
HomePort: Middleware for Heterogeneous
Home Automation Networks

Thibaut Le Guilly, Petur Olsen, Anders P. Ravn, Jesper Brix Rosenkilde, Arne Skou
Department of Computer Science

Aalborg University, Denmark
{thibaut,petur,apr,jbr,ask}@cs.aau.dk

Abstract—Ambient Intelligence systems use many sensors
and actuators, with a diversity of networks, protocols and
technologies which makes it impossible to access the devices
in a common manner. This paper presents the HomePort
software, which provides an open source RESTful interface to
heterogeneous sensor networks, allowing a simple unified access
to virtually any kind of protocol using well known standards.
HomePort includes means to provide event notification, as well
as a tracing mechanism. The software is implemented and we
report on initial experiments and provide an evaluation that
shows the feasibility and scalability of the approach.

Keywords-Service Delivery; REST; Middleware; Smart envi-
ronment; Heterogeneous network;

I. INTRODUCTION

Designing and setting up an Ambient Intelligence (AmI)
system is a tedious task because it has a variety of sensors
and actuators connected to different networks.

One may think that this is a once only problem when a
system is installed. Nevertheless, when a building is planned,
its AmI technologies are chosen based on the current
availability, performance and price; but after some years
a building administrator may wish to update or renew the
system, and by then the technologies that were chosen are no
longer the best ones, are outdated, or no longer supported.
If the design and implementation then relies heavily on the
technological choices, it might be impossible to change the
system, and therefore it cannot be updated. However, if the
design has a clear interface to heterogeneous networks from
the beginning, technology changes will not affect the main
system, and updating or changing a component is localized.
Thus, it is justified to invest in a middleware with a service
oriented interface to technologies.

In the following we present re-design and implementation
of the HomePort middleware which was presented concep-
tually in [1]. Their HomePort enabled intercommunication
between devices belonging to different sub-networks through
a bridging layer. This layer was implemented and evaluated,
but it turned out that it was easier to program interaction
among devices with dedicated control software. The effort
was then redirected to develop a middleware providing
access to services through a REST interface. The result of
the initial experiments helped design a device abstraction

layer with a common interface for controllers; it makes it
easier to interact with heterogeneous devices. This redesign
of the HomePort system offers a new middleware for solving
heterogeneity issues in an AmI environment. The main novel
contributions in this middleware are:

• implementation of REST interfaces for home automa-
tion applications,

• security and confidentiality resolved through standard
web-protocols, and

• an integrated tracing service that forms the basis for
resolving accountability issues.

The architecture is implemented and tested and is now
available as open source software for Linux platforms1.

II. BACKGROUND AND RELATED WORK

The REpresentational State Transfer (REST) architecture
was introduced by Roy Fielding [2] in the year 2000. The
term RESTful describes a system adhering to the REST
architecture. The World Wide Web contains a large number
of REST interfaces among which we mention Twitter and
Flickr. REST relies on four principles:

• Use of Unique Resource Identifiers (URIs) to access
resources provided by the web service.

• A uniform interface to access and modify resources,
with GET, PUT, DELETE and POST requests.

• Self-descriptive messages, to enable representation of
resources in different formats, such as HyperText
Markup Language (HTML), Extensible Markup Lan-
guage (XML), or JavaScript Object Notation (JSON).

• Interaction with resources are stateless, which means
that requests are independent.

The power of REST comes from the fact that it is easily
implemented using well known standards such as HTTP
and XML. Moreover, the stateless principle ensures high
scalability, as it reduces the server complexity since it does
not need to maintain client state information.

The other well-known web service technology is the Sim-
ple Object Access Protocol (SOAP) [3]. The main difference
between REST and SOAP is that REST is resource oriented
while SOAP is remote method invocation. As the HomePort

1Available at https://github.com/home-port

978-1-4244-9529-0/13/$31.00 ©2013 IEEE

5th International Workshop on Smart Environments and Ambient Intelligence 2013, San Diego (22 March 2013)

627

software has to provide access to resources, REST is a
natural choice.

