
Unity: Collaborative Downloading Content Using
Co-located Socially Connected Peers

Prateek Jassal, Kuldeep Yadav, Abhishek Kumar, Vinayak Naik, Vishesh Narwal, Amarjeet Singh,
Indraprastha Institute of Information Technology, Delhi (IIIT-D)

New Delhi, India
Email: {kuldeep, naik}@iiitd.ac.in

Abstract—
Large proliferation of mobile phone applications result in

extensive use of data intensive services such as multimedia
download and social network communication. With limited pene-
tration of 3G/4G networks in developing countries, it is common
to use low bandwidth 2G services for data communication,
resulting in larger download time and correspondingly high
power consumption.

In this paper, we present a system architecture, Unity, that
enables collaborative downloading across co-located peers. Unity
uses short range radio interfaces such as Bluetooth/WiFi for local
coordination, while the actual content is downloaded using a
cellular connection. Unity is designed to support mobile phones
with diverse capabilities. End-to-end implementation and evalu-
ation of Unity on Android based phones, with varying workload
sizes and number of peers, show that Unity can result in multi-
fold increase in download rate for the co-located peers. We also
describe architecture of cloud-based Unity which uses principles
of mobility prediction, social interactions, and opportunistic
networking to make collaboration more pervasive and useful.

I. INTRODUCTION

Majority of new cellular subscriptions today are coming
from developing countries. As per recent statistics, number
of 3G subscribers in China are only 14% of the total 1
billion cellular subscribers1, while in India, it is only 2% of
over 893.8 million subscribers2. Low penetration of 3G/4G
networks is attributed to higher setup cost, limited number
of supporting handsets and expensive data plans. As a result,
many people still use 2G based data connection which is
widely deployed and accessible on most of the phones. In
countries like India and Egypt, over 50% of users access
Internet from mobiles only3 and China has more mobile
Internet users than PC4. Recent Opera report shows5 that,
mobile users download content (mostly multimedia) from the
Internet using 2G network and top handsets used were found
to be feature phones.

Most advanced 2G technology (EDGE) can provide down-
load throughput of up to 48 KBps. We performed an exper-
iment to measure the throughput of 2G data connection in
wild by repeatedly downloading a MP3 song of about 5MB
size on five different phones, used by volunteers for a week.
The median download throughput achieved by the EDGE
network across two operators was about 18 KBps while the
variation was from 4 KBps to 28 KBps. We also observed

1 http://goo.gl/QvMJ9 2 http://goo.gl/ZGbUj 3 http://goo.gl/oR8Au
4 http://goo.gl/lYkr9 5 Opera Mini is a widely used browser in mobiles

many instances of failed downloads - approx. 22% downloads
failing for Operator A and approx. 42% for Operator B. Low
throughput and failed downloads are primarily due to two
major reasons - variable wireless conditions (low RSSI) and
variable load on cellular networks. As a result downloading
content (especially multimedia) on EDGE results in several
limitations - 1) Higher time to download; 2) Excessive power
consumption due to low throughput (cellular radio is switched
ON irrespective of data speed [4]); and 3) Poor user experience
due to frequent failed downloads. Additionally, there is a lack
of appropriate systems that can assist users while downloading
content in limited bandwidth conditions offered by 2G.

In this paper, we present Unity, a system that allows multiple
co-located phones (peers) to collaborate in downloading a
commonly desired content (workload). In Unity, co-located
peers participate to individually download different parts of
the desired workload and then share their downloaded part
with each other such that everyone gets the complete content
at the end. Mobile phone users are typically expected to be
part of several social gatherings during the day at different
places i.e. home, workplace, and even while commuting [6].
The key idea of Unity is to use these social meetings to provide
a collaborative environment with a usable interface to enable
faster downloads of content desired by all (or most) of the
participating peers. Almost all the phones, including feature
phones, have one or more small range radio technologies, such
as WiFi, Bluetooth, NFC. Unity leverages one of the available
short range technologies for coordinating and local sharing
of workload parts amongst peers while each of the part is
downloaded by individual peer from the Internet using cellular
connection. Specific contributions of this paper are as follows:

1) We present a system, Unity, (shown in Figure 1) that
exploits multiple radio interfaces available in common
phones for collaborative download of mutually desired
content by co-located socially connected peers.

