics of the ”AND” predicate and predicates
with temporal constraints. They require ”true” tuples with
each attribute, and with specific timestamps. In the case
of non-selective subscriptions (CS1, CS2), decreasing the
buffer length causes a significantly (> 100 times) shorter
D, however ND could increase 8 times. This happens be-
cause the ”OR” predicate used in the subscriptions requires
”true” tuples with only one attribute. If tuples with different
attributes but identical timestamps arrive at different times,
a single complex event is detected more than once.

IV. CONCLUSION AND FUTURE WORK

In this paper, we introduce a distributed CEP middleware
that can be reconfigured to diverse scenarios of mobility,
resources and workloads, and can balance the efficiency
and reliability of CEP in these scenarios. The middleware
is component-based, which allows to reconfigure several
concerns of distributed CEP (e.g. communication, place-
ment of subscriptions and data tuples) independently. In
the evaluation of our proof-of-concept implementation, we
demonstrate reconfigurability to diverse mobility scenarios.

619

1

10

100

TT RA OHN C TT RA OHN C TT RA OHN C

N
T

P
 [

tu
p
le

s] CS1
CS2
CS3
CS4

1

10

100

TT RA OHN C TT RA OHN C TT RA OHN C

N
D

 [
tu

p
le

s]

0.1

1

10

100

10
3

TT RA OHN C TT RA OHN C TT RA OHN C

D
 [

s]

 LM-HD (1) HM-LD (1) HM-HD (2)

0.1
1

10
100
10

310
410
5

TT RA OHN C TT RA OHN C TT RA OHN C

O
V

 [
K

B
]

 LM-HD (1) HM-LD (1) HM-HD (2)

Figure 2. The results for selected configurations in the following mobility scenarios: LM-HD (1), HM-LD (1), HM-HD (2).

Reconfigurable and adaptive solutions for distributed CEP
(or in-network processing) and distributed data stream pro-
cessing have been researched in the context of WSNs [3] [4],
MANETs [2], infrastructure networks [6] [5], and combi-
nations of those [10]. The focus is on adapting [3] [2]
[6] [5] or reconfiguration [10] of placement of partial
subscriptions. GINSENG [4] adapts the configuration of
processing parameters, e.g. the sampling rates of sources.
Our work investigates reconfiguration of placement, however
the architecture is designed to support also other aspects
of distributed CEP. All approaches focus mainly on effi-
ciency of distributed CEP. Zhu et al. [10] models the event
notification delay and energy usage during CEP. The other
approaches monitor and react to changes in resources [5],
network (delay [4] [6] [5], bandwidth [6] [5], loss [4],
topology [2]), and the data tuple rates [3]. The approach
of Avvenuti et al. [2] is the closest to our work, however we
go beyond it by supporting network topologies in diverse
mobility scenarios. The reliability requirement is addressed
proactively (by placement on backup nodes) [3] or reactively
(placement on a new node after a node failure) [5]. The
former is less efficient but more reliable than the latter
if nodes can fail unexpectedly. Our approach can support
both, and allows to balance reliability and efficiency. There
exists a reconfigurable approach [10] that can send partial
subscriptions and data tuples either in peer-to-peer manner
over a MANET or unicast over an infrastructure network.
The proposed performance model uses a single partial
subscription, and investigates only a scenario with random
waypoint mobility. Instead, our approach supports arbitrary
subscriptions and mobility scenarios.

The contribution of this paper is a first step to enabling
CEP in new application domains like E&R. Our ongoing
research follows two main directions. First, we aim to per-
form reconfiguration automatically. The key idea is to detect
relevant changes in the scenario and then reconfigure the
appropriate middleware components. We plan to investigate
alternative placement algorithms to the ones presented in this
paper. Second, we will research the benefits of reconfiguring

other middleware components, e.g. Splitting or Activation &
Deactivation.

ACKNOWLEDGMENT

The work was funded by the SIRIUS project (ref.
2009/784) of the Norwegian Research Council.

REFERENCES

[1] N. Aschenbruck, R. Ernst, and P. Martini. Indoor mobility
modelling. In GLOBECOM Workshops. IEEE, 2010.

[2] M. Avvenuti, A. Vecchio, and G. Turi. A cross-layer approach
for publish/subscribe in mobile ad hoc networks. In Proc. of
the 2nd MATA. Springer-Verlag, 2005.

[3] B. J. Bonfils and P. Bonnet. Adaptive and decentralized
operator placement for in-network query processing. In Proc.
of the 2nd IPSN. Springer-Verlag, 2003.

[4] Z. Jerzak, A. Klein, and G. Hackenbroich. GINSENG
data processing framework. In Reasoning in Event-Based
Distributed Systems. Springer-Verlag, 2011.

[5] G. G. Koch, B. Koldehofe, and K. Rothermel. Cordies:
expressive event correlation in distributed systems. In Proc.
of the 4th DEBS. ACM, 2010.

[6] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos,
M. Welsh, and M. Seltzer. Network-aware operator placement
for stream-processing systems. In Proc. of the 22nd ICDE.
IEEE, 2006.

[7] J. Søberg, V. Goebel, and T. Plagemann. Commonsens:
Personalisation of complex event processing in automated
homecare. In Proc. of the ISSNIP. IEEE, 2010.

[8] A. Vahdat and D. Becker. Epidemic routing for partially-
connected ad hoc networks. Technical Report CS-200006,
Duke University, 2000.

[9] W. Zhao and M. H. Ammar. Message ferrying: Proactive
routing in highly-partitioned wireless ad hoc networks. In
Proc. of the 9th FTDCS. IEEE, 2003.

[10] X. Zhu, B. Xu, and O. Wolfson. Spatial queries in discon-
nected mobile networks. In Proc. of the 16th SIGSPATIAL.
ACM, 2008.

620