An architecture comparable to HomePort is the DomoNet
architecture [4]. It is based on two main notions: the
TechManagers (TMs), that translate data to and from the
sub-networks, and Device Web Services (DeviceWS), that
are used by TMs to communicate with each other. Each
DeviceWS handles a different device type, and provides a
set of commands to access and control them. They also route
messages between different TMs. The DomoNet architecture
is similar to the original HomePort architecture which was
changed, because control was not clearly isolated, in the
sense that the system provides communication between dif-
ferent sub-networks rather than a common interface to them.
However, the current HomePort system uses an adapter layer
similar to the TMs to translate to and from the sub-networks.

The REST architecture has been used in other projects on
the Web of Things [5]–[8] which reports good experiences
with implementation of this architecture. The paper [5] gives
a good overview and demonstrates how to use REST for the
Web of Things; also it introduces the Server Sent Event no-
tion, used in HomePort as an option for dealing with events.
The HomePort software follows a similar architecture, but
deals with the problems of heterogeneous networks as well.
Another good example of a REST web server is found in [6].
A good overview of the REST architecture and the SOAP
technology can be found in [7], as well as an interesting
implementation of REST web services for Wireless Sensor
Networks (WSNs), where a web server is deployed on each
sensor node. Finally, [8] describes the TinyREST protocol,
providing REST capabilities to WSNs.

In [9] an approach is found which is similar to HomePort;
it streams data from sensors to clients using the HTTP
protocol. They provide a good overview of different avail-
able methods and describe stream feeds, a Web primitive
extending the traditional XML feeds to sensor streams.

Finally, we mention the Smart Energy Profile (SEP) [10]
developed by the ZigBee alliance. SEP aims at standardizing
communication to home automation devices from a Smart
Grid. SEP uses the REST architecture for its communication
model, and provides several function-sets that represent
the minimum device behavior necessary to deliver a func-
tionality. Among these we find a metering functionality, a
pricing functionality, and a load control functionality. SEP
is a proposed standard and thus provides guidelines for
implementations rather than an actual one. HomePort differs
from SEP in the way events are handled, which will be
discussed more in Section III-E.

III. HOMEPORT COMPONENTS

One of the requirements for HomePort as middleware is
that it should be possible to deploy it on a wide range of
resource constrained devices with a minimum cost. Thus it
is implemented in C, and the targeted platforms are Linux

Figure 1. The HomePort architecture

based systems. Because the aim is to improve communica-
tion with different protocols and standards for interaction
with AmI devices, the release of the software is made open
source so that anybody can contribute to it, use it for free
or reuse parts of the code.

The system, illustrated in Figure 1, has seven main
modules that are described in more details below.

A) The service discovery module, that enables discovery of
services inside a Local Area Network (LAN).

B) The web service module, providing the REST interface
to access and control the services.

C) The HomePort services module, that holds the informa-
tion about the services and what they provide.

D) The HomePort adapters, that implement access to the
different heterogeneous networks connected to the sys-
tem.

E) The event processor module, accepting and dispatching
events from the services to the clients.

F) The access control module, that manages permissions to
access the different services.

G) The log module, keeping a trace of requests and events.

It is interesting to note that different HomePort systems
can cooperate with each other using their REST interfaces.
Thus it is possible to have several systems handling different
parts of an AmI installation, which makes it more fault
resistant by avoiding a single point of failure. Moreover,
a group of HomePort services can be aggregated into one
and present a single system image to the clients.

A. Service Discovery

Service discovery establishes connections between service
providers and service consumers. Service providers can
publish their services on the network, along with their
description and information on how to access them. The

628

service consumers can then browse for available services
and use the ones they are interested in.

