
Towards Context-Aware Internet Services with
Unselfish Clients

Yu Lu
Department of Electrical and Computer Engineering

National University of Singapore
Email: lulu@nus.edu.sg

Wai-Choong Wong
Department of Electrical and Computer Engineering

National University of Singapore
Email:wong lawrence@nus.edu.sg

Abstract—The rapid advancement in context-aware computing
techniques greatly facilitates capturing the context information
of the Internet clients, which can be utilized by the Internet
services and applications to manage different network resources.
Based on the built context-aware system and the deduced highly
abstract context information, we propose a resource distribution
framework that incentivizes context sharing and moderate com-
petition among the selfish but rational Internet clients. Under
the proposed framework, the Internet client, which provides
its both negative and positive context, can be assigned to the
prioritized class and accordingly receive more resources from the
resource owner. Meanwhile, all the clients are motivated by the
framework to compete moderately and the aggressive ones are
penalized by receiving fewer resources. The Web system exemplar
is used to aid understanding of our motivation. We further model
the resource distribution process as a non-cooperative game
and accordingly provide the theoretical insight of the proposed
framework.

I. INTRODUCTION AND MOTIVATION

Context-aware computing leverages on various sensors to
collect a system’s environmental and contextual information,
which helps the system to increase its usability and ef-
fectiveness. The rapid progress in context-aware computing
techniques greatly facilitate collecting and ascertaining context
information of Internet end-users. Proper utilization of the
highly abstract and substantive Internet client’s context infor-
mation presents major opportunities to enhance the Internet
as a user-centric, context-aware and intelligent communication
system. There has been some research dedicated to building
such a systems for managing different network resources and
provide adaptable Internet services [1], [2]. The Internet client
refers to both the Internet end-user and the client side software,
such as the Web end-user and the Web browser.

However, each Internet client is rational and selfish in
nature, and therefore the Internet client may not be willing
to provide its context information, especially the negative
context information that may lead to lower priority in receiving
network resources or services. Moreover, the selfish nature also
means that the Internet clients compete aggressively for the
limited resources on the Internet. Based on the captured con-
text information, we propose a resource distribution framework
with the following explicit design objectives: (1) encourage
the Internet clients to provide and share their context infor-
mation, especially the negative ones; (2) encourage moderate
competition among the Internet clients.

We take the contemporary World Wide Web system as
an illustrative example. The Web system adopts the client-
server architecture and leverages on the HTTP protocol for
transferring Web pages between the Web server and the Web
clients. On the Web server side, the child process usually
creates multiple worker threads to handle the incoming HTTP
connection requests: normally, one worker thread serves one
HTTP connection at a time. Too many worker threads can eas-
ily cause thrashing in virtual memory system and considerably
degrade the server performance. In practice, a fixed limit is
always imposed on the maximum number of worker threads.
For example, the default maximum number in an Apache
HTTP Server 2.2 is set to 256. Therefore, the worker threads
held by the Web server always become the scarce resource in
the Web system. On the Web client side, HTTP/1.1 specifies
that “Clients that use persistent connections SHOULD limit
the number of simultaneous connections that they maintain
to a given server. A single-user client SHOULD NOT main-
tain more than 2 connections with any server or proxy”.
However, today’s commercial Web browsers frequently violate
this specification: the default maximum value of Firefox 3.6
is set to 6 parallel persistent connections per server, and 8
persistent connections per proxy. Recently, the latest Internet
Explorer and Google Chrome also aggressively adopt at least
6 parallel persistent connections per server as their default
settings. However, the existing Web system simply handles all
incoming HTTP requests and clients equally, and maintains a
FIFO queue with the drop-tail queue management. The context
information of the Web clients can be directly used by the
Web servers to differentiate between the worker threads that
are being used by the real end-users and the worker threads
that are just grabbed by the aggressive Web browsers at the
client side. Accordingly, the limited worker threads can be
properly allocated to the starving Internet clients.

In short, the limited resource, e.g., the worker threads
held by the Web server, often faces excessive competition
from the selfish but rational Internet clients. The captured
context information can directly help the Internet systems or
services to distribute the limited resource in an optimal way.
Therefore, it is necessary to explore an effective framework
to encourage the actual context sharing and the moderate
competition among the selfish but rational Internet clients.

The structure of the paper is as follows: Section I discusses
978-1-4244-9529-0/13/$31.00 ©2013 IEEE

5th International Workshop on Smart Environments and Ambient Intelligence 2013, San Diego (22 March 2013)

621

the motivation and background of this work. Section II de-
scribes the two basic categories of the advanced context infor-
mation deduced by the built context-aware system. Section III
presents the proposed resource distribution framework with the
theoretical analysis. Section IV concludes the paper.

