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Abstract—We address a specific, particularly difficult class of
activity recognition problems defined by (1) subtle, and hardly
discriminative hand motions such as a short press or pull, (2)
large, ill defined NULL class (any other hand motion a person
may express during normal life), and (3) difficulty of collecting
sufficient training data, that generalizes well from one to
multiple users. In essence we intend to spot activities such as
opening a cupboard, pressing a button, or taking an object from
a shelve in a large data stream that contains typical every day
activity. We focus on body-worn sensors without instrumenting
objects, we exploit available infrastructure information, and
we perform a one-to-many-users training scheme for minimal
training effort. We demonstrate that a state of the art motion
sensors based approach performs poorly under such conditions
(Equal Error Rate of 18% in our experiments). We present and
evaluate a new multi modal system based on a combination of
indoor location with a wrist mounted proximity sensor, camera
and inertial sensor that raises the EER to 79%.

Keywords-Activity Spotting; ADL; Wearable Sensors; Hand
Mounted Camera; Multi-Modal Sensing

I. INTRODUCTION

Activity spotting aims to detect specific individual actions
in a continuous stream of arbitrary activity. Often the actions
of interest constitute only a small part of the overall signal,
and are embedded in a ”everything else” NULL class for
which building reliable models is impractical. A particularly
difficult version of the spotting problem relates to actions
that are determined by simple and short hand or arm gestures
such as pressing a button, turning a knob, picking something
up or putting it away. The NULL class then consists of ”all
the other arm motions that a person may have” – including
motions that are very similar to the relevant actions.

Much previous work has been investigating the use of
body mounted motion sensors (accelerometers, gyroscopes,
magnetic field) for that purpose. Two factors have been
shown to be critical for the success of such approaches:

1) The presence of distinct and characteristic motion
segments that are unlikely to occur in the NULL class.
In particular very simple actions such as pressing a
button or pulling a lever often lack such characteristic

segments. In the following we illustrate this by show-
ing that a state of the art motion based recognition
system performs very poorly on such a data set.

2) Availability of sufficient training data, preferably on
a user specific basis. While easy in lab experiments
this is a significant hurdle for the practical deployment
of activity recognition systems. Real life users expect
their systems to work out of the box that do not require
tens of repetitions to be provided for training.

In this paper we investigate how extending the body-worn
sensor system beyond motion sensors can contribute to
overcome the restrictions mentioned above. We envision a
system that does not rely on on large amounts of statistically
significant training data from the user. Instead the models
are constructed from ”one time” measurements performed
by the person installing the system.

II. RELATED WORK

The recognition of daily life activities and interactions
with objects is a well known research topic. Some ap-
proaches use eye tracking systems to detect object interac-
tions [15] [10]. In [15] time frames are marked as interesting,
if the person stares at a object for a longer time duration.
Based on a huge set of training images for which each object
was covered from all possible views, SIFT-matching is used
to identify the object. Other systems use wearable cameras
and microphones to recognize a person’s situation [15] [10].
However they consider not specific activities but the coarse
location of a person. There are also many approaches based
on radio systems (e.g. [11] [6]). The big disadvantage here
is that the reading range is often limited and each object
has to be instrumented. Other approaches are based on the
assumption that every object is able to provide its state
with binary switches [14] or infrared sensors [12]. In [13] a
similar approach to our idea is presented. This system uses
also a wrist-worn camera in combination with other body-
worn sensor systems. However it uses characteristic features
based on color histograms, whereas our system uses the
shape of an object and hence it is more robust to changing
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light conditions. Moreover, it requires a significant amount
of training data.

III. EXPERIMENTAL SETUP

We selected 16 different object interactions evolved from
30 activities (see Table I). The activities have been recorded
in a continuous data stream within a real office environment
(see Figure 1) including four rooms (student room, printer
room, kitchen, office) and a corridor. We hired 6 students
to repeat the activities in a randomly generated sequence all
in all 27 times (713 performed object interactions, almost
7 hours of recording) during the normal working time. In
this way we can guarantee a real multi user environment,
where also non-participants have been present and have also
performed activities such as using the coffee machine or the
printer.

Figure 1. Floor plan: The blue area markes the monitored region.

Besides the defined activities our participants performed
the following background activities: Clean whiteboard (stu-
dent room), write something on whiteboard (student room),
open/close door (student room), count coins on table (office),
rifle items on a table (office), open / close window (office),
point with finger at a wall mounted map (office), admire
picture on wall (office), drink from glass (kitchen), take
milk from fridge (kitchen), stir up coffee in cup (kitchen),
sit down and read newspaper (kitchen), clean table (kitchen),
put printout on wall (printer room). Additionally participants
had to behave as they do normally while performing the pre-
defined activities. In this way we recorded almost 7 hours
of data of which 91% belongs to the background class.

