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Abstract—Energy efficiency is a key operational character-
istic of today’s office environments. In this paper, we present
a system architecture to control desk appliances such as
computer screens based on recognised desk and computer work
activities. In a real-life intervention study at seven desks, we use
screen-attached ultrasound sensors and explore a proximity-
based activity recognition approach for saving energy by
automatically turing computer screens off when not using them.
We analyse online performance of our approach regarding
recognition rate and screen resume delay. Furthermore, we
present a comparative analysis of our proximity-controlled
approach against the computer-controlled power management
and a non-controlled baseline to quantify energy saving bene-
fits. Our results show energy savings of up to 43% and 55% for
proximity-controlled computer screens compared to computer-
controlled and non-controlled scenarios respectively.

Keywords-ultrasound rangers, energy conservation, activity
recognition, office buildings.

I. INTRODUCTION

Energy conservation is a key objective in operating to-

day’s smart office environments. While office buildings

have been identified as large energy consumers, only few

concepts aim to improve their efficiency [1]. User activities

dynamically affect energy needs in an office space, such as

a desk or room. To this end, current energy saving attempts

often focus on overhead light control based on passive

infrared (PIR) presence and movement detection. Further

energy savings can be expected by controlling frequently

used office appliances, such as computer screens. Additional

ambient sensors could help in detecting relevant activities to

perform the control.

Among the various desk appliances in office spaces,

computer screens are omnipresent. Screens are typically

stateless devices that could be power-controlled indepen-

dently of model, type, or other properties. Due to their

relevance for energy saving, various guidelines suggest to

enable the computer-controlled power-saving of screens. For

example, the energy saving guidelines of the US Department

of Energy recommend that screens should be suspended to

standby mode if input devices are unused for a timeout

of ∼20min. 1 Recently, Samsung introduced a proxim-

ity control feature into their monitors that could suspend

1http://energy.gov/energysaver/articles/energy-efficient-computer-use

the screen to standby, if no user movement is detected2.

While typically computer screens are directly facing the

user and thus provide ideal conditions for user activity

sensing, their benefit for activity detection has not been

fully investigated (see Sec. II). We expect that fine-grained

activity information could provide energy saving gains over

the classic computer-controlled approach. While various

previous efforts considered simulations to investigate system

performances and energy saving potential of activity-based

control, actual intervention studies are rare.

In this work, we explore the energy saving benefits

of a proximity-based control of computer screens in an

intervention study to identify gains, robustness, and practical

challenges in deploying energy-saving pervasive systems. In

particular, this paper provides the following contributions:

1) We present a system to control computer screens

according to desk activities and distinguish three basic

activity states: using the computer screen, using the

desk besides a screen, i.e., doing paper work or

phone calls, and no presence. We utilise ultrasound

range sensors (USR) attached to computer screens to

measure user proximity and switch screens using plug-

in power meters.

2) In a real-life intervention study, we used our

proximity-based approach to control computer screens

of seven desks. We analyse activity recognition perfor-

mance and determine practical bounds for the system’s

screen resume delay, which has direct impact on

detection performance and user acceptance.

3) Based on study data, we evaluate energy savings of

our proximity-controlled approach in comparison to

the computer-controlled scenario and a non-controlled

baseline using simulations. With this comparative

analysis we identified key advantages of the proposed

proximity-controlled approach.

II. RELATED WORK

Two recent surveys evaluate energy efficient applications:

Nguyen et. al. [2] surveyed intelligent building research,

considering user activity. Williams et. al. [3] described a

2Proximity control in Samsung models of A550 and A850 se-
ries using a PIR sensor: http://www.samsung.com/uk/consumer/pc-
peripherals/monitors/design/LS27A850DS/EN-features.
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comprehensive meta-analysis on energy savings by means of

different types of lighting controls and assessed user prefer-

ences. Several focused research studies addressed individual

challenges related to office activity recognition and energy

saving in office buildings.

