Appendix A

Mathematical Concepts

Some of the mathematical concepts used in this book are summarized in this
appendix. Section A.1 includes some formulas for geometry that are generally
useful in machine vision, Section A.2 covers linear spaces, and Section A.3
describes the variational calculus which is used in solving ill-posed problems
through regularization.

A.1 Analytic Geometry

Let point p = (z,y) in two dimensions or p = (z,y, z) in three dimensions.
The unit vector u that represents the orientation of a vector v is the
vector of cosines of vector v with respect to each of the coordinate axes,

u=——(v-e,v-e...,v-e,), (A.1)

where e; is the unit vector for coordinate axis <.
The parametric equation for a line is

P(t) = tu+ py, (A.2)

where u is the unit vector that defines the orientation of the line, p, is a point
through which the line passes, and —oo < t < oo. This equation can also
be used to describe rays (half open lines) and line segments by restricting the
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domain of t. For 0 <t < oo, Equation A.2 represents the vector starting
at point p, and pointing in the direction u. For 0 < ¢t < 1, Equation A.2
represents the unit line segment between point p, and point p; given by

P; =Py t+u
The equation for the line segment between two points can be written as

p(t) = (1—t)p; +tp, (A.3)

with 0 <t < 1.

Three distinct points py, p;, and p, define a plane in space. Let v; =
pP; — Py and vo = p, — p,. If vectors v; and vy lie in a plane and are not
parallel, then the normal to the plane is

n=vwv; X Vs (A4)

The normal points in the direction of the thumb as the fingers of the right
hand sweep from v; to vo. The implicit equation for the plane is the set of
points p that are orthogonal to the plane normal n,

n-(p—py) =0, (A.5)

where p, is a point in the plane and allows the plane to be offset from the
origin. If the normal vector n = (a,b,c), then the plane equation can be
written as

ar+by+cz+d=0 (A.6)

where d = —n-p, accounts for the displacement of the plane from the origin.

The parametric form of a surface, such as a plane, is an equation of the
form p(u,v) = (z(u,v), y(u,v), z(u,v)). The parametric equation for a plane
is derived by noting that the origin in the (w,v) domain maps to a point
Py = (20, Yo, 20) on the plane, the u-axis in the domain maps to a vector v;
in the plane, and the v-axis in the domain maps to a vector v, in the plane.
The parametric equation is

p(u,v) = A ( ) ) +Po, (A7)

where the columns of the 3 x 2 matrix A are the vectors v; and v».
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A.2 Linear Algebra

The notion of a linear space is based on some common assumptions about how
physical systems should behave. The power of linear spaces in science and
engineering comes from this correspondence between simple mathematical
models and real physical systems.

A set of scalars F' is a field if the scalars obey the following conditions:

1. If z and y are elements of F, then z + y and xy are elements of F'.

2. If = is an element of F', then the additive inverse —z is an element of
F.

3. If z is an element of F and z # 0, then the multiplicative inverse z~!

is an element of F'.

4. The additive identity 0 and the multiplicative identity 1 are both ele-
ments of F'.

For example, the set of real numbers with the usual forms of addition and
multiplication is a field.

The mathematical model that comes from combining scalars into vectors
to represent points in space and many other things is a very powerful model.
Let vector u = (uy,ug,...,u,) and vector v = (v, vs,...,v,). Addition of
vectors is defined by the scalar addition of the corresponding vector elements,

U+ V= (ug+vi,uz + V2, .., U + Vn), (A.8)

and multiplication of a vector v by a scalar a is defined by applying scalar
multiplication to the individual elements of the vector:

av = (avy, avy, . .., avy). (A.9)
A vector space, also called a linear space, obeys the following conditions:
1. Addition of vectors u and v is commutative

u+v=v+u (A.10)

2. Addition of vectors u, v, and w is associative:

(u+v)+w=u+(v+w). (A.11)



A.2. LINEAR ALGEBRA 495

3. There is a vector denoted by 0 that is the identity element for vector
addition:
O+u=u+0=u. (A.12)

4. For every vector v there is an additive inverse:

v+ (=v) = 0. (A.13)

5. Multiplication of a vector sum by a scalar ¢ is distributed to the indi-
vidual vectors:
c(u+v)=cu+ecv. (A.14)

6. Multiplication of a vector by a sum of scalars can be rewritten as the
sum of the individual scalar multiplications:

(a+b)v=av+bv. (A.15)

7. Multiplication of a vector by a product of scalars is associative:

(ab)v = a(bv). (A.16)

8. There is an identity element for multiplication of a vector by a scalar:

lu=u. (A.17)

The linear space is fundamental to science and engineering because it is the
mathematical model for systems that behave linearly, which means that the
systems behave in a simple way and are easy to understand and use in design.
A linear system S obeys the conditions of superposition and homogeneity:

