
Supporting Generic Context-Aware Applications for Mobile Devices 

 

 

Ralph Löwe, Peter Mandl 

CC Information Systems and Management 

Munich University of Applied Sciences 

Munich, Germany 

e-mail: rloewe@hm.edu, mandl@cs.hm.edu 

Michael Weber 

Institute of Media Informatics 

University of Ulm 

Ulm, Germany 

e-mail: michael.weber@uni-ulm.de

 

 
Abstract—Most of the advances in the field of context-aware 

middleware center on the research of the components 

necessary to create one. Although this is vital and gives 

important insights, it does not immediately enable us to build 

context-aware applications more easily. Too few projects reach 

the state of a usable software product. In this paper we 

describe an approach to separate the building of context-aware 

applications from the middleware. The centerpiece is an 

interface to independently define a context-aware application 

and its state. Additionally we provide a coarse protocol 

definition for the communication between the instances of a 

context-aware middleware by the example of a client/server 

system for mobile devices. 

Context; context-awareness; context-aware middleware; 

mobile computing; context-aware application 

I.  INTRODUCTION 

At the beginning of the 90s Mark Weiser [1] defined the 
term ubiquitous computing with a vision of highly 
interconnected devices. Like glasses disappear in the 
background and enable a person to see, the computer should 
become an integral and invisible part of everyday life [2]. 

He described a new age of computing which follows the 
age of personal computing. Computers should help to better 
complete the everyday tasks without being directly visible to 
the user. This could transform the computer to something 
normal instead of something magical [2]. 

To achieve this goal he proposed challenges for the 
hardware and software of ubiquitous systems. One example 
are three classes of devices: small tabs, medium-sized pads 
and large boards. Another example are the three different 
types of network adapters and protocols [3, p. 77f]. 

On top of this hardware he motivated the creation of a 
ubiquitous network which connects all devices and allows 
them to interact with each other. He proposed a "micro-
kernel" operating system as one solution [1]. Based on top of 
this stack he described the applications as "the whole point of 
ubiquitous computing." [3, p. 80]. 

If we compare this vision with the current state we find 
smartphones, pads, digital television and smartboards, which 
all include many different classes of devices. Every device 
contains various sensors and communication adapters, which 
additionally could be used as sensors as well [4]. 

In the software layer the vision and the state of the art 
differ more. Since the underlying systems must be connected 
using software, there are many requirements that such a 
system must fulfill. For example the ability to automatically 
interconnect devices, exchange context information about the 
user or migrate running processes. 

This paper describes an approach of a service as part of a 
context-aware middleware. In detail we will show the 
interface for the communication between the components in 
a mobile environment. It enables the interchangeability of 
the providing and using software components and therefore 
provides generic context-awareness. 

II. PROBLEM 

The central challenge is the interaction between the user 
and the ubiquitous system. It is still complex and demands a 
grand part of the user's attention. The field of context-aware 
computing tries to transfer the concept of context from 
human-to-human into human-to-computer interaction [5]. 
This improves the communication from the perspective of 
the user. 

"Context is any information that can be used to 
characterize the situation of an entity. An entity is a person, 
place, or object that is considered relevant to the interaction 
between a user and an application, including the user and 
applications themselves." [5, p. 305]. 

From this definition the primary usage of context can be 
derived. It can be utilized to separate relevant from irrelevant 
items or sort in accordance of relevancy. But it also opens 
new challenges for the software. Context needs to be 
disseminated from the source to the application that uses it. 
The collected context must be interpreted. Beyond that the 
application needs to adapt itself based on the context of the 
user [6].  

An additional challenge is the simplification of the 
development of ubiquitous applications [7]. It is important to 
bridge the gap between hardware, sensors, operating system, 
network and the application. This could simplify the 
development process from the perspective of the developer. 

A possible solution to both problems is the use of a 
context-aware middleware. In the research of context-aware 
middleware the first part of this term is explained very well 
and in depth. "A system is context-aware if it uses context to 

978-1-4673-5077-8/13/$31.00 ©2013 IEEE

10th IEEE International Workshop on Managing Ubiquitous Communications and Services 2013, San Diego (18 March 2013)

97



provide relevant information and/or services to the user, 
where relevancy depends on the user's task." [5, p. 30]. 