Several service discovery protocols are available. Popular
ones are the DNS Service Discovery (DNS-SD) [11] pro-
tocol, and the Simple Service Discovery Protocol (SSDP).
DNS-SD is part of the Zero Configuration networking
(ZeroConf) [12] techniques to enable IP network, hostname
resolution and service discovery without any need for DHCP
or DNS servers. SSDP is part of the Universal Plug and
Play (UPnP) [13] networking protocols enabling UPnP com-
patible devices to seamlessly discover each other. UPnP
also provides control, event notification and a presentation
layer. We note that UPnP supports the ZeroConf protocol
for IP addressing, hostname resolution and service discovery
layers.

ZeroConf is small compared to UPnP, thus it is used in
HomePort. In fact, the UPnP control, event and presentation
layers are not relevant as HomePort already includes them.
Also the ZeroConf IPV4 Link Local, for automatic IP
addressing is useful when a DHCP server is not available.

The selected implementation of ZeroConf is Avahi2. It
implements fully the three techniques of ZeroConf, it is
open source and free to use. Another advantage of Avahi
is that it has two implementations. One targeting personal
computers and similar devices, making use of an Avahi
daemon enabling several applications to use it for publishing
and browsing DNS-SD services. Another one for stand alone
applications targeting embedded devices with limited power
and memory. HomePort may use either one, enabling both
workstations and embedded devices to publish their services.

All services registered in HomePort are published on the
network through ZeroConf. Thus, ZeroConf enabled clients
can browse them easily and access them directly. Clients
that are not ZeroConf enabled, may use a GET request on
the URL /devices; it returns a list of all devices connected
to the network, as well as the services that they provide.

B. Web Server

The web server is the external entry point to HomePort.
It lets clients connect to the system through HTTP(S)
requests, and follows the REST architecture. It processes
client requests and redirects them to a service adapter. It can
return error codes, either due to malformed requests from a
client or errors detected in an adapter.

C. HomePort Services

The HomePort services hold information about all ser-
vices that it knows, and works as an abstraction layer for
the client. The information allows a client to determine
what a service is offering, and how it can be accessed and
controlled. An adapter must provide this information when
registering a new service. Services are usually linked to

2http://www.avahi.org

devices that include information about the services that they
provide. However, it is possible to define virtual services.
An important example is the log facility. Some information
is mandatory, and other is optional. For devices, a name and
type is mandatory. Optional items include location, vendor
ID, product ID, and a version number. For services, the name
and the type is mandatory as well. Optional items include the
unit used by the service, and a list of parameters including
min and max values, scale, step, or possible values that the
service can accept. These parameters enable a client to send
commands to access or control the service.

D. HomePort adapters

The adapters are the MAC layer of the HomePort system.
They provide translation to and from devices located on the
sub-networks. The adapters communicate with the rest of the
system through a public API. This API provides functions
for registering and un-registering services, sending events
on services, and retrieving a service from the system service
list. When registering a service, an adapter provides callback
functions that are invoked when a client performs an HTTP
request on it. However, only a GET callback is mandatory.
If a request is issued with a method that is not implemented
by the addressed service, the service layer returns an error
code. When a request is issued that modifies the state of
a service, the updated state is returned to the client as a
confirmation that the request was successful. If the adapter
cannot fulfill the request, it returns an error indication.

A design goal for HomePort is to be able to dynami-
cally load new adapters. This enables integrating new sub-
networks without restarting the system. For this, the system
has an internal virtual service, where a client can request
download of a new adapters from a specified repository.
The adapter corresponding to the request is then downloaded
and executed dynamically by the system, enabling seamless
integration of a new network. In the same way, a client is
able to deactivate adapters. Also adapters can be updated
(deactivated and reactivated) in order to bring in new func-
tionalities or to fix issues.

E. Event processing

A main task in an AmI system is to deliver events from
services to clients. Here, different approaches can be taken.

A basic approach is polling: a client polls a resource and
detects the moment when the state of this resource changes.
The advantage is that it is really simple to implement, as
no particular event handler is required. However, it has
some well known drawbacks. First, depending on the polling
interval of the client, a delay is induced from the moment
an event occurs until the client is notified. Second, the
server load may experience local peaks if it receives polling
requests from many clients at the same time. Finally, the
polling requests may overload the network.