1) Activity recognition in office environments: Computer

vision techniques are commonly used to detect occupant

behaviour in the built environment. Emphasis was give to

recognising activities such as working with keyboard/mouse,

making a phone call, doing paper work. [4], [5], [6]. In

general, cameras are accurate, but computationally expensive

and often involve user privacy concerns. Networks with

multiple ambient sensing modalities have been evaluated,

e.g. in [7]. The authors modelled rhythm patterns from

data obtained through computer-mediated communication

technologies, to share availability in remote working sce-

narios. Similarly, a soft sensing approach based on Wi-Fi

access points, user calendar, system activity monitor, in-

stant messaging clients and time-of-day was used, achieving

recognition accuracies of 90% [8]. Conversely, commodity

computer hardware, including computer microphones and

speakers was used to recognise user activities from ul-

trasonic signals achieving a performance accuracy of up

to 96% [9]. Authors of [10] employed several sensors to

distinguish between heavy and light-use users and suggested

that actuation policies may enable energy savings for the

latter class. These results demonstrate how highly accu-

rate context-aware applications can be supported in smart

buildings. However, these works do not focus on the use

of the activity retrieved information in order to further

investigate adaptation and control of offices appliances for

energy saving applications.

2) Energy saving potential in intelligent buildings: .

Real-life deployments to estimate potential energy savings

in buildings typically require dense sensor and actuator

installations. In [11] a two day experiment in two rooms

of an academic building was conducted. In this study,

a TelosB network composed of PIRs, magnetic switches,

ambient light sensors, and energy controllers (relays) was

deployed to evaluate potential energy savings of various

office devices using an on/off control strategy based on

occupancy. The results of this approach revealed total en-

ergy savings up to 15%. Moreover, brightness control was

implemented in home TVs, resulting in a reduction on

energy consumption of ∼30% [12]. However, we found no

studies that specifically focused on the saving opportunities

of computer screens. Through behaviour simulation, savings

of 30% compared to basic control strategies were found

by creating dynamic schedules and connecting them to the

building management energy systems [13]. Location aware-

ness was considered in a long-term study to dynamically

optimise the energy consumption in an office [14]. From

the simulation results, it was suggested that around 140Wh

per computer (without accounting external peripherals) per

day could have been saved, compared to a policy that had

machines powered on for the entire working day.

In this present work, we illustrate how an online recog-

nition system can be used for appliances control and we

evaluate its performance regarding energy saving in a real-

life study. Additionally, we assess user perception of our

proposed system.

III. SYSTEM ARCHITECTURE

We developed an online activity recognition system based

on proximity measurements of ultrasound range (USR)

sensors and deployed it in an office environment to analyse

potential energy conservation. Our approach is based on

discriminating activity states according to estimated user

distance from the screen. Based on two USRs, different

activities at the desk can be discriminated.

A. Sensing and actuation approach

We use two USR sensors mounted at the top of a computer

screen to recognise three basic desk activities: (1) working

in front of the computer screen (ScreenWork), (2) working at

the desk but not in front of the computer screen (DeskWork),

and (3) being away from the desk (Away). Figure 1 illustrates

the workplace configuration for the deployment of our

recognition system.

An efficient detection of desk activities can be achieved

by analysing the USR sensors’ field of view. When the

computer screen is adjusted to the user, ScreenWork typically

shows close ultrasound reflections in both sensors’ field of

view, whereas Away shows no reflections in both USRs.

For DeskWork we considered that the user moved from the

position centrally in front of the screen to either side. Thus,

the field of view of one USR, located at that side where

the user is present will show reflections, while the other

USR obtains none. This can be interpreted as the user is

not requiring the computer screen, but rather performing

some desk work, e.g., paper work, making phone calls,

drinking coffee, etc. An advantage of this detection approach

is its simplicity and comprehensibility for a desk user, thus

resulting in a robust and easy to deploy solution for different

Figure 1. Illustration of office workplace configuration and user activities
related to energy saving. Our proximity-controlled (PC) recognition system
considered three basic desk activities: (1) ScreenWork, (2) DeskWork, and
(3) Away.
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Figure 2. Online proximity-controlled (PC) recognition and actuation
procedure. Two USR sensors measured proximity of a user to the computer
screen. Activities at the desk were recognised online from the USR distance
data. Control rules were used to actuate the computer screen according to
recognised user activities.

workplaces. By attaching USR sensors to screens, their

field of view is linked to the screen. Hence the ergonomic

adjustments of a screen for a user helps to arrange suitable

viewing angles for the USR sensors too.

Based on the recognised activities, our system produces

control commands that were send to plug-in power meters

to control, e.g. a computer screen. Thus, if ScreenWork

was detected, the computer screen is automatically turned

on, whereas DeskWork and Away results in the computer

screen being turned off. A more detailed description of our

proximity-based approach is provided in Sec. III-B below.