Mostly the term middleware is left out [8]. One of the 
reasons might be that the word middleware is widely used. 
But it influences the meaning of the whole and should not be 
neglected. 

Middleware is "a software layer that provides a 
programming abstraction as well as masking the 
heterogeneity of the underlying [...]" system. "In addition to 
solving the problems of heterogeneity, middleware provides 
a uniform computational model for use by the programmers 
of [...] distributed applications" [9, p. 33]. 

Middleware offers independent interfaces for 
applications and if an application is built using these 
interfaces, it should be portable to another instance of the 
same middleware type. The implementation behind the 
interface can and does vary and sometimes provides vendor-
dependent solutions. However, the decision to use those is 
comprehensible for the developer. One example of 
middleware is the common object request broker architecture 
(CORBA) [10]. 

In the field of context-aware computing efforts have been 
made to create such middleware in order to simplify the 
development of context-aware applications. It is indispens-
able to develop a software in order to research its 
functionality. Additional important insight can be gained if 
we do not only research the functional capability but also the 
appropriate appliance. 

This includes the research of standards [11, p. 57]. The 
central advantage of middleware is possible because of 
interfaces and its established standards for middleware 
applications. Hence, one solution for context-aware 
middleware would be to define standards and particularly 
interfaces to create independent context-aware applications. 
This would result in a better comparability as well as the 
possibility to benchmark context-aware middleware. 

III. RELATED WORK 

There has been much research to create services for 
context-aware middleware. A milestone in this sector has 
been the Context-Toolkit [12] and the Java Context 
Awareness Framework (JCAF) [13]. Periodic overviews of 
the current context-aware middleware have been created 
[14–17]. These works offer a basis for the generalization of 
context-aware middleware. 

Some effort has been made to make context-aware 
applications replaceable or domain-independent [18–21]. 
The framework ACORD-CS [22] describes a UML-based 
model to define a context-aware application. The system 
offers four different components and is able to generate a 
context-aware application. Context monitors listen to 
changes of context and adaptation can be performed solely 
based on context policies [18]. This approach takes the 
viewpoint of the context-aware application developer. 

Kalaiselvi et al. describe a generic context-aware 
middleware for smart homes, that offers a graphical user 
interface to configure simple rule-based applications [23]. 

Yau et al. offer a CORBA-based approach which 
describes a context-sensitive object request broker. 

Additionally, they extended the interface definition language 
into a context-aware interface definition language for the 
purpose of building context-aware applications [20]. 

Other than developing software, testing software offers 
important insights, too. Ye et al. describe a mathematical 
model to compare two context-aware middleware products 
[19]. This supports the availability and possibility to create a 
generic model for a context-aware applications. 

The analysis of related work revealed that most 
approaches focus on the implementation of the middleware 
and the distribution of context neglecting to also focus on the 
context-aware application itself together with the middleware 
aspects. 

IV. APPLICATION MODEL 

In our opinion a context-aware middleware must not only 
handle context, but also the state of the application itself. 
Only if it knows which adaptation is possible and in which 
state the application is, it can decide if an adaptation based 
on a change in context must be performed. 

The process that a context-aware middleware must 
support, can be subdivided into five tasks [6, p. 307ff]. 

• Acquisition is the sensing and subsequent gathering 
of context. The source of context attributes could be 
based on sensors, combinations of context attributes 
and external data. 

• Representation of context is important for the 
exchange of context attributes. Through 
transformation the type can be changed [24]. 

• The storage of context mostly requires hard drive 
capacity and enables a historical collection and 
therefore analysis of context. 

• Interpretation of context in respect to the used 
application model lets a context-aware middleware 
decide which change should be performed. Much 
research has been made to test interpretation 
algorithms on domain problems. 

• Finally the context-aware application can perform 
adaptation and therefore change its state to 
perfectly fit the requirements. 