IV. SATE-OF-THE-ART: USING INERTIAL SENSOR TO
DETECT OBJECT INTERACTIONS

We employ a baseline activity recognition system based
on common steps of segmenting continuous data into re-
gions, calculating features per segment (or region), and
feeding the features together with labels into the learning
procedure of a classification model. For the classification
task, the continuous data stream is segmented in potential
candidates for an activity. Then, features are extracted and
scores are obtained for the trained classes, respectively the
activities.

Table I
PERFORMED OBJECT INTERACTIONS GROUPED BY ROOMS: KITCHEN,

PRINTER ROOM, STUDENT ROOM AND OFFICE

Object Activities (Repetitions)

Microwave Open (27), Close (27), Start (11), Clean (16)
Coffee Machine Make Espresso (14), Make Coffee (13)
Power Socket Connect Cable (27)

Cupboard Open (27), Close (27)
Wall Cupboard Open (27), Close (26)

Ethernet Connector Connect Cable (30)
Water Tap Fill Big Cup (14), Fill Small Cup (13)

Battery Charger Put Battery (15), Remove Battery (14)
Laser Printer Take Printout (12), Push Button (15)
Color Printer Take Printout (15), Push Button (12)

Climatic Control Change State (27)
PC Turn On (55)

Scanner On (29), Off (27), Scan Document (27)

Air Conditioner On (27), Off (27)
Light-Shutter Switch Use Light / Shutter Button (28 / 28)

Ring Binder Take From Shelf (28), Put Back (28)

Basic Segmentation Procedure: Several segmentation
techniques exist (e.g. [1, 18]) to partition a continuous data
stream into candidates for an activity. The most common
approach though is to use a sliding window approach with
fixed window length, which is also used in this work. We
estimate the window length from mean µ of the activity
duration distribution. While a fixed sliding window size
might not be the optimal choice and the choice of length
can influence the recognition [7] we choose this method as a
baseline which proved to work in numerous works targeting
a variety of activities [2, 5, 8, 16].

Feature Calculation: Given a list of segments from
above we calculate for each segment common features such
as mean and variance, as well as frequency space based
features. We standardize the feature space of the training
set. For the test data we use the standardization parameters
from the training set.

Classifier: For multi-class classification we use support
vector machines with a radial basis function as kernel. As
multi-class SVM we use a one-vs-one learning scheme. We
experimentally obtain regularization parameters from the
training set, which consist of 15 repetitions per activity
performed by a person that has not participated in the
data recording. In this way our trained system is person
independent. During learning, we extract random segments
from the background class, which we add to the training
data. To this end we extract an equal number of negative
samples compared to positive samples of all classes together.
The model is then trained for probability estimates between
0 and 1 for each class. The classification step returns a
normalized score vector per segment, where each element
contains the score for a respective activity. Since we have
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multiple overlapping windows from the segmentation step
we perform an additional non-maximum suppression. To
this end, for each timeframe all overlapping windows are
selected. For each activity the maximum score is determined
and kept as final score for the activity for the timeframe. As
a result we obtain for each timeframe the label of the activity
that achieved the highest score.

Final Segmentation Procedure: Based on the scores
per timeframe we calculated new segments for each class.
Therefore we defined segments with a fixed minimum (more
than about 1/3 second) and maximum length (less than 20
seconds) in which all scores are above a certain SVM score
threshold. We also fused segments that are close to each
other (we evaluated several thresholds between 0 seconds
and 1 second, in 1/5 second steps).

Baseline Results: As can be seen from Table II the
system can achieve reasonable recall (80%) however because
of the lack of really characteristic motion segments it has a
precision of only 3% (EER of 18%). In addition it requires a
considerable amount of training data (contrary to our system
as described below).

V. MULTI-MODAL SENSOR APPROACH

A. On-Body Approach: The Basic System

Our basic system consists of three different body worn,
affordable and mainstream sensor systems: A forearm worn
camera (Logitech C910, 640x480pixels, about 17 frames
a second) in combination with a infra-red distance sensor
(www.toradex.com, sampling rate about 10 Hz, range: 10
cm to 1 m, infra-red beam opening of 2 degree) and three
Xsens inertial sensors placed on forearm, upper arm and on
the back (see Figure 2).

Figure 2. Body-worn sensors: Lower arm mounted camera and distance
sensor, Xsens acceleration sensors on forearm, upper arm and back.