II. SYSTEM DESCRIPTION

The existent context-aware systems always adopt several
context information acquisition approaches, typically includ-
ing the direct sensor access, the context server based and
the middleware based approaches [3]. The middleware based
approach uses a method of encapsulation to separate and
hide low-level sensing details to ease rapid prototyping and
implementing of a context-aware system. Such separation of
detecting and using context is also necessary to improve the
extensibility and the reusability of a context-aware system.
The middleware based approach thus has been widely adopted,
such as in SOCAM [4] system, to support acquiring, discover-
ing, interpreting and disseminating of the context information.

A middleware based context-aware system architecture typ-
ically consists of three functional modules: Context Sensing
Layer, Context Middleware Layer and Context Application
Layer. Based on such layered architecture, we have designed
and implemented a context-aware system to capture and utilize
the context information of the Internet clients [2]. The Context
Sensing Layer deploys a number of physical sensors and
virtual sensors: physical sensor refers to the hardware sensor
to capture the basic physical context, while virtual sensor
collects basic context from software environment including
the operating system. In the Context Middleware Layer, the
context inference engine or reasoning model performs the
context abstraction and reasoning task to translate basic con-
text data into highly abstract and significant context infor-
mation, which are termed as the Key Context Information
in this paper. Utilization of the Key Context Information
would facilitate building context-aware Internet services and
disseminating context information over the Internet. Different
Internet services and the protocol stack are located in the
Context Application Layer, where they do not necessarily need
to know details of the basic context data but directly make use
of the Key Context Information. In addition, a set of control
rules are required for the corresponding Internet services to
trigger the actions when a certain Key Context Information is
deduced and delivered.

In the context-aware system we built, two abstract and
significant categories of the Key Context Information have
been defined:

1) Communicating State (CS): The end-user interacts
with the specific Internet service and the information
exchange occurs between them.

2) Inactive State (IS): The end-user is detached from the
specific Internet service and no information exchange
occurs between them.

The above-defined Key Context Information covers a wide
range of the captured basic context information. For example,
the Internet end-user browsing the Web pages can be translated

Context Sensing

Layer

Physical SensorsVirtual Sensors

Context Middleware

Layer
Database

Context Engine and Model

Internet Services

Key Context

Information

Underlying Internet Protocol Stack

Context Application

Layer
Control

Rule

End-User

Fig. 1. Internet services operating at the Context Application Layer.

into the Communicating State with the Web service, and the
end-user temporarily leaving the computer can be translated
into the Inactive State with the Web service.

On the basis of the built context-aware system and the
above defined Key Context Information, we propose a resource
distribution framework that aims to encourage actual context
sharing and moderate competition among the Internet clients.

III. A RESOURCE DISTRIBUTION FRAMEWORK

A. Framework Workflow

Assume that 𝜇 basic units of the limited resource are held
by the server (or server cluster), which is termed resource
owner in this framework. The limited resource can be of
any type, such as worker thread, bandwidth, CPU time,
memory, etc. A finite set of the Internet clients, denoted by
𝑃𝑖, 𝑖 ∈ 𝐼 = {1, 2, ..., 𝑁}, compete for the given limited
resources. All Internet clients update and transfer their latest
Key Context Information to the resource owner through inter-
operable communication protocols or approaches, such as the
XML Protocol (XMLP) [5] or JAVA RMI (Remote Method
Invocation) [6]. The resource owner maintains a database
managing the delivered Key Context Information with the
time stamp recording the update time. On the resource owner
side, the time domain is divided into fixed-size time slots
𝑇𝑗 , 𝑗 ∈ {1, 2, ...,+∞}. Each individual time slot can be
further divided into two parts: an Initialization Period and
a subsequent Hold Period. The resource distribution process
only occurs in the Initialization Period, but its result effects
the entire Hold Period and part of the next Initialization
Period. Within each Initialization Period, the interaction steps
between the resource owner and the Internet clients, i.e., the
basic workflow of the resource distribution framework, can be
described as follows:

1) On the basis of the delivered Key Context Information,
the resource owner first performs the Willingness Value
Update Algorithm (WV-UA) to calculate its willingness
value for each Internet client. The willingness value,
say 𝑤𝑖(𝑇𝑗), reflects the amount of the resource that the
resource owner is willing to offer to the client 𝑃𝑖 during
the current time slot 𝑇𝑗 . After performing the WV-UA,

622

the resource owner instantly informs each client the
assigned willingness value.