A model of generic context-aware applications must 
support all of these tasks and enable them to work correctly. 
A context-aware middleware should be able to support the 
developer of the context-aware application at every step. 

The sensing of context attributes can be very domain-
independent. Thus, once the acquisition of a single context 
attribute has been implemented, it should easily be usable by 
another application. 

The representation of context is the first challenge. At the 
sensor the context attributes start as simple values. In 
combination with the identifying sensor a context attribute is 
basically a key-value pair. Therefore, we assume that a 
context model can be reduced to key-value pairs and later be 
transformed to the appropriate model [24] required by the 
interpretation.  

Afterwards the interpretation must retrieve the context 
including the current values and perhaps the history of these. 
Additionally, domain-specific information about the 

98



Context-aware 

Application

Message

User

ContextAttribute

Context

 
Figure 1: message level (simplified). 

 

 
Figure 2: context-aware application. 

 

interpretation method must be present to perform the 
interpretation algorithms. 

Finally the adaptation of the context-aware application 
can be performed. For this functionality to work we need 
hooks inside the application to interact with or defined 
services that should be invoked. 

Orthogonal to the process which a context-aware 
middleware must support, we can find different kinds of 
context-aware applications. Early work in the field of 
context-awareness differentiated between four categories of 
applications [25]: contextual information, contextual 
commands, automatic contextual reconfiguration and 
context-triggered actions.  

This categorization groups context-aware applications in 
the broader sense. In the narrow sense it can also be applied 
to single features. Since the structure and processes in the 
same category are very similar to each other, we identified 
patterns and common tasks for each category.  

Using this knowledge, we developed a service for a 
context-aware middleware and published the architectural 
approach in a former paper [26]. While developing it was 
necessary to create an interface between the client and the 
server. It separates the complex process of context 
representation, storage and interpretation from the context-
aware application and facilitates the interaction on the level 
of context sensing and adaptation. 

Furthermore, the interface represents the application 
model. Its main purpose is the communication of context-
aware applications and it additionally enables them to 
independently process themselves. The state of a context-
aware application can be communicated and, for example, 
the result of an interpretation can be returned and applied. 
Any context-aware middleware client could implement this 
interface and communicate with any middleware server, 
which serves this interface. 

For the presentation of the design of the interface we use 
the simplified entity relationship model based on Barker's 
notation. It is used because of the increase in readability and 
efficient use of drawing space. 

Since the interface is based on communication, it starts at 
the message level. Figure 1 shows that a message can contain 
many context bulks, which themselves consist of many 
single context attributes. This reflects the key-value context 
model on the message level and allows the collection of 

context from different measured times or users to be bundled 
in one message. Using a key-value context model on the 
message level does not restrict the usage of other models in 
the server component. But it requires a antecedent 
transformation to the target context model. 

Additionally to the identity part as a context attribute, the 
user is exclusively modeled as a single entity. This enables 
the separation of authentication and context-awareness. 

The context-aware application which is shown in figure 2 
contains the context-aware features and their current states. 
At this level we defined a context-aware application to be 
consisting of zero or many items of the known groups of 
context-aware software which stand for features. We decided 
to use these four categories, because the patterns of structure, 
adaptation and communication are very similar in each 
group. 

The interpretation of context is an issue which can be 
handled centrally for all categories. A criterion describes a 
method for the interpretation of a current context, e.g. to 
calculate the relevance of multiple options. Using this 
definition, the interpretation can be decoupled and 
implemented generically. Moreover multiple criteria could 
be combined and can be assigned a weight to describe the 
relevance for the interpretation. This enables the hybrid 
combination of interpretation algorithms [26]. 

 
Figure 3: feature groups (simplified). 

 

99



Although the attributes of each entity are different the 
basic structures shown in figure 3 always represent a list of 
options. This is necessary for the interpretation to work 
correctly, because the criteria require multiple options. 
Furthermore the items each differ in their attributes. 