2) We implement and discuss different variants of Unity
based upon A) Local communication interface - using
WiFi (Unity-WiFi), using Bluetooth (Unity-Bluetooth)
and B) Collaborative mechanisms - Unity-Default in
which workload is equally divided among peers and
Unity-Adapt that adapts to changing cellular network
conditions. All these variants are essentially different
components of final Unity system.

978-1-4244-9529-0/13/$31.00 ©2013 IEEE

The 9th International Workshop on Mobile Peer-to-Peer Computing 2013, San Diego (18 March 2013)The 9th International Workshop on Mobile Peer-to-Peer Computing 2013, San Diego (18 March 2013)

66

Fig. 1: Design of proposed system Unity , a group of mobile phones
users collaborates with each other to download a single workload
which are of interest to all of them

3) We implemented Unity on Android-based phones for
proof-of-concept and evaluated its effectiveness with
different workload sizes and varying number of collab-
orating peers. Our findings show that Unity can increase
the download rate by a factor of 3 when used by 4 peers
as compared to the best download rate amongst all peers.

4) Finally, we present Unity-Cloud - a cloud-based archi-
tecture to extend Unity using user’s redundant mobility
profiles and their social network. Unity-Cloud also min-
imizes the power consumption for a desired download
by predicting the best time (when the Internet bandwidth
is the best) to download.

II. SYSTEM ARCHITECTURE AND IMPLEMENTATION

System architecture of Unity is guided by various capabili-
ties of commonly available phones. Several implementation
aspects are described subsequently with the design details.
Initial implementation of Unity was built for Android phones
as they continue to grow in countries like India and at the
same time, provide rich networking API support essential
for our implementation. Unity works in two different modes
for the participating phones i.e. a phone can either act as a
coordinator or a peer. The coordinator initiates the download,
recruits phones in the geographical vicinity that are willing
to participate in the download process, and coordinates all
the communication with the participating peers. The peer
connects to the coordinator, downloads a part of the desired
workload and shares it with the coordinator. The coordinator,
within itself, also runs a peer instance to share the download
workload.

Usage Scenario: Let us now explain the utility of Unity
through a usage scenario, as shown in Figure 1. Three friends
Alice, Bob and Carol, are all interested in the multimedia con-
tent “V” and decide to use Unity for collaborative downloading
as follows:

1) Alice decides to be the initiator and therefore launches
Unity coordinator mode. She finds the URL of “V” and
feeds it into Unity. Bob and Carol launch the peer mode
of Unity .

2) After Alice chooses a network interface available within
all three of their devices e.g. Bluetooth/WiFi, Unity

launches device discovery on the selected network in-
terface to find nearby peers - Bob and Carol, and recruit
them as peers.

3) From the given URL, Unity in the coordinator mode
finds the size of “V” using the HTTP protocol request
and equally divide the file workload among the three
peers by communicating each one of them the URL
address with block information6.

4) On receipt of content download request from coordina-
tor, peers start downloading the assigned blocks using
their cellular connection.

5) On complete download of the assigned individual block,
each peer sends it to the coordinator who combines all
the blocks to make the desired content “V”.

6) Coordinator also communicates the remaining blocks
(from the received and downloaded blocks) to each peer.
As a result, each participating peer gets access to the
whole file after combining the received blocks with its
own downloaded block.

A. Modules of Unity:

We have kept design of Unity modular so that it can easily
run on phones with different capabilities. A brief description
of different modules in Unity is as follows:

• User Interface: One of the main design principle of Unity
is to abstract out various complexities of the system from
the user and provide a usable interface which can be used
for collaborative downloading. This module is responsible
for showing different screens to user based on the selected
mode i.e. Coordinator or Peer. Figure 3a shows the home
screen of Unity for coordinator which accepts different
parameters from the user to get started.

• Local Networking Module: Unity needs frequent message
passing and data sharing among different peers. This
modules enables seamless data sharing and message pass-
ing between different peers and coordinator using P2P
data transfer technologies such as WiFi and Bluetooth.
This module is invoked by the controller module when-
ever there is a need to do data exchange across devices.
A detailed description of working and implementation of
this module is presented in Section II-B.

