Appendix B

Statistical Methods

Machine vision could be called statistical geometry, since vision involves esti-
mating geometrical information from image data. This book uses some basic
material from statistics, such as the normal distribution and linear regres-
sion, which are reproduced in this appendix. The book also uses some new
ideas in statistics for formulating measurement algorithms that are robust to
unmodeled errors.

B.1 Measurement Errors

There are three types of performance parameters for a sensor or measurement
procedure. Resolution or precision is the smallest change in the value that a
sensor can report. Repeatability is the variation in repeated measurements
of the same quantity. Accuracy is the variation in measurements of a known
true value. It is easy to remember the relationship between accuracy and
repeatability:

Accuracy = Repeatability + Calibration. (B.1)
There is a similar relationship between the components of error:
Error = Variance + Bias. (B.2)

The variance is the error in repeatability for a measurement; the bias is the
systematic error due to lack of calibration. For example, suppose that you
are measuring the length of a hallway with a yardstick, but instead of a
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yardstick you accidentally pick up a meter stick. Your measurements would
still have the same repeatability, assuming that you were just as careful in
laying the measuring stick end to end as you measured the length of the hall.
But there would be a systematic bias, a constant proportional to the true
length of the hall, due to the incorrect length of the measuring stick. Bias
can be removed through careful calibration, but variance (or repeatability)
is a characteristic limitation of the measurement method.

The histogram is a useful tool for seeing the distribution, including both
variance and bias, of a measurement. The range of measurements on the
real line is partitioned into a finite number of intervals called buckets. A
one-dimensional integer array of length equal to the number of buckets is
used to count the number of occurrences of measurements that fall in the
intervals. A plot of the histogram shows the distribution of measurements.
The width of the plot is an indication of variance, and the difference between
the location of the center of the distribution and the true measurement is an
indication of bias.

A measurement y; of some quantity x can be corrupted by additive error:

where e; is the error in the measurement. If the error were known or if the
error could be removed through calibration, then each measurement would
be an accurate estimate of the unknown quantity, and no further processing
would be necessary. However, the repeatability of a measurement procedure
is not perfect, and each measurement will include error drawn from some
distribution leading to a distribution of measurements somehow related to
the unknown parameter. Statistics is the science of measurement procedures
and includes methods for estimating unknown parameters given various as-
sumptions about the characteristics of the errors.
The average of a set of n measurements is

s— Ly,
——n;xl (B.4)

The median is computed by sorting the measurements and choosing the mid-
dle element (or averaging the two middle elements if the number of measure-
ments is even). The mode is the location of the peak in the distribution
of measurements. The average and median are methods for estimating an
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unknown parameter from measurements corrupted by additive errors from
a symmetric distribution. For example, pixels can be averaged over local
neighborhoods, or the pixel values obtained at the same location in a se-
quence of images can be averaged to reduce the noise in the measurements
of gray value.

Several different measurements of the amount of error can be computed.
Mean absolute error (MAE) is +6,, where

1
by = — > |2 — pal (B.5)

and p, is the average or median. Root mean square (RMS) error is +o,,

where 4
oy = n=1) > (@ = po)? (B.6)

and p, is the average. Maximum error is *e,, where
€z = Max |zi — pz| (B.7)

and p, is the average or median. Note that 6 <o <e.

B.2 Error Distributions

The binomial distribution models measurement processes with a finite num-
ber of outcomes, called events. For example, a fair coin that is flipped once
will show heads with probability 1/2 and tails with probability 1/2. This set

of outcomes is modeled by the polynomial
P(z) = 0.5+ 0.5z, (B.8)

where the coefficient for each power of z is the probability that heads will
occur that many times. If the coin is tossed n times, then the probabilities of
various numbers of heads can be determined by expanding the polynomial:

P(z;n) = (0.5 4 0.52)". (B.9)

The probability that heads will occur 7 times is the coefficient of z* in the
expanded polynomial. In general, a single measurement with k£ outcomes can
be modeled by a polynomial of order &,

P(z) = po + p1z + pox? + - - + ppazF 7, (B.10)
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where p; is the probability of outcome 7 and

k
dopi=1. (B.11)
=1

The cumulative results of various combinations of outcomes after a sequence
of n measurements are modeled by raising the polynomial for one measure-
ment to power n,

P(z;n) = (Po +prz+poz? 4+ -+ pk_lwk_l)n , (B.12)

expanding the polynomial, and calculating each coefficient.