To spot relevant intervals and to identify a specific object
interaction we perform the following three steps.

1) Spotting interesting time sequences using the ifra-red
distance sensor: Hand actions in general involve object
manipulations, which means that object interactions can only
occur when the hand is close to the object. So we spot all
time sequences TSi where the hand of the person is ”close”
to an object according to the infrared proximity sensor. To
find interesting time sequences we chose a distance threshold
which is about 10 cm away from the tip of the persons finger.
Note that this step involves no statistical training and only
a single measurement of the proximity sensor placement on
the arm is needed.

2) Assigning relevant objects to a time sequence: We use
inertial sensors that provide a global orientation in Euler
angles. We calculate a simple body model that allows us
to determine the height of the users right forearm. To this
end the system must be configured using the length of the
users forearm, upper arm, body as well as legs. The hand
height information is used to split each TSi in several sub
sequences TSSij , where the maximum hand deviation is less
than 10 cm. After that we assign a set of relevant objects o to
each TSSij . A TSSij contains an object o if the maximum
deviation between the average hand height of TSSij and the
pre-configured height of the object o is between +/- 30 cm
(In this way we cover both: the inaccuracy of the hand height
calculation as well as hand height variation while interacting
with an object). This measurement is done in a single step
without involving statistical training.

3) Image based object recognition: So far we got several
TSS, each containing a list of possible objects. We next
use a computer vision object recognition algorithm based
on SVM and HOG features (sliding window, block size
8x8) to identify the object the user is currently interacting
with. Therefore all images within a TSS (We added +/- 1
second as the camera is not able to capture the whole object
while the person is close to it) are analyzed using SVMs
for each object class and the class with the biggest average
SVM score is selected. To reduce false classifications we
define a threshold, which must be exceeded if the object
should be taken into account. To train a SVM we used only
one single image per object from which 80 training images
have been artificially generated by adjusting the brightness
using a gamma filter. Thus, again the training amounts to
a single measurement (taking one photo). In addition we
assume that a person walks once through the office space
recording random images as examples of the NULL class.
During the evaluation process each image is rotated from
-90 to 90 degrees and scaled between -0.5 and +4.0 in steps
of 0.05.

B. Additional Sources of Information

1) Forearm Location (AH): To get the location of the
lower right arm we measure the 3D magnetic field provided
by the Xsens sensors. As reference data, we record the
magnetic field around each object for only some seconds
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(again, not statistical training). We compare the current
magnetic field within a TSS with the one recorded for a
specific object and using a distance metric on the magnetic
field vector in combination with a time duration feature we
reduce the amount of possible objects for each TSS.

2) Time Related Features (TF): We remove all TSS if the
duration is much longer (finally 8 seconds) as the standard
object interaction duration.

3) Modes of Locomotion (MoL): Using the acceleration
sensor from a smartphone that is carried in the users pocket
we are recognizing walking-standing activities using a stan-
dard technique based on the variance of the 3D acceleration.
During a walking time period we assume that the person is
not performing any activity and we don’t take into account
the belonging set of images.

4) No Hand Movement (NHM): We assume that just
before the users perform an activity (like pushing the light
button) the hand is moving quite fast to touch the object. So
we reject all images where the users hand shows almost no
movement.

C. Optional Infrastructure Sensors

1) Room Level Location (RLL): In this paper we choose
a standard BT based approach and so one Bluetooth beacon
was mounted in each room at a random place. We use a
smartphone (carried in the pocket of the user) to scan for
reachable Bluetooth beacons. Finally we assign a specific
room to each TSS. In this way we reduce the list of possible
classes by removing all objects that are not located in the
current room (Note: light-shutter actuators appear in each
room).

2) Regions of Interest (ROI): Each room has been
equipped with a ceiling mounted fish-eye camera to monitor
the activity within pre-defined so called regions of interest
- ROI (see Figure 3). Each ROI can include a single object
or even a group of objects (when objects are located close
to each other). All in all we defined 11 ROI containing the
16 different objects. To determine if somebody is inside a
ROI we use a standard approach based on difference images
of two consecutive grey-scale camera images. If a person is
within a ROI during a TSS, only objects that belong to this
ROI are considered. The fact that several people are moving
or acting within pre-defined ROIs and we assume that this
activity was performed by our test person may lead to many
false detections. In [3] a system is described to overcome
this problem and hence our system can be even improved.