629

In order to resolve these issues, the SEP standard [10]
proposes a model in which clients register their interest
in some events in the server, and get contacted by the
server when an event for which they registered occurs.
This is essentially the Observer Pattern known from Object
Oriented Programming. This approach solves the issue of
high load on the server and the network, as well as the
delay for receiving events. However, this approach has three
main drawbacks: first, it undermines the REST architecture
principle, which states that the system should not keep state
information about the clients. In fact, it might not be scalable
in case of a large number of clients registering for events.
Second, it requires clients to support a web server, which
is a large overhead for small systems. Finally, a client may
be connected to the server behind a router, which makes it
impossible for the server to send notifications.

The approach that we adopt in the HomePort system is
based on the Server-Sent events draft standard from W3C
[14]. The Server-Sent events draft defines an API for using
an HTTP connection to receive so-called push notifications
from servers. The concept is that a client opens an HTTP
connection to the server, and keeps it open, so the server can
push information to the client when an event occurs. In order
to register interest for events, a client creates a custom pipe
on the server. When creating the pipe, the client specifies
which services it wants notification from. It then connects
to this pipe and the server pushes the information into it.
The client can also register for events such as inclusion or
exclusion of services in the system in order to be informed
when a service appears or disappears. This approach solves
both the REST issue, the network load and the event delay
issues. However, some might argue that it does not solve the
server load issue, as the server needs to have an open thread
for each connected client. This problem can be solved by
using an event driven architecture. It is expected that the
next release of HomePort will adopt such an architecture in
order to improve its scalability.

F. Access control

Access to services consist of read operations (GET re-
quests), to access a service state, or write operations, to
modify the state of a service, add or remove a service (PUT,
POST and DELETE requests). Because different clients have
different roles, it is necessary to delimit what each client can
do. The access control module controls the client’s rights
through an access table. This table contains information
about what kind of request each client can perform on each
service. So when a client is requesting access to a service,
a lookup is made in this table in order to determine if the
client has the right to perform this request. If it has not, an
error code is sent back by the server indicating the lack of
permission.

Clients are differentiated and identified by using their SSL
certificates. Therefore, each certificate will give different

access rights. In order to set up the rights, it is necessary to
have a ”master” certificate which gives the rights to modify
the access control table.

G. Log

The log module is an essential component of HomePort.
If it is an important tool for debugging, it is also necessary
in order to enable accountability measures [15]. The log
can be accessed remotely from a client through the url /log,
and can also be monitored dynamically through the event
system by registering to log events. If security is enabled on
the server, the log will be accessible only through a secured
connection as it can contain sensitive information. Two type
of log messages are defined. The first type record a client
request, and contains: timestamp - client ip address - HTTP
method - queried URL. The second type register an error that
occurs on the server, and is structured as follows: timestamp
- error token.

The log is stored in a circular buffer in order to avoid
consuming too much memory. The size of the log can be
configured at run time through a configuration file.

IV. SECURITY

Security is important when accessing and controlling
home automation equipment. For that reason, the commu-
nication between HomePort and the clients can use the
Transport Layer Security (TLS) protocol.

HomePort has three different configurations for security.
The first one is without security, which means that the com-
munication is through the open HTTP protocol. The second
one has both secured and non-secured communication. In
that case, two separate web servers are running, one com-
municating with HTTP and the other one communicating
with HTTPS. This configuration enables access control for
sensitive devices (such as door locks or windows), while still
allowing access to less sensitive devices (such as switches or
dimmers) for clients without secured communication. In that
case, it is the responsibility of the adapters to register their
services as secured or non secured. The last configuration
is the one where only HTTPS communication is enabled.
This is certainly the one we would recommend for real
deployment.

Note that HomePort does not handle issuing of certificates
used for secured communications. It is the responsibility
of the application providers to have procedures for issuing
them.

