Appendix C

Programming Techniques

This appendix covers some aspects of C programming that are important for
image processing and outlines the design of the image processing routines
that were used to produce some of the examples in this book.

C.1 Image Descriptors

Images can be represented in C using image descriptors, which are structures
that contain all of the information needed by subroutines to process an image.
Image descriptors are an efficient representation and allow an image to be
passed to a subroutine through a single subroutine parameter.

An image descriptor contains the following fields:

address Pointer to the beginning of the image array
height Number of rows in the image

width Number of columns in the image

span Allocated length of each row in the image array

The image descriptor fields should be accessed with macros defined in a
header file so that programs are independent of changes in the image repre-
sentation. A portion of the header file is listed in Program C.1.

511

512 APPENDIX C. PROGRAMMING TECHNIQUES

Program C.1 The definition of pixels and image descriptors

typedef int pixel;

typedef struct _id
o
pixel *id_address;
int id_height,
id_width,
id_span;
} image_descriptor;

#define address(id_ptr) ((id_ptr) -> id_address)
#define span(id_ptr) ((id_ptr) -> id_span)
#define height(id_ptr) ((id_ptr) -> id_height)
#define width(id_ptr) ((id_ptr) -> id_width)

For convenience, pixels are defined to be 32-bit signed numbers. By
redefining the pixel data type and recompiling the programs, the software
can be changed to use more common pixel data types such as unsigned bytes.
However, image processing algorithms may yield intermediate results that do
not conform to the limited range of small integers. More common numerical
representations, such as single-precision floating point numbers, may be more
suitable for many image processing operations.

The C routine array takes a pointer to an image descriptor and returns
an array of pointers to the first pixel in each row of the image. A pointer to
the array of row pointers is stored in the image descriptor. The routine array
uses the array stored in the descriptor if it exists; otherwise, it allocates and
returns the array of row pointers after storing it in the image descriptor. The
storage used by the array of row pointers is reclaimed when the storage used
by the image descriptor itself is freed by a call to free_image. The array of
pointers to the image rows should not be freed explicitly.

The array of image row pointers allows C style array access. As an ex-
ample of the use of image descriptors, consider the routine listed in Program
C.2 for summing the pixels in an image.

C.1. IMAGE DESCRIPTORS 513

Program C.2 A routine for summing the pixels in an image using an array
of pointers to the image rows

int sum_image(image)
image_descriptor *image;
pixel **image_array = array(image);
int row, column, sum;

for (sum = 0, row = 0; row < height(image); row ++)
for (column = 0; column < width(image); column ++)
sum += image_array[row] [column];
return (sum);

Using an array of pointers to the array rows is the easiest method for
accessing multidimensional arrays in C and is probably the style that is used
most often, but there are situations where it is necessary to write C code that
manipulates the pointers directly. Program C.3 sums the pixels in an image
without using an array of pointers to the image rows. Pointer arithmetic is
coded directly in the program.

Program C.3 A routine for summing the pixels in an image by advancing
pointers down the rows and across the columns of the image

int sum_image(image)
image_descriptor *image;
!
pixel *rowptr, *colptr;
int rowcnt, colcnt, sum;

for (sum = 0, rowcnt = height(image),
rowptr = address(image);
rowcnt > 0;
rowptr += span(image), rowcnt--)
for (colecnt = width(image), colptr = rowptr;
colcnt > 0;
colcnt--)

514 APPENDIX C. PROGRAMMING TECHNIQUES

sum += *(colptr++);
return (sum);

L,

The third alternative for accessing the pixels in an image is to code the
subscript calculations for accessing each pixel. The formula for accessing the
pixel at a specified row and column in an image is

address(image) [row * span(image) + column]

A program for copying one image to another is listed in Program C.4.

Program C.4 Program to copy one image to another that will work cor-
rectly even if the images are not the same size or have different row dimen-
sions

copy_image (input, output)

image_descriptor *input, *output;

it
pixel *input_row_ptr, *output_row_ptr, *inptr, *outptr;
int rowcnt, colcnt;

for (rowcnt = min(height(input), height(output)),
input_row_ptr = address(input),
output_row_ptr = address(output);
rowcnt > 0;
rowcnt--,
input_row_ptr += span(input),
output_row_ptr += span(output))
{
for (colcnt = min(width(input), width(output)),
inptr = input_row_ptr,
outptr = output_row_ptr;
colcnt > 0;
colcnt--)
*(outptr++) = *(inptr++);

C.1. IMAGE DESCRIPTORS 515

Program C.4 is carefully written to work correctly even if the images are
of different sizes or the image spans are different. Defensive coding makes
the programs more robust.