We called the items of a contextual information feature 
information items. They each need an attribute for the 
content of the information to be transferred. Additionally the 
rating of the interpretation process must be propagated, 
because it can be relevant to the presentation. The contextual 
information object holds the criterion and offers 
configuration through a property-based structure. Herein the 
information source, for example the URL of an RSS-Feed, 
can be specified. The context of the items can be derived 
from the information source and each item is assigned its 
context. As a special case, contextual information is the only 
feature where the items are filled in a phase before the 
interpretation. This is necessary due to the content-based 
nature of this feature. 

Automatic contextual reconfiguration is able to use a 
set of single reconfigurations. Since the configuration can be 
very application specific, it only offers a way to explicitly 
identify one reconfiguration. Additionally, a pre-selected 
reconfiguration can be specified. On the upside this enables 
the middleware to know if the configuration should be 
changed and adapt only in this case. On the downside this 
could lead to network traffic if the configuration is changed 
manually. But since an update of context is likely to occur 
more often than a manual reconfiguration, this seems 
appropriate. Each reconfiguration can be supplemented by 
defined context attributes. This creates the connection 
between the raw configuration and the context attributes 
which are necessary for the context interpretation. 

The structure of a contextual command is very similar 
to the automatic contextual reconfiguration. Only the names 
of the items differ. Instead of reconfigurations the command 
offers a list of choices. The interpretation is very similar to 
the automatic contextual reconfiguration. But we decided to 
separate them, because the handling inside the client is very 
different. While the reconfiguration can actively change 
components of the context-aware application when it is 
running, the contextual command only changes the future 
execution flow of the application. 

The other context-aware features are only relevant for a 
running application. Since context-triggered actions can be 
executed even if the context-aware application is not 
running, they need to be registered persistently. Furthermore 
it is common to have more independent conditions which 
activate an action. Evaluating these conditions results only in 
two choices: to execute or not to execute the action. We 
designed this rule-like logic as a context-triggered action, 
which has many action activations. This is similar to a rule, 
which has an action as root and multiple or-conditions as 
branches. 

Using the message structure, we defined types, which are 
represented as an attribute on the message level. We defined 
the usual user-handling like login and logout including the 
error states related to this progress. Delivery types for the 
creation, actualization and destruction of context are 

supported, too. Additionally we allow the registration, 
actualization and deregistration of a context-aware 
application. Using the states of context and application, we 
support four different modes of context-awareness, which 
are shown in figure 4.  

They are based on one connection between one mobile 
client and one server. One server could support multiple 
clients, which each could have different modes of context-
awareness. So if a context is created and updated regularly 
and the relevant context-aware application is registered, we 
have the highest grade of context-awareness. All available 
context attributes are delivered to the server and can be 
interpreted. Additionally, all context-aware features are 
active. If the context is destroyed, then the application can 
still be active, since the context could be delivered via other 
clients which are registered as a context source. 

If the context is destroyed and no application is 
registered, only the sole connection is kept alive. When a 
user is logged out, then the connection is terminated. The 
term logged in does not mean that the user is aware, that his 
device is connected. This can be automatically performed by 
a middleware client in the background of the context-aware 
application. For example in the case of context-triggered 
actions no attention is directly needed for the application 
respective the user to be executed. 

Using this set of actions we can deliver context attributes, 
register context-aware applications and their context-aware 
features. A server can now independently perform an 
interpretation and calculate the new application state. The 
next step is the effective adaptation in the client and is 
communicated using asynchronous communication [9, p. 
163]. Since the manual features like contextual information 
and automatic contextual reconfiguration require 
synchronous communication, we additionally implemented 
the request-reply pattern [9, p. 203f] for these two. 

In addition to the four context-aware features it is 
possible to listen to normal context changes and react to 
these events directly. We provide a simple listener pattern for 
these cases which acts as a low level interface. 

Since the communication is solely handled at the 
message level, additional communication patterns can be 
integrated as well. Because context attributes are transferred 
as key-value pairs, additional attributes can be added. Since 
single attributes are separated from each other, it enables the 
developer to focus on each attribute individually. The model 

Context
Created Destroyed

Context delivery

Context-aware features

Only 

context delivery

Only context-aware 

features

No context-awareness

 
Figure 4: modes of context-awareness (simplified). 

 

100



of the context-aware application can be extended as well but 
should be verified strictly. 