Another important point is that HomePort is only as
secure as the sub-networks are. In fact, the system cannot
increase the security of a sub-network. If one of them has
security issues, they will remain even when integrated in
the system. For example, if a wireless network does not
encrypt its data, it is not possible for the system to provide
encryption for communication with devices on that network.
However, the lack of security of one sub-network will not

630

Figure 2. Picture of the experimental suitcase

affect others, as they are well separated and cannot directly
interact with each other.

A last important security issue in the system concerns
dynamic loading of adapters. When downloading code from
the internet, it may be malicious and break the system. Even
without malicious code, untested code can contain bugs that
could shut the system down if no separation of concerns is
implemented. In order to solve this issue, it is necessary to
limit the rights of the adapters on what they can actually
do and what they can access, thus implementing a sandbox
[16] for the adapters. However, it is not clear yet how to
implement such a sandbox, and more investigation is needed
in order to define what limitations are required.

V. EXPERIMENTS

A. Description

A first version of HomePort has been implemented,
including the functionalities described above except for
dynamic loading of adapters and the access control module.
For the experiments, we set up an in-house home automation
system inside a suitcase, shown in Figure 2, so we can
carry the system around for demonstration purposes. The
experiment includes three sub-networks, shown in Figure
3: a wireless network connected to the HomePort system
through a Z-Wave gateway via TCP/IP, a Power Line Com-
munication network also communicating with HomePort
through TCP/IP, and an access control panel connected
through RS232. The HomePort system runs on a LIAB SG
Linux computer with an Atmel AT91SAM9260 CPU, 64MB
of SDRAM, 256MB of NAND flash, an RS232 port, and an
Ethernet port.

The Z-Wave network includes a temperature and a hu-
midity sensor, a thermostat, and a window sensor. The PLC
network includes two outlets, and one dimmable lamp.

A web client interface was used to interact with the
system. We used the Google Web Tool Kit API to implement
it in order to accelerate the development process. Thanks

Liab SG

Outlets

Lamp

PLC
Key PanelZ-Wave

Window
sensor

Themo-
stat

Humidity
sensor

Temp
sensor

Client / Controller

TCP/IP RS232

TCP/IP

Figure 3. Experiment set-up

to this interface, we were able to implement use case
scenarios to demonstrate the use of HomePort services in
an AmI system. One scenario simulates regulation of room
temperature in modes where the window is opened or it
is closed. The thermostat is lowered when the window is
opened, and set back to its previous point when the window
is closed. Another example scenario regulates the room
temperature and light depending on the presence of people
in the house. The access control panel is used to simulate
people leaving or entering the house. When people leave
the house, the thermostat is set to low and all the lights are
turned off. When they re-enter, the thermostat and all the
lights are set back to the state they were. A third scenario
simulates burglars entering the house. The window sensor is
triggered simulating a break in. When the alarm is triggered,
all the lights are switched on, and the access control buzzer
is triggered, until the correct pin code is entered.

B. Outcomes

From experiments, we were able to draw some conclu-
sions. First, by implementing the adapters for each of the
sub-networks, we could work with adapter implementation
and see how much effort is required to implement them.
Interfacing with the HomePort system is easy, but imple-
menting an adapter can be more complex depending on the
underlying protocol. It took for example two workdays to
implement an adapter for the RS-232 control panel, while
it took five workdays to implement one for the Z-Wave
network for the first time. Registering services and devices,
sending events or receiving requests on them is intuitive.
However, we noticed that it was useful for the adapters to be
able to attach some data when registering a service, in order
to help identifying it. We thus added a field in the service
description that can be used to store any data. Overall we
can say that implementation of adapters went smoothly. Note
that the HomePort repository1 provides developers with code
examples in order to help them develop their own adapters.

On the client side we could experience the power of the
REST architecture. The development of a REST client is

631

Table I
(a) Influence of requests per second

Requests per sec. 30 150 300 600
Mean Response time (ms) 2.79 3.39 4.30 5.07

(b) Influence of number of services
Services 5 50 100 1000

Mean Response time (ms) 0.51 0.63 0.83 3.33

really easy, as all that is required to interact with the services
is an HTTP library, already existing in the Google Web
Tool kit. Similarly, as a library for Server-Sent events was
available, we could interact with service events with less
than 10 lines of code. The parts that required the most work
were as usual implementation of the GUI for the application.
We can thus affirm that the use of a REST architecture makes
it easy to implement clients.