2) After receiving the assigned willingness value, each
client, say 𝑃𝑖, takes proper strategy to select a bidding
value 𝑏𝑖(𝑇𝑗) and sends it back to the resource owner. The
bidding value 𝑏𝑖(𝑇𝑗) reflects the amount of the resource
that the client 𝑃𝑖 expects to obtain from the resource
owner during the current time slot 𝑇𝑗 . Meanwhile, based
on its bidding value 𝑏𝑖(𝑇𝑗), the client 𝑃𝑖 takes actions
according to the pre-defined Control Rules.

3) With all the received bidding values as well as the
original willingness values, the resource owner exe-
cutes the Resource Distribution Algorithm (RDA) to
obtain the final resource distribution result. The result
𝑥𝑖(𝑇𝑗), ∀𝑖 ∈ 𝐼 is the amount of the resource finally
assigned to the client 𝑃𝑖 for the current time slot
𝑇𝑗 . Based on the final resource distribution result, the
resource owner side takes actions according to the pre-
designed Control Rules.

Remark 1: If any individual client cannot timely provide its
bidding value before the STEP 3 starts, the resource owner
can simply assume that such client uses the given willingness
value as its bidding value.

Remark 2: Since the clients only need to update and transfer
their Key Context Information to the resource owner when it
changes, synchronization between the Internet clients and the
resource owner is not required.

The given three-step procedure defines the basic workflow
of the resource distribution framework. The STEP 1 and the
STEP 3 of the framework workflow require the Willingness
Value Update Algorithm and the Resource Distribution Algo-
rithm, which will be discussed in the following subsections,
respectively. The STEP 2 requires the proper bidding strategy,
which is discussed in the subsection of theoretical analysis.

B. Willingness Value Update Algorithm
In the STEP 1 of the framework workflow, the willingness

value 𝑤𝑖(𝑇𝑗) reflects the amount of the resource that the
resource owner is willing to offer to the client 𝑃𝑖 during the
time slot 𝑇𝑗 . The main objective of introducing the willingness
value concept and implementing the WV-UA is to make a
preliminary resource distribution purely based on the current
and historical Key Context Information of the Internet clients.

Based on the defined two categories of the Key Context
Information, i.e., the Communicating State (CS) and the
Inactive State (IS), we present a practical WV-UA to further
demonstrate the above design principles. At the beginning of
each time slot, i.e., the STEP 1 of the Initialization Period, the
resource owner first categorizes all clients into four classes ac-
cording to their Key Context Information during the previous
and the current time slot, which are denoted by 𝑠𝑖(𝑇𝑗−1) and
𝑠𝑖(𝑇𝑗), ∀𝑖 ∈ 𝐼:

𝐶1 = {𝑃𝑖 : 𝑠𝑖(𝑇𝑗) = 𝐶𝑆 & 𝑠𝑖(𝑇𝑗−1) = 𝐼𝑆 , 𝑖 ∈ 𝐼}
𝐶2 = {𝑃𝑖 : 𝑠𝑖(𝑇𝑗) = 𝐶𝑆 & 𝑠𝑖(𝑇𝑗−1) = 𝐶𝑆 , 𝑖 ∈ 𝐼}
𝐶3 = {𝑃𝑖 : 𝑠𝑖(𝑇𝑗) = 𝐼𝑆 & 𝑠𝑖(𝑇𝑗−1) = 𝐶𝑆 , 𝑖 ∈ 𝐼}
𝐶4 = {𝑃𝑖 : 𝑠𝑖(𝑇𝑗) = 𝐼𝑆 & 𝑠𝑖(𝑇𝑗−1) = 𝐼𝑆 , 𝑖 ∈ 𝐼}.

The classes 𝐶1 and 𝐶2 include all the clients in the CS at the
beginning of the current time slot 𝑇𝑗 , while during the previous
time slot 𝑇𝑗−1, they were in the IS and the CS, respectively.
The classes 𝐶3 and 𝐶4 involve all the clients in the IS at the
beginning of the current time slot 𝑇𝑗 , while during the previous
time slot 𝑇𝑗−1, they were in the CS and the IS, respectively.

As indicated in the WV-UA design principles, the resource
owner can directly use the value 𝜇, i.e., the total basic units
of the limited resource, as the sum of the assigned willingness
values. Since the classes 𝐶1 and 𝐶2 include all the clients that
are currently in the CS, most of the willingness value should
be assigned to these two classes. Hence, a splitting parameter
𝜃 (0 < 𝜃 < 1) can be specified by the resource owner to divide
𝜇 into two parts: the first part for the classes 𝐶1 and 𝐶2 and
the second part for the classes 𝐶3 and 𝐶4. Given 𝑁1 and 𝑁2

are the number of clients in the class 𝐶1 and the class 𝐶2, the
resource owner performs a WV-UA to calculate its willingness
value for these two classes in the current time slot 𝑇𝑗 , which
is described by the following pseudo-code.