Mobile devices specific tasks e.g. a connection loss in the 
case of no signal reception of the mobile or minimizing data 
volumes and power usage are handled centrally in the client 
as well. The interface has been optimized for the usage 
patterns of mobile devices as well. For example only 
necessary data is communicated and single packets can be 
piggy-backed. 

V. PROOF OF CONCEPT 

The whole context-aware middleware was developed 
using Java. We chose this programming language because it 
is very common and understandable. For the storage of 
persistent values the object-relational mapping framework 
hibernate [27] was used. A whole functioning reference 
implementation including server and a client for Google 
Android has been published as an open source project [26]. 

To implement the interface we choose the Google 
Protocol Buffer framework. Since it uses a binary 
representation of the data, the packets are smaller in 
comparison to an XML-based interface. This provides an 
optimal bandwidth usage and enhances the speed of the 
interaction especially for the communication with mobile 
devices. 

Furthermore Google Protocol Buffers are implemented 
using an open specification and libraries for commonly-used 
languages are fully implemented. This enables any 
programming language used on any platform and embedded 
system to use or implement the stack, if it is not yet 
implemented.  

The definition of contextual information and context-
aware application is shown in listing 1. Both are modeled as 
messages, which contain multiple attributes. Attributes, 
which are marked repeated, can be repeated zero or more 
times. The numbers behind the equals sign are the unique 
numbered tags, which identify the fields of the message [28]. 

Besides the client the project includes a complete test 
facade, which uses the interface via TCP/IP. Test cases for 

all context-aware features, context delivery and multiple 
clients have been implemented. It can be used to check the 
functionality of the underlying interface. 

The server uses a object oriented context model and 
transforms the attributes from the key-value model. For each 
application feature a single proxy is created, which 
represents the application state. 

As conceptual proof we mapped the known parts of the 
project Cyberguide [29] to our context-aware application 
model. The main purpose of this context-aware system is a 
navigational, communicational and informational service for 
a tourist. The challenge here lies in the separation of generic 
and application-specific features. 

The cartographer service, which offers a simple view of 
where the user is positioned can be implemented as context 
listener and therefore does not need to be registered. The 
librarian service can be registered as a collection of 
contextual information features. These could react based on 
activity and location. The information about the buildings 
could be sorted using a nearest and an activity criterion.  

Cyberguide also offers a messenger service which can be 
registered as another set of context-aware features. This 
enables the tourist to send and receive information for 
example to the owner of the exhibit. For the interaction 
components automatic contextual reconfigurations can be 
created. Herein another contextual information feature can be 
registered and could sort the persons referenced to the 
nearest exhibit, the availability of the person and their 
current activity. 

In detail the generic interface was concretized via single 
feature components. For example we implemented a combo 
box, which automatically selects items based on the context 
of the user. Another example includes a map component, 
which displays information on nearby zones. For the display 
of news a contextual information using RSS feeds has been 
implemented. The enriching and bundling of single feed 
items is handled in the server as a plug-in module. 

As another example we implemented the an indoor 
location system like Active Badge Location System [30] and 
we could use some generic parts which were created 
implementing the tourist guide. 

Therefore it is possible to replace application-specific 
parts of the mentioned context-aware systems using generic 
ones. This allows the reuse of these components in future 
context-aware applications and helps the developer to focus 
on the domain. The implementation of complex context 
models, interpretation algorithms and storage schemes can 
be handled separately from the context-aware application. 

Once-implemented components, which are solely based 
on the interface, can be reused for other context-aware 
applications. We showed an example of one component in a 
formerly published paper [26]. Using this methodology 
future applications are simpler to build and once existing 
applications are migrated to this system, they are easier to 
maintain. 