• Downloader Module: The main task of this module is
to connect to the Internet using a cellular connection
and download desired content. This module is invoked
by the controller module in both modes, while passing
URL address and byte ranges as an input. This module
also provides functionality for updates on download and
cellular speed status to user interface to make it interac-
tive. If download of a workload got failed in between, it
restarts the download of a workload from the point it got
failed.

• Controller Module : This module has different functional-
ities for coordinator and peer modes. It is used to invoke
different modules in both modes of Unity. For instance,

6 It denotes the number of bytes with start and end byte to be downloaded

The 9th International Workshop on Mobile Peer-to-Peer Computing 2013, San Diego (18 March 2013)

67

Fig. 2: Sequence diagram of various control and data exchanges
between different phones in Unity-WiFi

based on user choice, it selects collaboration policy i.e
Unity-Adapt or Unity-Default (described in Section II-C)
and computes the download size for each peer. Addition-
ally, in the peer mode, it invokes local networking module
on completion of download to transfer the content to the
coordinator.

B. Local Networking

Unity’s local networking module may use WiFi and Blue-
tooth based on its availability on the phones. However, WiFi
and Bluetooth have different networking stack in the phones
and thus, require completely different and independent imple-
mentation.

1) Unity-WiFi: This is a variant of Unity which uses WiFi
for local communication. WiFi (802.11) supports two different
modes: Infrastructure and Adhoc. In infrastructure mode, two
or more WiFi enabled devices have to use a intermediate
WiFi access point (AP) to communicate between them because
AP is used for routing of data packets. In adhoc mode, two
different devices can directly (i.e. P2P) communicate with each
other without any AP. Android started supporting WiFi Adhoc
mode after OS version 4.0, popularly called as WiFi-Direct.
There are large number of phones, with prior Android OS
versions such as 2.2 or 2.37. Building our system with WiFi-
Direct would have eliminated more than 70% of the total
Android based phones. Further, WiFi adhoc mode results in
higher energy consumption as all the peers have to stay awake
and send beacons to exchange data whenever required.

As an alternative of WiFi adhoc mode, we use a novel
utility provided by Android called as WiFi hotspot, primarily
designed for sharing the Internet connection of the phone with
other devices such as a laptop. WiFi hotspot utility is available
on all version of Android which are running Android 2.3 or
beyond. WiFi hotspot utility uses 802.11 infrastructure mode
which turn the phone as WiFi AP and other phones8 can
connect to it. For simplicity, let us assume that coordinator
is acting as WiFi AP and all other phones connected to it
are different peers. Figure 2 shows various control and data
exchanges between a Unity coordinator and two Unity peers,
following is corresponding description:

7 http://goo.gl/d0C5D 8 Android 2.3 based AP can support up to 6
connected devices whereas Android 4.0 supports up to 7

(a) Home Screen (b) Device Discovery (c) Progress Status

Fig. 3: Different screens for Unity coordinator: (a) shows the
different modes and variants of Unity, (b) Peers running Unity peer
mode and (c) Transfer rate of downloading and blocks received from
other devices

1) The phone, which is running Unity coordinator creates
WiFi AP and other peers connect to it as clients.

2) As shown in Figure 2, coordinator launches device
discovery to discover all connected peers and exchange
a few control messages with them individually to get
information such as peer name. (Refer Phase 1)

3) After device discovery step, block information and URL
is passed on to all the peers using a control message
and each of them start downloading their block from
Internet. By default, Android uses WiFi AP functionality
for enabling tethering and it may happen that peers
start downloading using coordinator’s data connection.
To force the peers to use their own data connection, we
change the connection priority during download. (Refer
Phase 2)

4) Coordinator can also check the status of block download
in between by sending a status request.