Algorithm 1 Willingness Value Update Algorithm (WV-UA)
Input: 𝜇, 𝜃, 𝐶1, 𝐶2, 𝑁1, 𝑁2.
Output: willingness values 𝑤𝑖(𝑇𝑗) for all clients in the

classes 𝐶1 and 𝐶2.
1: 𝜂 = 𝜇 ∗ 𝜃;
2: 𝜆 =

⌊
𝜂

𝑁1+𝑁2

⌋
;

3: for 𝑖 = 1 → 𝑁1 +𝑁2 do
4: 𝑤𝑖(𝑇𝑗) = 𝜆;
5: end for
6: 𝜂′ = 𝜂 − 𝜆 ∗ (𝑁1 +𝑁2);
7: if 𝜂′ ≤ 𝑁1 then
8: Randomly choose 𝜂′ clients in 𝐶1, denoted by 𝐶 ′

1;
9: 𝑤𝑖(𝑇𝑗) = 𝑤𝑖(𝑇𝑗) + 1 for 𝑃𝑖 ∈ 𝐶 ′

1;
10: else {𝜂′ ≥ 𝑁1}
11: Randomly choose 𝜂′−𝑁1 clients in 𝐶2, denoted by 𝐶 ′

2;
12: 𝑤𝑖(𝑇𝑗) = 𝑤𝑖(𝑇𝑗) + 1 for 𝑃𝑖 ∈ 𝐶1 ∪ 𝐶 ′

2;
13: end if

The given WV-UA first determines 𝜂, i.e., the sum of the
assigned willingness values to all the clients in the classes 𝐶1

and 𝐶2. Given the client numbers 𝑁1 and 𝑁2, the WV-UA
calculates the average willingness value 𝜂

𝑁1+𝑁2
, and obtains

its integer part 𝜆 by using the floor function ⌊⋅⌋. 𝜆 is essentially
the maximum value that can be equally set for each client in
both classes. The WV-UA then sets 𝜆 as each client’s basic
willingness value. An extreme example is 𝑁1 +𝑁2 > 𝜂, then
the basic willingness value 𝜆 = 0 would be assigned to each
client. After assigning the basic 𝜆, the WV-UA calculates
the residual value in 𝜂, which is denoted by 𝜂′. If 𝜂′ is
smaller than the total number of clients in 𝐶1, the WV-UA
would randomly pick up 𝜂′ clients from 𝐶1 and increase their
corresponding willingness values by 1. Otherwise, the WV-UA
would randomly pick up 𝜂′ − 𝑁1 clients from the class 𝐶2,
and increase their corresponding willingness values as well as
the willingness value of each client in the class 𝐶1 by 1.

623

In the given WV-UA, the clients in the class 𝐶1 receive
higher willingness values than the clients in the class 𝐶2 as
long as the residual value 𝜂′ > 0. Note that the prioritized
class 𝐶1 requires the condition 𝑠𝑖(𝑇𝑗−1) = 𝐼𝑆. Hence, the
WV-UA encourages the Internet clients to actively and timely
update their actual Key Context Information, especially the IS,
and incentivizes such honest behavior by assigning the clients
higher willingness value when they transit back to the CS.
Similarly, the given WV-UA applies to the classes 𝐶3 and 𝐶4

with the total willingness values 𝜇 ∗ (1− 𝜃).
Remark 1: The splitting parameter 𝜃 can be either a constant

(e.g., 𝜃 = 0.9) or configured dynamically at the beginning of
each time slot by the resource owner.

Remark 2: Selecting the basic unit of the limited resource
is an Internet service-specific task. For example, in the Web
system, the worker threads held by the Web servers would be
the limited resource, where one worker thread can be simply
regarded as the basic unit. In the streaming media system, the
uplink bandwidth on the streaming server side would be the
limited resource, where the basic unit of the uplink bandwidth
can be set to 512 Kbps or 1 Mbps.

C. Resource Distribution Algorithm

In the STEP 3 of the framework workflow, the resource
owner executes the Resource Distribution Algorithm (RDA) to
calculate the final resource distribution result. The following
objectives should be considered when designing the RDA:

∙ Moderate Competition Support: Any Internet client,
whose bidding value is equal to, or lower than, the
assigned willingness value, i.e., 𝑏𝑖(𝑇𝑗) ≤ 𝑤𝑖(𝑇𝑗), would
receive its bidding amount of resource. Any Internet
client, whose bidding value is much higher than the
assigned willingness value, i.e., 𝑏𝑖(𝑇𝑗) ≫ 𝑤𝑖(𝑇𝑗), would
receive less or even no resource.