The reason for including the span (also called the stride or row dimension)
in the image descriptor is that the image may be stored in an array that is
wider than the image. For example, Program C.5 returns a subimage of
an image. The beauty of image descriptors is that the programs that handle
images will work with subimages since the operations using image descriptors
are identical.

Program C.5 A routine to return a subimage of an image

image_descriptor *make_subimage
(image, subimage_row, subimage_column,
subimage_height, subimage_width)
image_descriptor *image;
int subimage_row, subimage_column,
subimage_height, subimage_width;

{
image_descriptor *subimage;
subimage = (image_descriptor *)
malloc(sizeof (image_descriptor));
init_image_descriptor (subimage,
pixel_address(image, subimage_row,
subimage_column),
span(image),
subimage_height,
subimage_width) ;
return (subimage);
}

Routines are provided for allocating images and freeing images: make_image
and free_image, respectively.

516 APPENDIX C. PROGRAMMING TECHNIQUES

C.2 Mapping Operators

Some patterns of code occur repeatedly in image processing programs. For
example, the code for incrementing pixel pointers and counts to apply a local
operator to successive windows of an image will occur without change in every
routine that applies local operators to images. These program idioms can be
coded in a set of mapping routines that apply an arbitrary operator to an
image. The operators are not entirely arbitrary since the number of images
must be coded into the argument list. As an example, consider Program C.6,
which applies an operator of arbitrary size across successive supports of an
input image and places the output into successive pixels of an output image.

Program C.6 Routine to map an operator with arbitrary support across
an image and store the results in an output image. The image operator takes
a pointer to a window as input and returns a pixel.

map_image_support (input, output, functionm,
support_height, support_width)
image_descriptor *input, *output;
int support_height, support_width;
pixel (* function)();
{
int output_height = height(input) - support_height + 1,
output_width = width(input) - support_width + 1;
image_descriptor support_descriptor;
image_descriptor *support = &support_descriptor;
int rowcnt, colcnt;
pixel *input_row_ptr, *output_row_ptr,
*¥input_column_ptr, *output_column_ptr;

init_image_descriptor (support, NULL, span(input),
support_height, support_width);

for (rowcnt = min(output_height, height(output)),
input_row_ptr = address(input),
output_row_ptr = address(output);
rowcnt > 0;
rowcnt--, input_row_ptr += span(input),

C.3. IMAGE FILE FORMATS 517

output_row_ptr += span(output))
for (colcnt = min(output_width, width(output)),
input_column_ptr = input_row_ptr,
output_column_ptr = output_row_ptr;
colcnt > 0; colecnt—-)

{
address(support) = input_column_ptr++;
(output_column_ptr++) = (function) (support);

3

As an example of how a mapping function can be used, the following
statement uses map_image_support listed in Program C.6 and sum_image
listed in Program C.3 to smooth an image with a 3 x 3 averaging mask:

map_image_support (input, output, sum_image, 3, 3);

The statement works because sum_image is passed an image descriptor for
the 3 by 3 window. Note that the mapping functions may not update the
array of row pointers computed by array, since this would be inefficient. To
use mapping functions, the pointer calculations are coded directly into the
routines that implement the local operations.

Mapping functions can be very useful since they allow arbitrarily compli-
cated operators to be applied to images. This is generalized convolution and
is used frequently in image processing.

C.3 Image File Formats

There are many image file formats in use, but the formats supported by the
pbmplus package are portable across different machine architectures. The
package handles binary images, gray-level images, and multichannel (color)
images and is available on the Internet. The pbmplus package includes C rou-
tines for reading and writing image files and utility programs for converting
between the pbmplus file formats and other image file formats.

Images stored in pbmplus files are not compressed, but the files can be
compressed by programs such as compress, which is available on Unix sys-
tems, or gzip which is available on the Internet.

518 APPENDIX C. PROGRAMMING TECHNIQUES

Further Reading

There are many excellent books on programming in C. The original book on
C was written by Kernighan and Ritchie [142]. Harbison and Steele wrote a
reference manual on C that is useful for experienced C programmers [104].

The book Numerical Recipes [197] describes methods for programming
matrix and vector operations, and Graphics Gems [89] includes some discus-
sion of programming techniques for image processing.

The Tecl/Tk toolkit is useful for developing programs with interactive
interfaces and also provides an extensible command line interpreter [191].
Image processing operations can be implemented as commands that are in-
voked interactively or through the command line interface. The command
language allows machine vision algorithms to be written as scripts, so that
repetitive operations can be performed easily. Machine vision applications
can be modified by changing the scripts, so it is not necessary to change the
image processing programs.