The uniform distribution is used to model measurements that are equally
likely. For example, if a point is located anywhere with equal probability in
the rectangular region defined by points (z1,y:) and (xo, y2) at the corners,
then the probability that the point is at location (z,y) is

| 1/A if (z,y) is in the region
Ple,y) = { 0 otherwise (B.13)

where A is the area of the region.
The normal distribution is a useful approximation to the errors in many
measurement processes. The normal distribution N(z; p, 02) is

1 G
et (B.14)

N(z;p,0%) =
2mo

where p is the location of the center of the distribution and ¢? is the variance.
Since bias is usually eliminated by proper calibration, the normal distribution
for errors is usually zero mean.

Some measurement processes occasionally produce gross errors, called
outliers, in addition to normally distributed errors. Such an error process
can be modeled as the mixture of a normal distribution and some unknown,
broad-tailed distribution:

(1_V)N('r;:ul)o-%)+VB(x; /"270'3)’ (B15)

where v represents the odds that an outlier will occur. There is a probability
of v that the measurement will be contaminated with error from the outlier
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distribution and a probability of ¥ — 1 that the measurement will be subject
to normally distributed errors. Typically, the bias from both error processes
is eliminated through proper calibration, and so both error distributions are
Zero mean:

(1 = v)N(z;0,0?) + vB(;0,03). (B.16)

Since outliers are extreme errors, oo > o;. As an example, the Cauchy

distribution
1 a

Clz;a,b) = —————— B.17
has such broad tails that the variance is infinite.
B.3 Linear Regression
Given n data points and a model with m parameters aq, as, . .., a,,, the least-

squares error in the fit of the model to the data is

n o " 2
X2 _ Z (yl y(wzzalaa% % s o ’am)) . (B18)

=1 Oi

This is weighted least-squares regression, where the weights o; are the errors
(standard deviations) in the measurements so that less noisy measurements
are given more weight.

Often, the error is the same for each measurement, or the individual mea-
surement errors are unknown and assumed to be identical, in which case the
least-squares regression problem is to determine the parameters a;, as, . . ., an,
that minimize .

X2 = Z(yz —y(a:i;al,aQ,...,am))Q. (B.19)
i=1
If the model is linear in the parameters, then the problem is linear regression.
A model is linear if it can be represented as a linear combination of basis
functions:

y(z;a1,az,...,am) = a1¢1(z) + azda(z) + - + amdm(z), (B.20)
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where the functions ¢;(z) do not depend on the model parameters. The coef-
ficients a1, ag, as, . .., a, of the linear combination are the model parameters
to be determined through regression. For example, the line

y=azr+b (B.21)

is a linear model with parameters a and b.

A linear least-squares regression problem can be reliably solved using stan-
dard numerical routines for singular value decomposition [84, pp. 534-539],
which also provides a measure of the error in the fitted parameters. Consider
fitting a linear model

2 =ay + asr + azy (B.22)

to a set of data points {(z1,y1, 21), (2, y2, 22), . - -, (Tn, Yn, 2n)}. Each data
point leads to a constraint

Z; R a1+ aox; + asy;, (B23)

and the set of data points leads to a set of constraints that can be written in
matrix form:

1 W 21

1 z & z
G B P I e (B.24)

as :

1 Ln Yn Zn

These equations are usually written in the more compact form
AX = B. (B.25)

The A matrix is not square and cannot be inverted directly. One technique is
to multiply both sides of Equation B.25 by AT to form the normal equations
and solve the normal equations using standard techniques for solving systems
of linear equations such as LU decomposition. A better technique is to use
singular value decomposition. There are several advantages to using singular
value decomposition: (1) it is not necessary to premultiply Equation B.25
to form the normal equations, (2) singular value decomposition handles ill-
conditioned systems of equations, and (3) the singular values provided as a
by-product of SVD indicate redundancies (unnecessary terms) in the model.