∙ Fairness: Any two Internet clients, who hold the same
willingness value and the same bidding value, would
receive the same amount of resource.

Based on the deduced Communicating State (CS) and the
Inactive State (IS), we present a practical RDA based on water
filling algorithm [7], [8]. Each Internet client, say 𝑃𝑖, is treated
as a bucket with the area 𝑏𝑖(𝑇𝑗) and the width 𝑤𝑖(𝑇𝑗). Each
bucket has a bottom thickness 𝑏𝑖(𝑇𝑗)

𝑤𝑖(𝑇𝑗)
, and accordingly its total

height amounts to 2𝑏𝑖(𝑇𝑗)
𝑤𝑖(𝑇𝑗)

. The height of the bucket essentially
reflects the aggressiveness level of the corresponding client:
higher bucket indicates more aggressive in principle.

According to the bucket height, the RDA aims to divide all
buckets (clients) into three groups: 𝐺1 = {𝑃1, ..., 𝑃𝐿}, 𝐺2 =
{𝑃𝐿+1, ..., 𝑃𝑀} and 𝐺3 = {𝑃𝑀+1, ..., 𝑃𝑁}, where 1 ≤ 𝐿 ≤
𝑀 ≤ 𝑁 . The RDA regards 𝐺1 as the “moderate” group, 𝐺2

as the “normal” group and 𝐺3 as the “aggressive” group. For
the clients in the group 𝐺1, the RDA fulfils all their demands,
i.e., offering their bidding amount of resource. For the clients
in the group 𝐺2, the RDA partly satisfies their demands by
offering a certain amount of resource, which ensures that all
buckets in the group 𝐺2 reach the same final height, denoted

by ℎ. For the clients in the group 𝐺3, the RDA does not
offer any resource to them. The RDA can be expressed by the
pseudo-code in Algorithm 2.

Algorithm 2 Resource Distribution Algorithm (RDA)
Input: 𝜇, 𝑏𝑖 and 𝑤𝑖, ∀𝑖 ∈ 𝐼 for the current time slot .
Output: Three groups 𝐺1, 𝐺2, 𝐺3, leftover resource 𝜇′.
Init: Sort all clients in ascending 𝑏𝑖

𝑤𝑖
order, denoted

by
{

𝑏1
𝑤1

, 𝑏2
𝑤2

, ... , 𝑏𝑁
𝑤𝑁

}
,

𝑙𝑜𝑤 = 2𝑏1
𝑤1

, ℎ𝑖𝑔ℎ = 𝑏𝑁
𝑤𝑁

, 𝑏0 = 0.
Routine 1: /∗ pick out all members in 𝐺1 ∗ /
for 𝑘 = 1 → 𝑁 do
𝛼 =

𝑖=𝑘∑
𝑖=1

𝑏𝑖;

𝑗 = 𝑘 + 1;
while 𝑙𝑜𝑤 ≻ 𝑏𝑗

𝑤𝑗
do

𝛼+ = (𝑙𝑜𝑤 ∗ 𝑤𝑗 − 𝑏𝑗);
𝑗 ++;

end while
if 𝛼 ≤ 𝜇 then
𝐿 = 𝑘; /∗𝑃𝑘 is assigned to 𝐺1 ∗ /
𝑙𝑜𝑤 = 2𝑏𝑘+1

𝑤𝑘+1
, 𝛼 = 0;

else {𝛼 ≻ 𝜇}
𝜇− =

𝑖=𝑘−1∑
𝑖=0

𝑏𝑖; /∗𝑃𝑘 is the first member in 𝐺2 ∗ /
𝜇′ = 𝜇, exit for;

end if
end for
Routine 2: /∗ pick out all members in 𝐺3 ∗ /
for 𝑘 = 𝑁 → 𝐿+ 1 do

if ℎ𝑖𝑔ℎ ≥ 2𝑏𝐿+1

𝑤𝐿+1
then

ℎ𝑖𝑔ℎ = 𝑏𝑘−1

𝑤𝑘−1
; /∗𝑃𝑘 is assigned to 𝐺3 ∗ /

else if ℎ𝑖𝑔ℎ < 2𝑏𝐿+1

𝑤𝐿+1
then

𝛽 =
𝑘∑

𝑗=𝐿+1

(ℎ𝑖𝑔ℎ ∗ 𝑤𝑗 − 𝑏𝑗);