B. Proximity-controlled system

Figure 2 illustrates our proximity-controlled (PC) sensing,

processing, and actuation prototype system for an individual

office desk. The proximity estimates obtained from USR

sensors were mean filtered and supplied to a classifier.

For the online sensing and processing, we used the CRN

Toolbox (CRNT) [15]. Activity classification was performed

by thresholding both proximity estimates to recognise all

three states (ScreenWork, DeskWork, Away) as described

above. The classifier output was subsequently mapped into

on/off switching states for the screen power controller.

IV. EVALUATION STUDY DESIGN

We performed a real-life intervention study to evaluate

potential energy savings of our online PC recognition and

actuation. Here, the methodology of this study is reported.

A. System deployment

We used two USR sensors model SRF08 3 from Davan-

tech and a Circle 4 plug-in power meter from Plugwise. Both

devices were read out using CRNT.

USR sensors were mounted to top edges of computer

screens, angled to face the user in ergonomic screen work-

ing conditions. The sensors covered a field of view of

approximately 45
◦ in the horizontal plane. Ranging was

set to measure distances below 100 cm for both sensors.

We obtained distance measurements from both sensors at

a rate of 1.4Hz, and we use a window size of 10 s for mean

filtering. Both USR sensors were interfaced to the gateway,

3http://www.robot-electronics.co.uk/htm/srf08tech.shtml
4http://www.plugwise.com

Figure 3. Example workplace area of one participant in our intervention
study. Two USR sensors were mounted at computer screen edges, facing
the user. A Plugwise power meter was used to control the computer screen
power supply.

via commercially available USB-I2C 5 modules. These in-

terfaces were powered from a USB port and provided a 5V

output for the USR sensors. The USRs consume a peak-

power of ∼1.375W upon startup initialisation, and typically

∼55mW during operation (ranging mode).

Instantaneous power consumption of individual computer

screens was continuously measured using Plugwise Circles

networks sampled at 0.1Hz. Circles were interfaced to a

gateway computer via ZigBee. The actuation of computer

screens was controlled using the CRNT configuration as

described above.

B. Study design

The study was performed in three different offices, with

a total of seven participants that were regular users of

the offices and desks. Within this sample, we found four

different screen brands with a specified maximum power

consumption between 34W to 45W. All computer screens

were EnergyStar certified and therefore had a power con-

sumption of 2W or less in stand-by mode.

In total, 10 recording sessions were obtained distributed

into two study conditions: a baseline study was performed

for one working day at two desks to obtain consump-

tion traces without controlling the screens. These measure-

ments were further used for comparison to controlled study

data. An intervention study was performed for all seven

workplaces with the online proximity-based system. Each

recording session last for one working day and consisted

in controlling the computer screen according to the three

recognised user activities. One participant in this study was

recorded twice for baseline and intervention study, resulting

in a total of eight recording days. Figure 3 illustrates the

installation in one of the workplaces.

The proximity-based recognition and control approach

was explained to each participant before the recording

session. Participants were asked to work according to their

usual habits. In addition, participants were asked to complete

5http://www.robot-electronics.co.uk/htm/usb i2c tech.htm
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Figure 4. Example timeseries of proximity measurements from USR
sensors located at top right (R) and left (L) sides of a computer screen.
An illustration of the activity classification result is shown below. Overlaps
between classes are a result of the visualisation only.

an annotation sheet with a 2min resolution, indicating the

activities ScreenWork, DeskWork and Away.

V. EVALUATION RESULTS

We analysed activity patterns and recognition during

the intervention study and regarding the screen response

time (SRT). In a comparative analysis, we evaluated our

PC approach, against the computer-controlled (CC) scenario

and a non-controlled (NC) baseline. Finally, we summarise

participant opinions on our PC approach.

A. Activity patterns

Figure 4 illustrates the continuous proximity measure-

ments obtained from the USR sensors in one selected

workplace, together with the classification output.

We observed that in seven of 10 recording sessions,

ScreenWork was dominantly reported by participants, ac-

counting from ∼50% up to ∼83% time of the daily record-

ing sessions. In the remaining three recording sessions, Away

was reported most frequently, accounting from ∼43% up to

∼62% time of the daily recording session. The least reported

activity by all participants was DeskWork accounting from

∼1% up to ∼30% time of the recording session. While

this analysis confirms that screens are used most of the

time, energy saving options can be found due to the short

interrupts of DeskWork and Away, as our subsequent analysis

shows.