5) On download completion, peers send their data blocks
to the coordinator. On receipt of blocks from all the
peers, coordinator sends the remaining blocks for each
peer to them. Peers then merge the received blocks with
downloaded blocks to get the complete content. (Refer
Phase 3 and 4)

Coordinator, acting as WiFi AP, will be awake for whole
download duration while the peers can operate in power saving
mode (PSM) which consumes negligible energy [10] or even
turn off their WiFi to save energy when not in use. As shown in
Figure 1, star topology where one phone, acting as coordinator,
communicates with all the other phones results in smaller
local communication bandwidth as compared to the distributed
architecture. Unity-WiFi requires that at least one person in the
group should have a phone with WiFi AP capability and all
other phones should have WiFi.

2) Unity-Bluetooth: To enable Unity on feature phones, we
also developed a Bluetooth based local networking module.
Bluetooth only supports adhoc P2P connection. In case of
Unity, coordinator runs Bluetooth server instance and the
peers run Bluetooth client instance. All control and data

The 9th International Workshop on Mobile Peer-to-Peer Computing 2013, San Diego (18 March 2013)

68

exchanges in Unity-Bluetooth happen in the same order as
Unity-WiFi. In the device discovery phase, each Unity peer
creates a bluetooth socket with a service record9 and listens
for incoming connections whereas Unity coordinator connects
with them subsequently and exchanges information such as
peer name as shown in Figure 2. Bluetooth server stores
all the UUIDs with peer names for future communication.
Unlike Unity-WiFi, it does not require changing data priority
on different peers.

C. Collaboration Schemes
As described in controller module, Unity has two different

collaboration schemes - Unity-Default, Unity-Adapt. Unity-
Default divides the desired workload of size d into equally
sized blocks. If there are n devices participating in the
download, block size, to be downloaded by each peer, will
be d/n. This scheme has advantage in terms of fairness as
all the collaborating peers will incur equal amount of data
connection expense. However, in cellular network conditions,
it is usual that some nearby peer may be experiencing poor
cellular network conditions resulting in low download rate.
In such cases, this scheme will result in increased waiting
time for Unity coordinator and other peers due to the peer
who is experiencing low throughput. Our experiments showed
that for large downloads, this incremental wait could be
several minutes thus correspondingly increasing the energy
consumption as well.

To reduce this waiting time, Unity uses an algorithm, which
adapts to changing network conditions termed as Unity-Adapt.
For a workload of size d, Unity-Adapt divides it into equally
sized blocks of size k10. Unity coordinator assigns each peer
a single block to download at a time and the peer is expected
to request another block to download whenever it finishes
downloading 80% of the assigned block. Unity coordinator
will keep on allocating the blocks dynamically until all the
blocks are assigned. Thereafter, Unity peers will send all the
downloaded blocks to Unity coordinator together to minimize
control overhead and frequent connections.

III. EVALUATION

We now present results from extensive evaluation of Unity
while running on Android phones. First, we define some of the
evaluation metrics for Unity. Total download time is the time
taken by Unity to collaboratively download a workload and
deliver it to all the collaborating peers. From total download
time, we compute effective download rate which is equal to
workload size divided by total download time. Our evaluation
experiment consists of four Android phones, three of them
manufactured by HTC and one by Samsung. All the phones
were running Android 2.3.3 OS.

A. Download Rate vs Workload Size:
To evaluate download rate in Unity with varying number

of collaborating devices and varying workload sizes, we

9 Unity has a common service name and unique UUID number for each peer
10 Value of k in this case is typically greater than the number of collaborating
devices

(a) Download rate with 3 devices (b) Download rate with 4 devices

Fig. 4: Download rate of Unity-WiFi with different workloads and
total 3 and 4 collaborating devices, D1, D2, D3, and D4 represents
the individual device’s estimated download rate.

downloaded five different workloads i.e. 3 MB, 6 MB, 9 MB,
12 MB, 15 MB with default collaboration policy. Number of
collaborating devices were varied from 2, 3 and 4 for each
of the workload. For each download instance, the download
rate of individual devices are computed from the time taken
by them to download the assigned workload and effective
download rate of Unity is computed as defined in metrics
above. In case of Unity-WiFi with 3 devices, as shown in Fig-
ure 4a, effective download rate increases linearly with work-
load size. Unity download rate is comparatively low for smaller
workloads as local communication overhead for collaboration
across different peers takes significant time. However, with
increasing workload size, this overhead becomes negligible.
Similar trends were observed in the case of Unity-WiFi when
used with 4 different devices, as shown in Figure 4b.