If the context-aware middleware supports the interface, 
all needed context attributes and criteria, then a context-
aware application can be transferred from one context-aware 
middleware to another without changing it. But the 

message ContextualInformation { 

 required int32 id = 1; 

 required string label = 2; 

 required string type = 3; 

 repeated Criterion criteria = 4; 

 repeated Configuration 

   configuration = 5; 

 repeated ContextualInformationItem 

   items = 6; } 

message ContextAwareApplication { 

 required int32 id = 1; 

 required string label = 2; 

 repeated ContextualCommand commands = 3; 

 repeated ContextTriggeredAction 

   actions = 4; 

 repeated ContextualInformation    

   informations = 5; 

 repeated AutomaticContextualReconfiguration 

   reconfigurations = 6; } 

Listing 1: Definition using Google Protocol Buffer. 

101



experiences concerning middleware show us that this is a 
rare case. 

VI. CONCLUSIONS AND FUTURE WORK 

The final conclusion of this paper is, that the 
standardization of context-aware middleware is necessary. 
This should enable us to better compare the approaches on 
the middleware and application level and could systemize 
the research in context-aware middleware more efficiently. 

We showed that the usage of an open specification and 
the definition of an interface can qualitatively enhance the 
development of context-aware applications. The described 
interface is a proposal as opposed to a fully defined and 
comprehensive standardization. Further work and 
cooperation is needed to reach a comprehensive but simple 
and stable specification. Independently from our solution we 
showed the necessity and possibility to create and compare 
such standards. 

This could enable further research such as software 
benchmarking or functional test suites for context-aware 
middleware. The alternative could be that the industry 
creates its own standards, which are comparably 
incompatible like the researched context-aware middleware. 
There are many examples in the past where such 
incompatibilities forestall future innovations. 

Another insight was that context-triggered actions are not 
found very often in context-aware applications. This could 
be due to the lack of awareness of a running action if a 
specific context condition is met. On the contrary this offers 
more invisibility of the context-aware system than the other 
three features and should in our opinion be used more often. 

REFERENCES 

[1] M. Weiser, “The computer for the 21st Century,” IEEE Pervasive 
Computing, vol. 99, no. 1, pp. 19–25, Jan. 1991. 

[2] M. Weiser, “The world is not a desktop,” ACM Interactions, vol. 1, 
no. 1, pp. 7–8, 1994. 

[3] M. Weiser, “Ubiquitous computing,” IEEE Computer, Hot topics, 
vol. 26, no. 10, pp. 71–72, 1993. 

[4] P. Bahl and V. N. Padmanabhan, “RADAR: an in-building RF-based 
user location and tracking system,” in Proceedings IEEE INFOCOM 
2000. Conference on Computer Communications. Nineteenth Annual 
Joint Conference of the IEEE Computer and Communications 
Societies (Cat. No.00CH37064), vol. 2, 2000, pp. 775–784. 

[5] A. K. Dey and G. D. Abowd, “Towards a better understanding of 
context and context-awareness,” in CHI 2000 workshop on the what, 
who, where, when, and how of context-awareness, 2000, pp. 304–
307. 

[6] N. Malik and U. Mahmud, “Future challenges in context-aware 
computing,” proceedings of the IADIS, pp. 306–310, 2007. 

[7] G. D. Abowd, “What next , Ubicomp ? Celebrating an intellectual 
disappearing act,” in UbiComp, 2012. 

[8] M. Satyanarayanan, “Pervasive computing: vision and challenges,” 
IEEE Personal Communications, vol. 8, no. 4, pp. 10–17, 2001. 

[9] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed 
Systems. Pearson Education, 2012, p. 1063. 

[10] F. Bolton, Pure Corba. Sams Publishing, 2002. 

[11] D. A. Norman, The invisible computer. Cambridge, Massachusetts, 
USA: MIT PRESS, 1998. 

[12] D. Salber, A. K. Dey, and G. D. Abowd, “The Context Toolkit: 
Aiding the Development of Context-Enabled Applications,” in 

Proceedings of the SIGCHI conference on Human factors in 
computing systems the CHI is the limit - CHI ’99, 1999, pp. 434–441. 

[13] J. E. Bardram, “The Java Context Awareness Framework (JCAF) – A 
Service Infrastructure and Programming Framework for Context-
Aware Applications,” in PERVASIVE 2005, 2005, pp. 98–115. 