if 𝛽 ≥ 𝜇 then
ℎ𝑖𝑔ℎ = 𝑏𝑘−1

𝑤𝑘−1
; /∗𝑃𝑘 is assigned to 𝐺3 ∗ /

else {𝛽 ≺ 𝜇}
𝑀 = 𝑘; /∗ 𝑃𝑘 is the last member in 𝐺2 ∗ /
exit for;

end if
end if

end for

In Routine 1, the RDA successively selects a bucket from
the shortest one and assumes it to be the last member of the
group 𝐺1. Then the RDA calculates the corresponding amount
of the required resource 𝛼: if 𝛼 is less than the available
amount of resource 𝜇, the selected bucket would be assigned
to the group 𝐺1 and the same procedure is applied to the next
bucket; otherwise the RDA calculates the leftover resource and
jumps to Routine 2. In Routine 2, the RDA successively selects
a bucket from the tallest one and assumes it to be the first
member of the group 𝐺3. Then it calculates the corresponding

624

amount of the required resource 𝛽: if 𝛽 is larger than the
leftover resource, the selected bucket would be assigned to
the group 𝐺3 and the same procedure is applied to the next
bucket; otherwise the RDA ends. Since Routine 1 and Routine
2 have picked out all the buckets in the groups 𝐺1 and 𝐺3,
the rest would be automatically assigned to the group 𝐺2.

The final height ℎ in the group 𝐺2 can be calculated by

ℎ =
𝑏𝑀
𝑤𝑀

+

𝜇′ −
𝑀−1∑
𝑖=𝐿+1

(𝑏𝑀
𝑤𝑀

∗ 𝑤𝑖 − 𝑏𝑖)

𝑀∑
𝑖=𝐿+1

𝑤𝑖

.

Finally, the resource owner can simply distribute the re-
source in terms of the three groups derived by the RDA:

𝑥𝑘(𝑇𝑗) =

⎧⎨⎩ 𝑏𝑘(𝑇𝑗), ∀𝑘 ∈ [1, 𝐿];
𝑤𝑘(𝑇𝑗) ∗ ℎ− 𝑏𝑘(𝑇𝑗), ∀𝑘 ∈ [𝐿+ 1, 𝑀];
0, ∀𝑘 ∈ [𝑀 + 1, 𝑁].

D. Theoretical Analysis

From the theoretical perspective, we discuss the important
properties of the proposed resource distribution framework
with the given WV-UA and the RDA. The basic workflow
of the framework determine the three-step interaction process
between the resource owner and the Internet clients. Such
interaction process can be modeled and analyzed as a non-
cooperative game: all Internet clients can be regarded as the
game players; each game player needs to adopt a bidding
strategy to decide its bidding value; the given WV-UA and the
RDA jointly work as the utility function and the final resource
distribution results give the payoff to each game player.
Therefore, we can adopt the non-cooperative game theory tool
to further analyze the resource distribution framework.

Lemma: With the given WV-UA and the RDA, the bidding
strategy profile 𝐵∗(𝑇𝑗) = {𝑏∗𝑐(𝑇𝑗) : 𝑏∗𝑐(𝑇𝑗) = 𝑤𝑐(𝑇𝑗), ∀𝑐 ∈
𝐼} is a pure-strategy Nash equilibrium in the time slot 𝑇𝑗 .
Proof: Consider 𝑃𝐿 and 𝑃𝑀 are the last member of the group
𝐺1 and the group 𝐺2 in the RDA, we have{

2𝑏𝐿
𝑤𝐿

≤ ℎ < 2𝑏𝐿+1

𝑤𝐿+1

2𝑏𝑀
𝑤𝑀

≤ 2ℎ < 2𝑏𝑀+1

𝑤𝑀+1
.

where the time expression 𝑇𝑗 can be omitted. Thus, the amount
of the resource assigned to the group 𝐺1, denoted by 𝜇1,
satisfies

𝜇1 =
𝐿∑

𝑖=1

𝑥𝑖 =
𝐿∑

𝑖=1

𝑏𝑖 ≤
𝐿∑

𝑖=1

ℎ

2
∗ 𝑤𝑖.

The resource assigned to 𝐺2, denoted by 𝜇2, satisfies

𝜇2 =
𝑀∑

𝑖=𝐿+1

𝑥𝑖 =
𝑀∑

𝑖=𝐿+1

(ℎ ∗ 𝑤𝑖 − 𝑏𝑖) <
𝑀∑

𝑖=𝐿+1

ℎ

2
∗ 𝑤𝑖.

The resource assigned to 𝐺3, denoted by 𝜇3, satisfies

𝜇3 =

𝑁∑
𝑖=𝑀+1

𝑥𝑖 = 0.