Sl +y] = S[z] + S[y] (A.18)
Slaz] = aSz] (A.19)

which say that the response to a sum of inputs is the sum of the responses
to the individual inputs, and the response to an input scaled by a constant
is the scaled response. The linearity conditions correspond to our intuitive
notions about how things should behave. For example, we expect that a light
that is twice as bright would make a scene appear to be twice as bright, and
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we expect that the result of using two lights should be the sum of the results
of using each light alone.
A linear combination is a sum of terms multiplied by constant coefficients:

a1b1 + a2b2 +oe 4+ anbn. (A20)

An element v in an n-dimensional vector space V' can be represented as a
linear combination of n basis vectors:

vV =aie; +aiey+ -+ aye,, (A.21)

where e; is a basis vector and a; is the corresponding coefficient. A linear
transformation is a mapping between vector spaces and can be implemented
by matrix multiplication applied to the vector of coeflicients that represent
an element in a vector space relative to some basis. The natural basis is the
set of vectors eq, e, ..., e, with e; = 1 at position ¢ and zero elsewhere. The
coefficients for the natural basis are the coordinates of the vector in the usual
Cartesian coordinate system.

Functional analysis extends the notion of vector space to spaces of func-
tions that can be represented by linear combinations of basis functions:

f(t) = arbi(t) + agba(t) + - - - + apbn(t). (A.22)

This is a finite-dimensional vector space, since the basis contains a finite
number of basis functions; but there are linear spaces with an infinite number
of dimensions that require an infinite number of basis functions, such as
Fourier series. Finite-dimensional vector spaces play an important role in
statistics, and hence in this book, since a model can be represented by a
finite number of parameters that can be estimated by linear regression.

The scalar product supports the notions of the length of a vector and
the angle between vectors. The square of the length of a vector is the scalar
product of the vector with itself,

Iv[? =v-v, (A.23)

which is the sum of the squares of the coefficients that represent the vector
relative to some basis. The angle between two vectors is the scalar product of
the two vectors, normalized by the length of each vector. The angle provides
a measure of the difference between two vectors.
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Consider two vectors v; and v, in the usual Euclidean three-dimensional
space that are not collinear. Vectors v; and v, define a plane in space. Any
linear combination of v; and vs is a vector in the plane,

V = a1V] + agVy, (A.24)

and any point in the plane can be reached with a unique linear combination
of the vectors. This plane is a subspace of the three-dimensional Euclidean
space, and the vectors v; and v, form a basis that spans the subspace.

Now consider a third vector vs that does not lie in the plane spanned
by the vectors v; and v, as defined in the preceding paragraph. The three
vectors vy, vo, and vs form a basis that spans the entire three-dimensional
space. Consider some vector v that is not coplanar with v; and v,. Vector
v can be written as a linear combination of two vectors,

vV =aiu+ asw, (A.25)

such that vector u lies in the plane spanned by v, and v,, and vector w is
perpendicular to that plane. This concept is fundamental to applications in
optimization and regression.

The usual scalar product between vectors u and v can be generalized
to a quadratic form that includes a weight on each scalar product between
corresponding vector elements,

a1u1v1 + aguUgVs + * -+ + AUy Uy, (A.26)

which can be further generalized to a weighted sum of the products between
all pairwise combinations of the elements of vectors u and v:

ZZaijuivj. (A27)

i=1j=1
This weighted sum can be written in matrix notation as

uAv’, (A.28)

where the superscript T denotes the transpose of a row vector into a column
vector. There is no loss of generality in assuming that matrix A is symmetric.
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The concept of eigenvalues and eigenvectors starts simply with the idea
that there may be a linear transformation represented by matrix A and some

vector x such that
Ax = Ax (A.29)

for some constant A. Vector x is an eigenvector of the linear transformation,
and A is its eigenvalue.

Let matrix A be a linear transformation that scales and rotates the nat-
ural basis of a vector space so that the axes (basis vectors) correspond in
length and orientation with the axes of some ellipsoid that is centered on the
origin. Consider a unit vector u that is already aligned with both an axis
of the ellipse and one of the axes of the coordinate system. Since the unit
vector is aligned with the axes of the ellipsoid, it will not change orientation
under the transformation into the orientation of the ellipsoid, but will change
length so that it is scaled to the length of the axis of the ellipsoid; thus,

Au = Au, (A.30)

where A is the length of the axis of the ellipsoid. This shows that the eigen-
values and eigenvectors are the length and orientation of the axes of the
ellipsoid.