B. Activity recognition performance

We confirmed the activity classification performance of

our proximity-based approach by comparing the recognition

results to manual paper-based annotations of participants

made during the recording day. On average, our system

achieved a recognition performance of 75%. While Screen-

Work and Away were recognised at ≥ 80%, classifica-

tion rates dropped for desk activities of some participants

to ∼50%. We attributed this reduced performance to the

variable activity patterns during desk work in our real-life
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Figure 5. Accuracy performance trade-off regarding the screen resume
times (SRT). Accuracy performance curves show participants’ average, best,
and worst performances.

study leading to mismatches with Away mostly. The results

nevertheless confirm that the system can reliably determine

ScreenWork, which is essential to use our approach for

reliable screen control.

C. Screen resume time (SRT)

With SRT, we describe the time elapsed from the moment

the user moves in front of the screen until the computer

screen is activated. Thus SRT should not be confused with

the screen power-on delay6. SRT is particularly important to

our approach since it has a direct impact on user’s ability to

switch to computer work.

Figure 5 shows the system performances of our PC

system with respect to increasing SRT values. As the plot

illustrates, larger SRT values lead to higher classification

accuracy too since the proximity measurements averaging

window is increased. Larger SRT lead to reduced system

reactions once a user approaches the screen though. In our

study, SRT was set to 7 s, which was found acceptable for

most participants (see Sec. V-E). However, the SRT analysis

shows that a similar recognition rate could be obtained

at ∼4 s already, which would increase responsiveness. For

reference, the worst-case power-on delay is specified by

screen manufacturers at ∼2 s.

D. Comparative analysis of energy savings

A comparative analysis was performed regarding potential

energy savings when controlling computer screens in office

environments. We considered the following scenarios.

Proximity-controlled (PC) scenario: The computer

screen is controlled by our proximity-based approach that

considers user activities. The screen is turned off (0W)

if the recognition system detects DeskWork or Away, and

is turned on (typical on-state power consumption) when

the recognition system detects ScreenWork. In order to

6http://en.wikipedia.org/wiki/Response time (technology)
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evaluate the potential savings in this scenario, we used the

intervention study data.

Computer-controlled (CC) scenario: For CC, we con-

sider that the computer screen is controlled through the

computer’s operating system using screen time-out settings.

Thus, the screen is sent to stand-by mode (2W) as soon as

the computer’s operating system detects no user input during

the time-out period. To estimate energy consumption for CC,

we simulated time-outs according to behaviour patterns of

all seven study participants across all recording sessions (see

Sec. IV-B). Simulations were based on the activities reported

by participants and typical on-state and standby mode power

consumptions of each participant’s computer screen.

Non-controlled (NC) scenario: For NC, a screen is not

controlled by any power management. To estimate power

consumption in this scenario, we used the typical on-state

power consumption of the study screens. In the study base-

line (Sec. IV-B), we determined user habits at the workplace,

i.e., how often does the user turns off the screen, and

how much time is spend in ScreenWork state. Participants

reported ScreenWork for 72% and 74% of the total recording

session time. We observed that users did not turn off their

computer screen while being recorded.

Results: For the CC scenario, screen time-out was swept

between 1 to 20min. The 20min time-out corresponds to

standard energy saving recommendations. Figure 6 illus-

trates the average power required for PC, CC, and NC

scenarios. As expected, higher time-outs lead to decreases

in power saving for CC. The results confirm that PC saves

most energy, even for small CC time-outs. Both, PC and CC

scenarios clearly outperform the NC baseline.

In Table I, the typical on-state power consumption per

screen model used at individual desks are summarised. We

show here the PC and CC scenario. For CC, we considered

the 1min and 20min screen time-out extremes only and

derived the relative energy saving for the PC scenario for

each. Overall, our proximity-based approach could save

∼25% compared to CC with 1min time-out, and ∼43%

compared to CC with 20min time-out. When compared to

the non-controlled baseline, PC can save ∼55% on average.

The savings for PC can be explained by its instantaneous

operation upon user activity changes, i.e. the screen is turned

off after the SRT time when the user is not in front of the

screen. In contrast, the CC scenario requires to wait for a

screen time-out in the range of minutes to infer the not

used condition. Furthermore, in our PC scenario a screen is

switched off (0W), rather than kept in standby mode (2W).

We observed that the standby consumption was typical for

various screens considered in our study. Even if screen

standby consumption could be lowered, savings for the PC

scenario would remain.