For comparison purpose, we define a baseline download
rate which is equal to the highest download rate among peer
devices assuming that a given peer would have downloaded
the complete workload at the same rate as it performed while
downloading part of the workload. In the case of 4 devices,
Unity-WiFi makes download faster by a factor of approx.
1.5 for smallest workload (3 MB) and a factor of approx.
3 for the largest workload (15 MB), as compared to the
baseline download rate. In the case of Unity-Bluetooth with
4 devices, download rate increased by a factor of 1.8 for the
smallest workload and a factor of 2 for the largest workload as
compared to the baseline download rate (refer Figure 5b). In
Unity-Bluetooth, download rate of Unity increased marginally
when workload size is increased mainly due to the higher
overhead with Bluetooth. We also observed that some of the
devices in Unity-Bluetooth experiments downloaded with a
slower rate resulting in higher total download time and smaller
improvements in effective download rate.

B. Overhead Comparison:

Total download time for Unity consists of workload down-
loading time from internet, local sharing amongst collaborating
devices and merging the shared workloads. It is useful to
accurately quantify the overhead caused by different Unity
operations i.e. local networking and merging, and compare
them with the total download time. For this purpose, we ran
three instances of workload (12 MB) using Unity and collected
logs with high resolution time intervals for these activities.

The 9th International Workshop on Mobile Peer-to-Peer Computing 2013, San Diego (18 March 2013)

69

(a) Download rate with 3 devices (b) Download rate with 4 devices
Fig. 5: Download rate of Unity-Bluetooth with different workloads
and number of collaborating devices, D1, D2, D3, and D4 represents
the individual device’s estimated download rate.

Average overhead % across the 3 instances for Unity-WiFi
and Unity-Bluetooth is shown in Figure 6.

Fig. 6: Overhead % comparison between
Unity-WiFi and Unity-Bluetooth

We observed that
much of the over-
head in Unity is
dominated by local
networking module
for exchanging con-
trol and data mes-
sages across differ-
ent devices. As a re-
sult, overhead % us-

ing WiFi is smaller than using Bluetooh due to the correspond-
ing difference in data transfer rates (WiFi: 1.5 - 2 MBps and
Bluetooth: 450− 480 KBps) [10]. This difference in data rate
also explains the reason for lower increase of download rate
in Unity-Bluetooth as shown in Figure 5.

C. Measuring Impact of Unity-Adapt

Due to variable cellular network conditions, one or more de-
vices may download at a lower rate in Unity thereby increasing
the overall download time. As an instance, in Figure 5b, device
D4 downloaded with slower rate as compared to the other 3
devices. To avoid such a situation, Unity-Adapt divides the
whole workload into smaller block sizes and keeps assigning
them to the collaborating peers based on their download rate.
Empirically, we observed that block size equal to 1 MB
works well in Unity and used it for these experiments. With
3 collaborating devices, we gave Unity a workload of 12
MB to download in three different instances. Across all of
these instances, average downloads rate of the three devices
were 5.94 KBps, 8.14 KBps and 10.54 KBps for D1, D2
and D3 respectively. On an average, Unity without adaptation
downloaded the whole workload in approx. 692 seconds.
However, when using Unity-Adapt, total download time was
reduced to approx. 505.78 seconds resulting in approx. 27%
improvement. Additionally, the workload downloaded by a
peer on an average was representative of their download rate
i.e. D1 (3 MB), D2 (4 MB) and D3 (5 MB).

IV. CLOUD-BASED Unity

Unity provides a platform for collaborative downloading
of content of common interest to mobile peers. However, it

requires users to explicitly ask their friends if they would
be interested in the same content and would be willing for
collaboration. Further, Unity requires all the collaborating
peers to be in geographical proximity for the whole duration.
Simultaneous download by geographically close peers at the
same place and time may result in lower download rate from
the cellular connection as well as consume more battery. We
extend current architecture of Unity with the help of the Cloud
to address some of these limitations and make collaboration
more useful and pervasive. An architecture of Unity with the
Cloud i.e. Unity-Cloud is shown in Figure 7. The cloud acts as
a control information gateway among different mobile peers
interested in collaboration.