A.3 Variational Calculus

Let f(z,y) be the function that is the solution to a variational problem. The
general form of a variational problem is

//F('rvyafvfz’fyafmm,fxy,fyy,...) diEdy

The solution to the variational problem is given as a partial differential equa-
tion, called the Euler equation, which is constructed from a formula involving
various partial derivatives of F. The general form for a function of two vari-
ables is

0 92 a"
Fo— — il e (=1
2 n

any-i— 9 nyy—"'-i-(—l)na Ff(")zo (A.31)

Coy oy oy
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if F' does not contain any cross derivatives. In computing the derivatives of
the integrand F' with respect to a partial derivative of the solution function
f, the partial derivative of the solution function is treated as a single variable
even though the variable is denoted by a symbol with subscripts. Note how
the sign alternates with the order of the derivatives and how the rows of
the formula for z and y have the same form. If f is a function of more
than two variables, then the Euler equation is extended with an additional
sequence of terms for each of the additional variables. If F contains cross
derivatives, then there will be additional terms to handle the cross derivatives.
If the variational problem requires finding more than one function, then each
function will yield another Euler equation.

As an example, consider the problem of determining the surface z =
f(z,y) that interpolates a set of data points z; at locations (z4,%) in a
rectangular region R of the image plane, for k = 1,...,n. This is an ill-posed
problem, since there are an infinite number of functions that can interpolate
a set of points. To make the problem well posed, choose the function that is
smooth according to the norm

/ /R V2f(e,y)] dedy, (A.32)

which means choose the function that minimizes Equation A.32 and interpo-
lates the data points zj at locations (zy, yx). Using the calculus of variations,
the solution is the biharmonic equation

Vif(e,y) =0 (A.33)

with boundary conditions
fow = 0 (A.34)
fxxy =0 (A35)

along the top and bottom edges of the rectangular domain and boundary
conditions
fexr = 0 (A.36)
Jfogm =10 (A.37)

along the left and right sides of the rectangular domain. The boundary
conditions mean that the interpolated surface does not have to assume any
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particular value or orientation along the boundary, but should smoothly ap-
proach the boundary.

Finding the partial differential equation and boundary conditions for a
problem in the variational calculus is only part of the solution. The partial
differential equations must be solved by numerical methods.

A.4 Numerical Methods

There are many numerical methods for solving partial differential equations
such as the biharmonic Equation A.33 and its boundary conditions. All
of the methods involve replacing the partial derivatives with finite differ-
ence approximations. There are basically two approaches: (1) replace the
partial derivatives in the variational problem, such as Equation A.32, with
finite difference approximations to obtain a system of equations that can
be solved numerically, or (2) replace the partial derivatives in the partial
differential equation derived from the variational problem—Equation A.33,
for instance—with finite difference approximations to obtain a system of
equations and solve the equations numerically. The numerical methods that
solve the variational problem directly can be more efficient, but the iterative
methods that solve the partial differential equations are easier to describe
and implement. '

The simplest finite difference methods solve a partial differential equation
at points on a uniform grid. The solution is an array of values for the func-
tion z = f(z,y) at grid locations [¢, j], with ¢ = 1,...,nand j =1,...,m.
The finite difference approximation for the biharmonic evaluated at grid lo-
cation [z, 7] is a linear combination of the function values at neighboring grid
locations. Imagine that the n by m grid of function values f[i, j] is unfolded
into a long vector flk|, with k = (¢ — 1)m + j. Let Nj be the list of offsets
for the grid locations of the neighbors of f[k] in the grid. The biharmonic
equation is approximated at each grid location by

Vif(e,y) = aflk] + Y af[k+1 =0 (A.38)
lEN
with changes to the coefficients near the boundaries of the domain. For each

grid location, this linear equation provides one row in a system of linear

equations
Af =0 (A.39)
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except at the grid locations where a known value is being interpolated, in
which case that row is filled with zeros except at f[k] = 1 and the right-hand
size is the known value z;. The system of linear equations can be solved
with sparse matrix techniques, or Equation A.38 can be solved for f[k] and
this formula repeated over all grid locations that do not have a known value
until the solution vector does not change significantly. This is the method of
successive approximation and is described in Numerical Recipes [197], along
with more sophisticated methods for solving partial differential equations
and variational problems.

Further Reading

The series of books Graphics Gems [89] provide many useful formulas and
algorithms for geometry.

Linear spaces are widely used in science and engineering. Lang [153]
provides a rigorous introduction to linear spaces. Noble and Daniel [187]
cover linear spaces with many practical applications. Naylor and Sell [182]
cover functional analysis, which is the extension of vector spaces to spaces of
functions, and include many examples from science and engineering.

Many problems can be formulated as optimization problems and solved
using the variational calculus. An excellent introduction to the variational
calculus is provided by Courant and Hilbert [62, Chap. 4]. The variational
calculus produces a partial differential equation that usually must be solved
by numerical methods. The book Numerical Recipes is an excellent intro-
duction to numerical methods [197].