By experiencing with the event module from the client,
we have been able to see that it was resource efficient from a
client perspective as only one HTTP request was necessary
in order to receive notification from services.

The experiment also enabled us to test the maturity of the
HomePort software. We have been running this experiment
for 7 days without interruption, and without experiencing
any issue with it. The client interface was reconnected once
per day in order to simulate normal use.

C. Performance

In order to evaluate the scalability of the server, we ran
some load tests on the server3. For the purpose of this
experiment, a virtual adapter, returning a static value for
each request, was used in order to avoid the influence of
the communication with end-devices on the results. The
experiments evaluated the response time of the server de-
pending on the number of clients, and the number of services
served by the server. Table I(a) shows the influence of the
number of requests per second on the response time, while
Table I(b) shows the influence of the number of services.
For these experiments, each client performs three requests
on the server, one on the URL /devices, to retrieve the list
of services, one on the first registered service, and one
on the last registered service. For the evaluation of the
number of requests per seconds, fifty devices, each providing
five services were registered on the server, while for the
evaluation of the number of services, ten clients per seconds
were performing the set of requests.

The number of requests that can be handled per seconds
is probably sufficient for most applications. We note that
scalability for the number of services registered in the web
server could be improved by modifying the data structure
used for services. In fact, a linked list is now used for that

3Testing environment: Lenovo x230, 8GB of RAM, Intel Core i7-3520M
CPU @ 2.90GHz 4, Ubuntu 12.04 64bits, homeport v0.2, libmicrohttpd
v0.9.23. Testing tool is Tsung v1.4.1

purpose, and we believe that by using a trie structure the
performance will improve. This change is planned for the
next release of the software.

Overall, the implementation has an acceptable perfor-
mance.

VI. FUTURE WORK

A. Remaining modules

As mentioned in the experiments, the access control
module as well as the dynamic loading of adapters have not
yet been implemented, thus the current version of HomePort
does not enable addition or removal of sub-networks on the
fly. However, devices and services can be dynamically added
and removed if the sub-network supports it. Concerning the
access control module, the implementation should not be a
problem, as the concept is rather simple. For the dynamic
loading of adapters, we need to define a good way of
sandboxing the adapters and separate them properly from
the core of the system. Dynamic loading and execution of
code has already been implemented in the system, but it has
not been included yet because the security issues have not
been solved.

B. Services Representation

In its current form, HomePort presents services through
XML. But depending on the controller, XML might not be
the best language. A web client implemented in JavaScript
for example, would process JSON data more efficiently as
there would be no need for parsing. The XML language
has also been criticized for its overhead compared to other
description languages. A solution is the Efficient XML
Interchange (EXI) being developed by the W3C. EXI is a
binary format of XML, and reduce both the verbosity of
XML as well as the cost for parsing.

It would be useful for HomePort to be able to send data
in different formats depending on the ”Accept-Language”
field of the HTTP requests sent by the clients.

C. Control language

In order to cater for critical controllers, the software could
have an internal control module that could be managed by a
client through a virtual service. In order to make it simple for
the user to define control operations, a controller language
is being developed. This language will enable clients to
specify control over the AmI environment, and upload it to
the controller module. The model defined by the user will
be compiled into a language that the system can understand
before uploading it. The model currently under consideration
is based on timed automata.

VII. CONCLUSION

We have presented a middleware to provide a uniform
service interface to heterogeneous networks, in order to
improve maintainability and diversity of equipment in AmI

632

environments. Notable features are a REST architecture and
event notifications to clients that reduces both the network
and client load, and under certain conditions the server load.
By choosing a low level implementation language, an open
source and free target platform and by making the software
open source as well, the system can be implemented at low
cost on limited resources hardware.