Fig. 7: Architecture of the Cloud-based Unity
.

The cloud primar-
ily stores mobility
profile of the users,
their social network
and various content
requests from dif-
ferent users. Intu-
itively, people tend
to visit same places
and meet with many

people in their social network regularly across several days.
This is also validated empirically by prior research [6]. Unity-
Cloud builds mobility profiles of people using heterogeneous
location data sources such as Cell ID and WiFi as described
in our previous work [2] and uses this profile to predict
interaction place and time of the peers. The mobile client of
Unity-Cloud, closely coordinates with the cloud in building
mobility profile for the users by sensing location data and
submitting content requests to the cloud in addition to what
was done before [2]. Following is a use case scenario of Unity-
Cloud:

1) A user submits a request for desired content to the
Unity-Cloud with a time deadline. The cloud aggregates
content requests from all the registered users.

2) Unity-Cloud helps the user in forming a peer group,
from within her social network, with other users who
are interested in downloading the same content and are
expected to meet within the specified deadline. Expected
meeting time and duration is calculated using users
mobility profiles as mentioned in [2].

3) Once the user forms a peer group, Unity-Cloud commu-
nicates a request to download part of the desired content
to all the collaborating peers. Each collaborating peer
downloads the content whenever it finds good cellular
conditions to download.

4) When all the participating peers are in geographic
proximity (as calculated using their mobility profiles),
the cloud will send them notifications to share their
downloaded blocks with each other.

One of the salient feature of Unity-Cloud is that each
peer downloads content whenever it experiences good cellular
conditions. While predicting cellular throughput is hard given

The 9th International Workshop on Mobile Peer-to-Peer Computing 2013, San Diego (18 March 2013)

70

the variable network conditions, Unity-Cloud uses some opti-
mizations such as downloading in the night only or download
when RSSI is good to result in improved throughput and
energy conservation [3].

Unity-Cloud extends the architecture presented in Section II
by helping users in finding friends who are interested in the
same content as well as uses predictable mobility of the users
for forming peer groups. Moreover, Unity-Cloud will result in
lower energy consumption as it optimizes content download
using better cellular conditions. We leave the evaluation of
cloud-based Unity to subsequent work where we are planning
to do a user study to evaluate the impact and effectiveness of
Unity-Cloud in real-world.

V. RELATED WORK

Several systems have been proposed targeting enhanced web
access performance using support from multiple co-located
peers. Eric et al [9] designed a framework for bandwidth
sharing using markov decision processes while taking other
parameters such as network conditions into account. However,
they evaluated their framework only in simulation whereas our
objective is to be build a working system. Cool-Tether [4]
presents a cloud proxy based system which builds WiFi
hotspot using multiple smart phones in vicinity to provide
high speed data rate on a laptop client. Cool-Tether minimizes
the energy consumption of smart phones by sending/receiving
bursty HTTP traffic coordinated by a stripper module running
on the laptop for uplink traffic and a cloud based proxy for
downlink traffic. Cool-Tether improves upon COMBINE [8], a
similar architecture proposed earlier that attempts to increase
the web access performance without giving any consideration
to energy consumed in the mobile devices. Both of these
systems are different from Unity from both the architecture
perspective and the target application scenarios. While COM-
BINE and CoolTether work on the assumption that all the peer
devices are owned by or closely associated with the user, in the
case of Unity, all the collaborating peers (devices) will benefit
by downloading the mutually desired content. Recent work,
MicroCast [7] targets the specific problem of video streaming
using multiple nearby phones. Unlike Unity, MicroCast is
implemented using features of custom ROM and does not
address issues which come from implementation on off the
shelf phones.

VI. CONCLUSION

Multiple people, specifically those who have similar in-
terests typically inferred by social network or geographic
proximity, have overlapping interests in desired content such
as multimedia songs and videos. However, most often they
tend to download the same content individually from Internet.
In this paper, we presented a system Unity that enables
collaboration between co-located and socially connected users
to download mutually desired content from Internet. Unity
is implemented as a complete system for Android and is
evaluated for effectiveness on different workload sizes and
varying number of collaborating devices. Unity user will

benefit by incurring lower costs for data connection as well as
multi-fold increase in download time.