3) Operating Mode of Objects (OOM): To recognize the
operating mode of a device we used a system similar to
the one described in [4] [9]. For each TSS we remove the
electronic device / the water tap if the operating mode of
the device has not changed within the TSS. Due to the
recognition delay of the referenced systems we tolerated a
time difference of 3 seconds for electronic devices and of 2
seconds for the water tap. The following devices have been

Figure 3. Room monitoring using ceiling mounted fish-eye cameras. The
pre-defined ROIs (green rectangles) as well as the position of the Bluetooth
beacons are shown.

taken into account: microwave, water tap, pc, scanner, air
conditioner, battery charger and coffee machine.

VI. EVALUATION AND DISCUSSION

Table II summarizes the recognition results for different
combinations of sensors and methods described above (EER
was evaluated by adjusting the SVM threshold). All system
parameters have been optimized to reach the highest recall.
We evaluate the quality of all systems as a function of a
threshold on calculated SVM scores, which is used to reject
false classifications. As image processing is highly time and
power consuming, we investigated the amount of required
classification steps and the number of analyzed images, aside
from the quality of the recognition. To calculate recall and
precision we count every overlap between a recognition
output and a corresponding label as a true positive and
every recognition output without a corresponding label as
false positive. Furthermore, we use a more detailed evalua-
tion method based on events and time samples (see [17],
Figure 4). When using inertial sensors only it is almost
impossible to reach a sufficient recognition accuracy (EER
of 18%). On the other hand even our basic system based on
a hand worn camera is able to provide a reasonable starting
point for further sensor fusion (recall of 67%, precision of
26% and a EER of 43%). When analyzing the influence of
the hand height tolerance thresholds (introduced in V-A2)
we found out that a value pair of -25/10 cm provides the
best result. In this way a recall of 75% and a precision
of 22% was achieved (EER of 47%). Thereby 1.566.872
classification steps have been performed and 205.132 images
have been analyzed.

When combining our basic vision setup with additional
sensor systems we can see that location (ROI, RLL and
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Table II
EVALUATION RESULTS: RECALL, PRECISION, EER AND THE

REDUCTION OF ANALYZED IMAGES (IR) AND PERFROMED
CLASSIFICATION STEPS (CR) IN PERCENT (COMPARED TO BS-V’)

System Rec Prec EER IR CR

Inertial Sensors (IS) 80 3 18 - -

Basic System Vision (BS-V) 67 26 43 - -
BS-V + opt HH (BS-V’) 75 22 47 - -

BS-V’ + ROI 90 40 61 28 80
BS-V’ + RLL 82 31 56 4 61
BS-V’ + AH 78 29 55 19 66

BS-V’ + ROI + RLL 87 48 63 38 84
BS-V’ + ROI + AH 87 56 68 49 90
BS-V’ + RLL + AH 82 46 64 36 85

BS-V’ + AH + ROI + RLL 84 60 69 53 91
BS-V’ + MoL 75 22 47 3 3
BS-V’ + TF 75 22 47 21 14

BS-V’ + NHM 75 22 46 42 35
BS-V’ + OOM 81 35 54 0 51

No Infrastructure 78 30 55 32 70
BS-V’ + ROI + AH + MoL + TF 86 57 68 56 91

BS-V’ + ROI + AH + OOM 90 70 79 63 94

AH) and object operating mode features (OOM) are able to
improve both recall and precision and reducing significantly
the amount of analyzed images and performed classification
steps in the same way. Comparing only location features,
we can see that the combination of ROI and AH delivers
the best result (a quite high recall of 87% and a EER
of 68%). Time (TF) and movement features (MoL, NHM)
are not able to increase recall nor the precision, but can
still reduce significantly the number of processed images
and classification steps. Finally we compare three main
systems: First a system configuration which is only based
on body-worn sensors and does not need any infrastructure
(BS-V’+AH+MoL+TF), second a system without object op-
erating mode monitoring (BS-V’+ROI+AH+MoL+TF) and
finally the system setup reaching the highest EER (BS-
V’+ROI+AH+OOM). For applications where it is difficult
to instrument the environment our system is able to deliver
a recall of 78% and a precision of 30%. Although the
precision is quite low, our system provides a EER which is
37% higher than the EER that is reached when using only
inertial sensors and statistical training (IS). Beside this, we
can reduce the amount of classification steps by 70% and
the analyzed images by 32%, which implicates a significant
reduction of processing time. For applications where it is
possible to use ceiling mounted cameras, we are able to
increase again the recall by 8% and the precision by 27%,
which results in a EER improvement of 13%. Beside this, the
reduction of analyzed images can be improved by 24% and
of classification steps by 21%. Finally if the instrumentation
of electronic devices and the water tap is possible or even
if intelligent devices are already available, our system is

able to deliver again a significant improvement in both recall
(finally 90%) and precision (finally 70%) which results in
a final EER of 79%. Beside this the amount of analyzed
images and classification steps was reduced again.