Table I confirms that the energy saving potential is related

to the activity variance of individual participants. We derived

activity variance by considering the three activity states

Table I
COMPARATIVE ANALYSIS PER PARTICIPANT CONSIDERING

PROXIMITY-CONTROLLED (PC) AND COMPUTER-CONTROLLED (CC)
SCENARIOS. FOR CC, 1 MIN AND 20 MIN SCREEN TIME-OUTS WERE

CONSIDERED. THE LAST COLUMN REPORTS THE ACTIVITY VARIANCE

BETWEEN THE STATES ScreenWork, DeskWork, AND Away (σ2).

PC CC CC PC VS. PC VS.

USERS (TYP) (1’) (20’) CC(1’) CC(20’) σ
2

[KWH] [KWH] [KWH] [%] [%]

P1 0.175 0.217 0.295 19 41 0.93

P2a 0.095 0.118 0.181 19 47 0.79

P2b 0.271 0.280 0.316 3 14 0.48

P3 0.032 0.192 0.271 83 88 0.72

P4 0.188 0.197 0.232 4 19 0.84

P5 0.091 0.142 0.192 36 53 0.94

P6 0.094 0.129 0.225 27 58 0.80

P7 0.167 0.183 0.212 9 21 0.41

Total 0.139 0.182 0.240 25.24 42.74 —
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Figure 6. Comparative analysis of the average power required for
an office screen in each scenario: proximity-controlled (PC), computer-
controlled (CC), and non-controlled (NC). The average power was derived
as mean over the study recording duration. For the CC scenario, simulated
screen time-outs are shown from 1min to 20min. PC and NC do not depend
on screen time-out.

ScreenWork, DeskWork, and Away as reported by partici-

pants. Larger variance σ
2 in activities was directly related

to higher energy saving potential using our proximity-based

approach. That is, the more a user switches between activ-

ities, the higher are saving benefits of our PC scenario. In

contrast, in a CC scenario varying user activities within the

screen time-out period cannot be detected.

E. User opinion on the power management

We surveyed the user perception of our power man-

agement system regarding their preferences and use of

commonly available computer power management features.

We received feedback from three participants of our inter-

vention study and grouped main topics of the responses

in: (1) knowledge of computer power management features,

(2) screen resume time of the proximity-based control.

Knowledge of power management features. All partic-

ipants considered that they have sufficient knowledge about

the power management features of their computer’s oper-
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ating system. Two participants reported to change settings

or operate the screen according to their activity. Only one

participant reported that he/she was habituated to manually

turn off the screen when leaving the office. Another reported:

“I setup the system to turn off the monitor if I am absent for

more than 2min, but I don’t really change them that much. ”.

One participant preferred to manually control the screen by

setting power management to never enter sleep mode. This

feedback conforms with our baseline measurements, where

users did not actively control screens.

Screen resume time. From the responses, we observed

that participants tried to influence the system’s response by

moving from one desk side to the other and by moving

objects into a sensors field of view. Most participants rated

the response time of the system as acceptable. One of the

participants said: “the reaction time could be better, although

current state is not bad enough to register as an annoyance”.

We concluded that the screen resume time is a key concern

to users that can hamper their workflow.

VI. DISCUSSION AND CONCLUSIONS

In this work, we explored the practical deployment of

an energy-saving ubiquitous system in office spaces. Our

intervention study in real offices confirmed that a proximity-

controlled computer screen management can save more en-

ergy than classic computer-controlled schemes. In our study,

participants in the non-controlled group did not operate

screens manually. While it is likely that manual control

would have occurred in a larger study population, our

proximity-controlled approach is likely to save more energy.

The results of our post-study investigations confirmed that

the resume delay can be shortened to ∼4 s at similar recog-

nition rates. Further investigations should use this shorter

resume times.

Although proximity-controlled screens are an industry

standard in hand-held devices and smartphones, it has not

been considered for office desk screens. While some novel

desk screens use PIR sensors, our work confirmed that

proximity-control using ultrasound can conceptually outper-

form PIR-based motion detection as USRs measure actual

presence [13]. Potentially, active infrared sensing could be

used as an alternative means for proximity sensing.

Modern office work implies frequent task changes, such

as meetings and short leaves from the desk area, where the

immediate reaction of our proximity-controlled approach has

clear energy saving advantages. Since screens are widely

used in a large office buildings, we expect that benefits

of proximity-based systems remain, even when considering

novel low-power screens operating at 25W or less.
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