While this work is focused on using limited bandwidth
connection (2G) to download content from Internet, architec-
ture and implementation of Unity would work in the same
manner if some of collaborating peers have access to high
bandwidth connection such as 3G. In such scenarios, Unity-
Adapt requests peers with higher bandwidth to download larger
chunks of the content thus resulting in further performance
improvement. We are currently in the process of developing
Unity for other mobile OS platforms and working to distribute
it through corresponding app stores. We are also working on
a user study to understand collaboration preferences of users
through its usage in real-world.

ACKNOWLEDGEMENTS

Kuldeep Yadav is supported by a PhD Fellowship from
Microsoft Research, India. This research is partially sponsored
by a research grant from Microsoft Research, India.

REFERENCES

[1] Yao, Jun, Salil S. Kanhere, and Mahbub Hassan. ”An empirical study
of bandwidth predictability in mobile computing.” Proceedings of the
third ACM international workshop on Wireless network testbeds, exper-
imental evaluation and characterization. ACM, 2008..

[2] Yadav, Kuldeep, Vinayak Naik, Amarjeet Singh. MobiShare: Cloud-
enabled Opprtunistic Content Sharing among Mobile Peers. Technical
Report IIITD-TR-2012-009.

[3] Schulman, Aaron, Vishnu Navda, Ramachandran Ramjee, Neil Spring,
Pralhad Deshpande, Calvin Grunewald, Kamal Jain, and Venkata N.
Padmanabhan. ”Bartendr: a practical approach to energy-aware cellular
data scheduling.” In Proceedings of the sixteenth annual international
conference on Mobile computing and networking, pp. 85-96. ACM,
2010.

[4] Sharma, Ashish, Vishnu Navda, Ramachandran Ramjee, Venkata N.
Padmanabhan, and Elizabeth M. Belding. ”Cool-Tether: energy efficient
on-the-fly wifi hot-spots using mobile phones.” In Proceedings of the
5th international conference on Emerging networking experiments and
technologies, pp. 109-120. ACM, 2009.

[5] Bayir, Murat Ali, Murat Demirbas, and Nathan Eagle. ”Discovering
spatiotemporal mobility profiles of cellphone users.” In World of Wire-
less, Mobile and Multimedia Networks & Workshops, 2009. WoWMoM
2009. IEEE International Symposium on a, pp. 1-9. IEEE, 2009.

[6] Vu, Long, Quang Do, and Klara Nahrstedt. ”Jyotish: Constructive
approach for context predictions of people movement from joint
wifi/bluetooth trace.” Pervasive and Mobile Computing 7, no. 6 (2011):
690-704.

[7] Keller, Lorenzo, Anh Le, Blerim Cici, Hulya Seferoglu, Christina
Fragouli, and Athina Markopoulou. ”Demo: Microcast: cooperative
video streaming on smartphones.” In Proceedings of the 10th interna-
tional conference on Mobile systems, applications, and services, pp.
463-464. ACM, 2012.

[8] Ananthanarayanan, Ganesh, Venkata N. Padmanabhan, Lenin Ravin-
dranath, and Chandramohan A. Thekkath. ”Combine: leveraging the
power of wireless peers through collaborative downloading.” In Proceed-
ings of the 5th international conference on Mobile systems, applications
and services, pp. 286-298. ACM, 2007.

[9] Jung, Eric, Yichuan Wang, Iuri Prilepov, Frank Maker, Xin Liu, and
Venkatesh Akella. ”User-profile-driven collaborative bandwidth sharing
on mobile phones.” In Proceedings of the 1st ACM Workshop on Mobile
Cloud Computing & Services: Social Networks and Beyond, p. 2. ACM,
2010.

[10] Friedman, Roy, Alex Kogan, and Yevgeny Krivolapov. ”On power
and throughput tradeoffs of WiFi and Bluetooth in smartphones.” In
INFOCOM, 2011 Proceedings IEEE, pp. 900-908. IEEE, 2011.

The 9th International Workshop on Mobile Peer-to-Peer Computing 2013, San Diego (18 March 2013)

71