Figure 4. BS-V’+ROI+AH+OOM: Frame based evaluation - 2SET Metrics
(top) and event based evaluation - EAD (bottom)

Having a look at the frame based evaluation (see Figure 4)
we can see that 87% of the positive frames are correctly
recognized and we have almost no fragmentations and
underlays. Although we have a quite low precision regarding
to our previous evaluation, we can see that the amount of
insertions is vanishingly small in contrast to the amount
of true negatives. Regarding the EAD evaluation we can
see that 28% of all events are real insertions, in case of
performed activities 9 % are real deletions, 56% are precise
hits and nearly 35% are fragmented, merged or both.

VII. CONCLUSION

We have shown that a combination of a cheap proximity
sensor, a inertial sensor based hand height estimation and
a very simple vision algorithm applied to images delivered
by a wrist mounted camera can spot subtle hand actions
in a continuous data stream. Most importantly our ap-
proach avoids the need for a huge amount of statistically
representative training data and instead relies on single
”measurements” which can be easily performed in real life
deployments.

The next step in our research is to investigate if the
introduced approach can be even improved when combining
it with a system based on inertial sensors and statistical
training. Beside a higher recognition rate we expect also to
get more detailed information about the performed activities.
This means that the combination of both systems will be able
to detect not only object interactions but also the specific
activity which involves the object interaction.
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[8] Tâm Huynh, Mario Fritz, and Bernt Schiele. Dis-
covery of Activity Patterns using Topic Models. In
Proceedings of the 10th ACM International Conference
on Ubiquitous Computing (UbiComp), 2008.

[9] Alejandro Ibarz, Gerald Bauer, Roberto Casas, Alvaro
Marco, and Paul Lukowicz. Design and evaluation of a
sound based water flow measurement system. In Smart
Sensing and Context, volume 5279 of Lecture Notes
in Computer Science, pages 41–54. Springer Berlin /
Heidelberg, 2008.

[10] Y. Ishiguro, A. Mujibiya, T. Miyaki, and J. Rekimoto.
Aided eyes: eye activity sensing for daily life. In
Proceedings of the 1st Augmented Human International
Conference, page 25. ACM, 2010.

[11] Do-Un Jeong, Se-Jin Kim, and Wan-Young Chung.
Classification of posture and movement using a 3-
axis accelerometer. In Proceedings of the 2007 In-
ternational Conference on Convergence Information
Technology, ICCIT ’07, pages 837–844, Washington,
DC, USA, 2007. IEEE Computer Society.

[12] G. LeBellego, N. Noury, G. Virone, M. Mousseau, and
J. Demongeot. A model for the measurement of patient
activity in a hospital suite. Trans. Info. Tech. Biomed.,
10(1):92–99, January 2006.

[13] Takuya Maekawa, Yutaka Yanagisawa, Yasue Kishino,
Katsuhiko Ishiguro, Koji Kamei, Yasushi Sakurai, and
Takeshi Okadome. Object-based activity recognition
with heterogeneous sensors on wrist. In Pervasive
Computing, volume 6030 of Lecture Notes in Computer
Science, pages 246–264. Springer Berlin Heidelberg,
2010.

[14] EmmanuelMunguia Tapia, StephenS. Intille, and Kent
Larson. Activity recognition in the home using sim-
ple and ubiquitous sensors. In Pervasive Computing,
volume 3001 of Lecture Notes in Computer Science,
pages 158–175. Springer Berlin Heidelberg, 2004.

[15] T. Toyama, T. Kieninger, F. Shafait, and A. Dengel.
Gaze guided object recognition using a head-mounted
eye tracker. In Proceedings of the Symposium on
Eye Tracking Research and Applications, pages 91–98.
ACM, 2012.

[16] K. Van Laerhoven and O. Cakmakci. What shall we
teach our pants. In Proceedings of the 4th IEEE Inter-
national Symposium on Wearable Computers (ISWC),
pages 77–83. Citeseer, 2000.

[17] Jamie A. Ward, Paul Lukowicz, and Hans W. Gellersen.
Performance metrics for activity recognition. ACM
Trans. Intell. Syst. Technol., 2(1):6:1–6:23, January
2011.

[18] Andreas Zinnen, Kristof Van Laerhoven, and Bernt
Schiele. Toward recognition of short and non-repetitive
activities from wearable sensors. In AmI, volume 4794
of Lecture Notes in Computer Science, pages 142–158.
Springer, Springer, 2007.

13