Hence, the resource assigned to all clients satisfies

𝜇1 + 𝜇2 + 𝜇3 <
𝑀∑
𝑖=1

ℎ

2
∗ 𝑤𝑖. (1)

Now, we prove that any client, say 𝑃𝑐, whose bidding value
𝑏𝑐 = 𝑤𝑐, must be assigned to the group 𝐺1 by the given RDA.
We consider the other two possible cases:

(1) When the client 𝑃𝑐 is assigned to the group 𝐺2, i.e.,

ℎ < 2𝑏𝑐
𝑤𝑐

≤ 2ℎ: the given WV-UA satisfies
𝑁∑
𝑖=1

𝑤𝑖(𝑇𝑗) = 𝜇

and consider 𝑏𝑐 = 𝑤𝑐, we have ℎ < 2𝜇
𝑁∑

𝑖=1

𝑤𝑖

. Together with (1),

we get

𝜇1 + 𝜇2 + 𝜇3 <

𝑀∑
𝑖=1

ℎ

2
∗ 𝑤𝑖 < 𝜇 ∗

𝑀∑
𝑖=1

𝑤𝑖

𝑁∑
𝑖=1

𝑤𝑖

< 𝜇.

The above inequality shows that the total assigned resource
is less than the total available resource, which conflicts with
the given RDA. Hence, it is impossible that the client 𝑃𝑐 is
assigned to the group 𝐺2 by the RDA.

(2) When the player 𝑃𝑐 is assigned to the group 𝐺3:
similarly, we get

𝜇1 + 𝜇2 + 𝜇3 <
𝑀∑
𝑖=1

ℎ

2
∗ 𝑤𝑖 <

𝜇

2
∗

𝑀∑
𝑖=1

𝑤𝑖

𝑁∑
𝑖=1

𝑤𝑖

< 𝜇.

The above inequality also conflicts with the given RDA,
and thus the client 𝑃𝑐 cannot be assigned to the group 𝐺3

by the RDA. Hence, with the given WV-UA and the RDA,
any Internet client, say 𝑃𝑐, who bids the assigned willingness
value, i.e., 𝑏𝑐(𝑇𝑗) = 𝑤𝑐(𝑇𝑗), can be guaranteed to receive its
bidding amount of resource, i.e., 𝑥𝑐(𝑇𝑗) = 𝑏𝑐(𝑇𝑗), regardless
of other clients’ bidding strategy.

With the given strategy profile 𝐵∗, we have

𝑁∑
𝑐=1

𝑏𝑐 =
𝑁∑
𝑐=1

𝑥𝑐 = 𝜇, (2)

The above equation shows that the resource is just used
up and all clients are assigned to the group 𝐺1 by the RDA.
Because no individual client, say 𝑃𝑐, could gain more resource
by a unilateral deviation from its initial bidding strategy 𝑏𝑐 =
𝑤𝑐, given that all the other clients insist on their own bidding
values. Therefore, the strategy profile 𝐵∗ is a pure-strategy
Nash equilibrium of the competition game.

Proposition: Under the proposed framework with the given
WV-UA and the RDA, the best policy for any individual

625

Internet client is to actively provide its Key Context Infor-
mation and meanwhile adopt the moderate bidding strategy to
compete for the limited resource.

Proof: As mentioned earlier, in general, all the Internet
clients are rational and selfish in nature, and thus they would
not be willing to provide their context information to the
resource owner, especially the negative IS. Moreover, they al-
ways behave aggressively to acquire more resource regardless
of others. The proposed framework with the given WV-UA
and the RDA addresses both issues:

1) In the given WV-UA, the highest prioritized class 𝐶1 =
{𝑃𝑖 : 𝑠𝑖(𝑇𝑗) = 𝐶𝑆 & 𝑠𝑖(𝑇𝑗−1) = 𝐼𝑆 , 𝑖 ∈ 𝐼} requires
the clients in the IS during the previous time slot. Hence,
for any rational Internet client temporarily in the IS, the best
policy is not to hide it but timely update the IS to the resource
owner. As a reward, when such client transits back to the
CS in the new time slot, the WV-UA will promptly classify
it into the first class 𝐶1 and accordingly offer it the highest
willingness value. The first part of Lemma shows that the
higher willingness value received, the more resource can be
guaranteed to gain from the resource owner. In other words,
for any Internet clients, timely providing the negative IS would
be incentivized by allocating more resource when they transit
back to the CS. Therefore, any rational Internet clients would
be motivated to provide both of their positive and negative
Key Context Information to the resource owner.