Since singular value decomposition is used frequently for the algorithms
in this book and Numerical Recipes [197] is an excellent source for good
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numerical algorithms, the method for solving a linear regression problem
using the singular value decomposition routine in Numerical Recipes will
be presented in detail. (Note that some elements of C programming are
described in Appendix C.) The interface for the numerical routine for singular
value decomposition is V

void svdcmp (a, n, m, w, V)
float **a, *w, *x*xv;
int n, m;

The routine takes an array a with n rows and m columns and replaces it with
the singular value decomposition

A=UwWVT, (B.26)

The array a is replaced by U in the singular value decomposition, the array w
receives the singular values in the diagonal matrix W, and the array v receives
the V matrix. Note that n is the number of observations (measurements),
while m is the number of parameters in the linear model. It is easy to fill
the entries in the array a according to Equation B.24 and call svdcmp to
obtain the singular value decomposition. After obtaining the singular value
decomposition, use the routine svbksb to solve for the model parameters:

void svbksb (u, w, v, n, m, b, x)
float **u, *w, **v, *b, *X;
int n, m;

The u, w, and v arrays are the a, w, and v arrays computed by svdcmp. The
dimensions n and m are the same as for svdcmp. The b array is the right-hand
side of Equation B.24, and the array x is the parameter vector (solution).
In other words, the combination of svdcmp and svbksb solve the nonsquare
system of linear equations presented as Equation B.24. The code fragment
for invoking the routines is

float wmin, wmax;
svdcmp (a, n, m, w, v);
wmax = 0.0;
for (j = 1; j <= m; j++)
if (w[j] > wmax) wmax = w[j];
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wmin = wmax * 1.0e-6;
for (j = 1; j <= m; j++)

if (wlj] < wmin) w[j] = 0.0;
svbksb (a, w, v, n, m, b, x);

Small singular values indicate problems in the regression model. The code
provided above sets small singular values to zero, which is one safe way to
handle the problem. The constant 1.0e-6 is a typical value but may be dif-
ferent for some applications. If there are small singular values, it is important
to carefully analyze the model and determine why the small singular values
occur. There may be terms in the model that are unnecessary.

Singular value decomposition is a very reliable algorithm but can fail to
produce a good regression estimate for several reasons:

e The wrong model may be used in formulating the regression problem.
e The measurement errors o; may be too large.

e The measurement errors may not be from a normal distribution. For
example, the errors could be from a broad-tailed distribution.

The probability distribution for x? when the minimum value of the regres-
sion norm is obtained is the chi-square distribution with » = n — m degrees
of freedom. The probability that chi-square should exceed x? by chance is

1 o
Q= / e tt271 dt. (B.27)
X2

L'(%)

The regression error x? should be calculated as part of the regression pro-
cedure. The integral can be calculated using numerical methods, but values
of @ are provided in statistical tables. If @ > 0.001, then the regression fit
should probably be rejected. This provides an objective way to evaluate the
model fitting procedure. In practice, the value for @ is selected based on
knowledge of the application. The value for v is determined by the number
of data points and the order of the model. The corresponding value for x?2
can be found in statistical tables. If the measured value for x? obtained
during regression exceeds the tabulated value, then the algorithm has not
succeeded, and the results should be discarded. If excessive values for x? are
encountered frequently, then the model is probably wrong or linear regres-
sion is not the right approach, and perhaps robust regression should be used
instead.
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B.4 Nonlinear Regression

If the model is nonlinear in its parameters, the least-squares regression prob-
lem is to minimize x? for the nonlinear model. Since the formula for the
model is known, both the gradient and Hessian can be calculated. This
allows the Levenberg-Marquardt method to be used for solving nonlinear
regression problems [197, pp. 540-547].

Seber and Wild [217] is an excellent text on nonlinear regression. In
some cases, the arguments to the Levenberg-Marquardt routine in Numer:-
cal Recipes may not match the intended application, but Numerical Recipes
provides routines for the Newton-Raphson method, which is discussed in
practical texts on nonlinear regression [23].

Further Reading

There are many excellent textbooks on probability and statistics. Any book
that describes experimental methods in science and engineering or statistical
methods in the social sciences would be sufficient. For example, Beck and
Arnold [24] cover linear and nonlinear methods for regression with emphasis
on applications in engineering and science. Box, Hunter, and Hunter [43]
have written a classic text on experimental methods. Drake [69] has writ-
ten a basic introduction to probability and statistics, while Papoulis [192]
provides more comprehensive coverage. Gaussian error models are used in
communications theory [257], which has influenced machine vision and pat-
tern recognition. Vanmarcke [244] and Cressie [63] present probability and
statistical methods for spatial data which may be useful as further readings
in machine vision. Robust regression methods are summarized in the article
by Efron and Tibshirani [72]. Finally, Numerical Recipes in C'is an excellent
source for statistics algorithms [197] and explains regression particularly well.