[14] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-
aware systems,” International Journal of Ad Hoc and Ubiquitous 
Computing, vol. 2, no. 4, pp. 263–277, 2007. 

[15] G. M. Kapitsaki, G. N. Prezerakos, N. D. Tselikas, and I. S. Venieris, 
“Context-aware service engineering: A survey,” Journal of Systems 
and Software, vol. 82, no. 8, pp. 1285–1297, 2009. 

[16] D. Romero, “Context-Aware Middleware : An overview,” Revista 
Electrónica Paradigma en Construcción de Software, vol. 3, pp. 1–11, 
2008. 

[17] P. Bellavista, A. Corradi, and M. Fanelli, “A Survey of Context Data 
Distribution for Mobile Ubiquitous Systems,” ACM Computing 
Surveys, 2013. 

[18] R. P. Pinto, E. Cardozo, P. R. S. L. Coelho, and E. G. Guimarães, “A 
domain-independent middleware framework for context-aware 
applications,” Proceedings of the 6th international workshop on 
Adaptive and reflective middleware held at the ACM/IFIP/USENIX 
International Middleware Conference - ARM ’07, pp. 1–6, 2007. 

[19] C. Ye, S. C. Cheung, J. Wei, H. Zhong, and T. Huang, “A study on 
the replaceability of context-aware middleware,” in Proceedings of 
the First Asia-Pacific Symposium on Internetware - Internetware ’09, 
2009, pp. 1–10. 

[20] S. S. Yau, F. Karim, Y. Wang, B. Wand, and S. K. S. Gupta, 
“Reconfigurable context-sensitive middleware for pervasive 
computing,” IEEE Pervasive Computing, vol. 1, no. 3, pp. 33–40, Jul. 
2002. 

[21] L. O. Bonino da Silva Santos, R. P. van Wijnen, and P. Vink, “A 
service-oriented middleware for context-aware applications,” in 
Proceedings of the 5th international workshop on Middleware for 
pervasive and ad-hoc computing held at the ACM/IFIP/USENIX 8th 
International Middleware Conference - MPAC ’07, 2007, pp. 37–42. 

[22] R. P. Pinto, E. Cardozo, and E. G. Guimaraes, “A Component 
Framework for Context-Awareness,” 2008 International Wireless 
Communications and Mobile Computing Conference, pp. 315–320, 
Aug. 2008. 

[23] A. Kalaiselvi, V. Indumathi, J. Madhusudanan, and V. P. Venkatesan, 
“Implementation of Generic Context Middleware for Context-Aware 
Applications,” International Journal of Engineering Research and 
Technology (IJERT), vol. 1, no. 3, pp. 1–7, 2012. 

[24] T. Strang and C. Linnhoff-popien, “A Context Modeling Survey,” in 
Proceedings of UbiComp: 1st International Workshop on Advanced 
Context Modelling, Reasoning and Management, 2004. 

[25] B. N. Schilit, N. Adams, and R. Want, “Context-aware computing 
applications,” in Workshop on Mobile Computing Systems and 
Applications, 1994, pp. 85–90. 

[26] R. Löwe, P. Mandl, and M. Weber, “Context Directory : A Context-
Aware Service for Mobile Context-Aware Computing Applications 
by the Example of Google Android,” in 9th IEEE International 
Workshop on Managing Ubiquitous Communications and Services, 
pp. 75–80, March 2012. 

[27] “Hibernate,” Red Hat, Inc., 2012. [Online]. Available: 
http://www.hibernate.org/. [Accessed: 23-Jan-2012]. 

[28] “Language Guide - Protocol Buffers,” Google Inc., 2012. [Online]. 
Available: https://developers.google.com/protocol-buffers/docs/proto. 
[Accessed: 23-Jan-2013]. 

[29] G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper, and M. 
Pinkerton, “Cyberguide: a mobile context-aware tour guide,” 
Wireless Networks, vol. 3, no. 5, 1997. 

[30] R. Want, A. Hopper, V. Falcão, and J. Gibbons, “The active badge 
location system,” ACM Transactions on Information Systems, vol. 
10, no. 1, pp. 91–102, 1992.  

 

102