With the increasing research in the Smart Grid area,
where AmI environments can provide data and control over
appliances to the energy provider in order to help them
improve the energy distribution and consumption, having a
common interface for communicating with different tech-
nologies and protocols is necessary. The HomePort system
aims to provide such an interface.

ACKNOWLEDGMENT

The research presented in this paper has been partially sup-
ported by the EU Artemis project ENCOURAGE4 and the Danish
ForskEL project TotalFlex5.

REFERENCES

[1] J. Brønsted, P. Madsen, A. Skou, and R. Torbensen, “The
homeport system,” in Proc. of 7th IEEE Consumer Commu-
nications and Networking Conference (CCNC), Jan. 2010, pp.
1 –5.

[2] R. T. Fielding, “Architectural styles and the design of
network-based software architectures,” Ph.D. dissertation,
University of California, Irvine, 2000.

[3] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and
D. F. Ferguson, Web Services Platform Architecture : SOAP,
WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable
Messaging, and More. Prentice Hall PTR, Mar. 2005.

[4] V. Miori, L. Tarrini, M. Manca, and G. Tolomei, “An open
standard solution for domotic interoperability,” Consumer
Electronics, IEEE Transactions on, vol. 52, no. 1, pp. 97 –
103, feb. 2006.

[5] D. Guinard, V. Trifa, and E. Wilde, “A resource oriented
architecture for the web of things,” in In Proc. of Internet
of Things (IOT), 29 2010-Dec. 1 2010, pp. 1 –8.

4http://www.encourage-project.eu
5http://totalflex.dk/In%20English/

[6] M. Weiss and D. Guinard, “Increasing energy awareness
through web-enabled power outlets,” in Proceedings of the
9th International Conference on Mobile and Ubiquitous Mul-
timedia, ser. MUM ’10. New York, NY, USA: ACM, 2010,
pp. 20:1–20:10.

[7] D. Guinard, V. Trifa, T. Pham, and O. Liechti, “Towards
physical mashups in the web of things,” in Networked Sensing
Systems (INSS), 2009 Sixth International Conference on, june
2009, pp. 1 –4.

[8] T. Luckenbach, P. Gober, S. Arbanowski, A. Kotsopoulos, and
K. Kim, “Tinyrest - a protocol for integrating sensor networks
into the internet,” in in Proc. of REALWSN, 2005.

[9] R. Dickerson, J. Lu, J. Lu, and K. Whitehouse, “Stream feeds:
an abstraction for the world wide sensor web,” in Proceedings
of the 1st international conference on The internet of things,
ser. IOT’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp.
360–375.

[10] ZigBee Alliance, “Smart energy profile 2.0,” Working Draft,
ZigBee Alliance, Internet-Draft, 2011.

[11] S. Cheshire and M. Krochmal, “DNS-based service discov-
ery,” Working Draft, IETF Secretariat, Fremont, CA, USA,
Internet-Draft draft-cheshire-dnsext-dns-sd-09.txt, Feb. 2011.

[12] D. Steinberg and S. Cheshire, Zero Configuration Network-
ing: The Definitive Guide. O’Reilly Media, Inc., 2005.

[13] M. Jeronimo and J. Weast, UPnP Design by Example: A
Software Developer’s Guide to Universal Plug and Play.
Intel Press, 2003.

[14] W3C, “Server-sent event,” Working Draft, W3C, Internet-
Draft, 2012.

[15] D. L. Métayer, M. Maarek, E. Mazza, M.-L. Potet, S. Frénot,
V. V. T. Tong, N. Craipeau, and R. Hardouin, “Liability issues
in software engineering: the use of formal methods to reduce
legal uncertainties,” Commun. ACM, vol. 54, no. 4, pp. 99–
106, 2011.

[16] H. Kaiya and K. Kaijiri, “Specifying runtime environments
and functionalities of downloadable components under the
sandbox model,” in Principles of Software Evolution, 2000.
Proceedings. International Symposium on, 2000, pp. 138 –
142.

633