2) When any selfish client, say 𝑃𝑐, attempts to acquire much
more resource by adopting aggressive bidding strategies, i.e.,
𝑏𝑐(𝑇𝑗) ≫ 𝑤𝑐(𝑇𝑗), such client would deviate itself far from
the system Nash equilibrium 𝐵∗(𝑇𝑗). As a result, the client
cannot gain more resource to improve its payoff, but receives
less or even no resource from the resource owner. Since
adopting aggressive bidding strategies suffers a significant
reduction in the allocated resource, any rational Internet clients
are motivated to adopt a moderate bidding strategy when
competing for the resource with others. For example, the client
could request the amount of the resource that equals to, or is
slightly higher than, the given willingness value.

In short, with the given WV-UA and the RDA, the proposed
resource distribution framework effectively encourages the
Internet clients to provide their Key Context Information, and
meanwhile motivates moderate competition among the Internet
clients.

E. Related Work

The above analysis uses the non-cooperative game theory
and the Nash equilibrium concept. Briefly Speaking, game
theory [9] is a mathematical tool for modeling and analyz-
ing the strategic interactions among rational decision makers
(game players). Subsequently, it provides insight into the
corresponding competitive environments and mechanisms. The
non-cooperative game theory is one of the main branch of
game theory. It essentially describes the situation where each
selfish game player makes decisions independently and acts to
maximize his own benefit [10].

The outcome of the non-cooperative game is termed as the
Nash equilibrium, which indicates that no individual game
player can unilaterally improve his payoff/utility given that
the other players adopt the existing Nash equilibrium. One
of the important applications of non-cooperative game theory
is to help design the mechanism that leads independent and
selfish players towards a system-wide desirable outcome [11].
A comprehensive analysis and representative examples of non-
cooperative game are given in [12].

IV. CONCLUSION

In this paper, we present a resource distribution frame-
work that can utilize the context information of the Internet
clients to provide service differentiation. More importantly,
the framework workflow with the given practical WV-UA
and the RDA algorithms encourages the clients to actively
provide their context information. Meanwhile, the framework
also incentivizes moderate competition and penalizes excessive
competition among the Internet clients. The resource distribu-
tion process has been further modeled as a non-cooperative
game to provide theoretical insights of the framework. Our
ongoing research work and project envision a new realm for
introducing the highly abstract context information into differ-
ent Internet resource distribution processes, which eventually
leads to context-aware Internet services with unselfish Internet
clients.

REFERENCES

[1] H.-L. Truong and S. Dustdar, “A Survey on Context-aware Web Service
Systems,” International Journal of Web Information Systems, vol. 5,
no. 1, pp. 5–31, 2009.

[2] Y. Lu, M. Motani, and W. C. Wong, “When Ambient Intelligence Meets
the Internet: User Module Framework and its Applications,” Computer
Networks, vol. 56, no. 6, pp. 1763–1781, 2012.

[3] H. Chen, “An intelligent broker architecture for pervasive context-aware
systems,” Ph.D. dissertation, University of Maryland, 2004.

[4] T. Gu, H. K. Pung, and D. Q. Zhang, “A Service-oriented middleware
for building context-aware services,” Journal of Network and Computer
Applications, vol. 28, no. 1, pp. 1–18, 2005.

[5] E. Box et al., “Simple object access protocol (soap),” [online] Available:
http://www.w3c.org/TR/soap.

[6] A. Wollrath, R. Riggs, and J. Waldo, “A Distributed Object Model for
the Java System,” Sun Microsystems, Tech. Rep., 2009.

[7] J. L. Boudec, “Rate adaptation, congestion control and fairness: A
tutorial,” [online] Available: http://icapeople.epfl.ch/leboudec, 2008.

[8] B. M. Richard, T, C. M. Lee, Sam, C. S. Lui, John, and K. Y. Yau,
David, “Incentive and Service Differentiation in P2P Networks: A Game
Theoretic Approach,” IEEE/ACM Transactions on Networking, vol. 14,
no. 5, pp. 978–991, 2006.

[9] G. Owen, Game Thoery, 3rd Edition. San Diego, CA: Academic, 1995.
[10] B. Wang, Y. Wu, and K. J. R. Liu, “Game Theory for Cognitive Radio

Networks: An overview,” Computer Networks, vol. 54, pp. 2537–2561,
2010.

[11] K. Akkarajitsakul, E. Hossain, D. Niyato, and D. Kim, “Game Theoretic
Approaches for Multiple Access in Wireless Networks: A Survey,” IEEE
Communications Surveys & Tutorials, vol. 13, no. 3, pp. 372–395, 2011.

[12] K. Ritzberger, Foundations of Noncooperative Game Theory. New
York, Oxford University Press, 2002.

626

