
Chapter 13

Curves and Surfaces

There are two fundamental problems with surfaces in machine vision: re­
construction and segmentation. Surfaces must be reconstructed from sparse
depth measurements that may contain outliers. Once the surfaces are recon­
structed onto a uniform grid, the surfaces must be segmented into different
surface types for object recognition and refinement of the surface estimates.

This chapter begins with a discussion of the geometry of surfaces and
includes sections on surface reconstruction and segmentation. The chapter
will cover the following topics on surfaces:

Representations for surfaces such as polynomial surface patches and tensor­
product cubic splines

Interpolation methods such as bilinear interpolation

Approximation of surfaces using variational methods and regression splines

Segmentation of point measurements into surface patches

Registration of surfaces with point measurements

Surface approximation is also called surface fitting, since it is like a re­
gression problem where the model is the surface representation and the data
are points sampled on the surface. The term surface reconstruction means
estimating the continuous function for the surface from point samples, which
can be implemented by interpolation or approximation.

365

366 CHAPTER 13. CURVES AND SURFACES

There are many machine vision algorithms for working with curves and
surfaces. This is a large area and cannot be covered completely in an intro­
ductory text. This chapter will cover the basic methods for converting point
measurements from binocular stereo, active triangulation, and range cameras
into simple surface representations. The basic methods include converting
point measurements into a mesh of triangular facets, segmenting range mea­
surements into simple surface patches, fitting a smooth surface to the point
measurements, and matching a surface model to the point measurements.
After studying the material in this chapter, the reader should have a good
introduction to the terminology and notation of surface modeling and be
prepared to continue the topic in other sources.

13.1 Fields

This chapter covers the problems of reconstructing surfaces from point sam­
ples and matching surface models to point measurements. Before a discussion
of curves and surfaces, the terminology of fields of coordinates and measure­
ments must be presented.

Measurements are a mapping from the coordinate space to the data space.
The coordinate space specifies the locations at which measurements were
made, and the data space specifies the measurement values. If the data space
has only one dimension, then the data values are scalar measurements. If the
data space has more than one dimension, then the data values are vector mea­
surements. For example, weather data may include temperature and pressure
(two-dimensional vector measurements) in the three-dimensional coordinate
space of longitude, latitude, and elevation. An image is scalar measurements
(image intensity) located on a two-dimensional grid of image plane positions.
In Chapter 14 on motion, we will discuss the image flow velocity field, which
is a two-dimensional space of measurements (velocity vectors) defined in the
two-dimensonal space of image plane coordinates.

There are three types of fields: uniform, rectilinear, and irregular (scat­
tered). In uniform fields, measurements are located on a rectangular grid
with equal spacing between the rows and columns. Images are examples of
uniform fields. As explained in Chapter 12 on calibration, the location of any
grid point is determined by the position of the grid origin, the orientation of
the grid, and the spacing between the rows and columns.

367 13.2. GEOMETRY OF CURVES

Rectilinear fields have orthogonal coordinate axes, like uniform fields,
but the data samples are not equally spaced along the coordinate axes. The
data samples are organized on a rectangular grid with various distances be­
tween the rows and columns. For example, in two dimensions a rectilinear
field partitions a rectangular region of the plane into a set of rectangles of
various sizes, but rectangles in the same row have the same height, and rect­
angles in the same column have the same width. Lists of coordinates, one
list for each dimension, are needed to determine the position of the data
samples in the coordinate space. For example, a two-dimensional rectilinear
grid with coordinate axes labeled x and Y will have a list of x coordinates
{Xj},j = 1,2, ... , m for the m grid columns and a list of Y coordinates
{Yi}, i = 1,2, ... , n for the n grid rows. The location of grid point [i,jj is
(Xj, Yi).

Irregular fields are used for scattered (randomly located) measurements
or any pattern of measurements that do not correspond to a rectilinear struc­
ture. The coordinates (Xk' Yk) of each measurement must be provided explic­
itly in a list for k = 1, ... , n.

These concepts are important for understanding how to represent depth
measurements from binocular stereo and active sensing. Depth measure­
ments from binocular stereo can be represented as an irregular, scalar field
of depth measurements Zk located at scattered locations (Xk' Yk) in the im­
age plane or as an irregular field of point measurements located at scattered
positions (Xk' Yk, Zk) in the coordinate system of the stereo camera with a
null data part. Likewise, depth measurements from a range camera can be
represented as distance measurements zi,j on a uniform grid of image plane
locations (Xj, Yi) or as an irregular field of point measurements with a null
data part. In other words, point samples of a graph surface Z = f(x, y) can
be treated as displacement measurements from positions in the domain or as
points in three-dimensional space.

13.2 Geometry of Curves

Before a discussion of surfaces, curves in three dimensions will be covered
for two reasons: surfaces are described by using certain special curves, and
representations for curves generalize to representations for surfaces. Curves
can be represented in three forms: implicit, explicit, and parametric.

368 CHAPTER 13. CURVES AND SURFACES

The parametric form for curves in space is

P = (x, y, z) = (x(t), y(t), z(t)), (13.1)

for to :S t :S t l , where a point along the curve is specified by three functions
that describe the curve in terms of the parameter t. The curve starts at
the point (x(to), y(to), z(to)) for the initial parameter value to and ends at
(x(h), y(t l), z(t l)) for the final parameter value t l . The points corresponding
to the initial and final parameter values are the start and end points of
the curve, respectively. For example, Chapter 12 makes frequent use of the
parametric form for a ray in space:

(13.2)

for 0 :S t < 00, where the (unit) vector (ux , uy , uz) represents the direction
of the ray and (xo, Yo, zo) is the starting point of the ray.

The parametric equation for the line segment from point PI = (Xl, yl, Zl)
to point P2 = (X2' Y2, Z2) is

(13.3)

Curves can also be represented implicitly as the set of points (x, y, z) that
satisfy some equation

f(x, y, z) = 0 (13.4)

or set of equations.

13.3 Geometry of Surfaces

Like curves, surfaces can be represented in implicit, explicit, or parametric
form. The parametric form for a surface in space is

(x,y,z) = (x(u,v),y(u,v),z(u,v)), (13.5)

for Uo :S u :S UI and Vo :S v :S VI' The domain can be defined more generally
as (u,v) ED.

369 13.3. GEOMETRY OF SURFACES

The implicit form for a surface is the set of points (x, y, z) that satisfy
some equation

f(x, y, z) = o. (13.6)

For example, a sphere with radius r centered at (xo, Yo, zo) is

f(x, y, z) = (x - xo? + (y - YO)2 + (z - ZO)2 - r2 = o. (13.7)

The explicit (functional) form

z = f(x,y) (13.8)

is used in machine vision for range images. It is not as general and widely
used as the parametric and implicit forms, because the explicit form is only
useful for graph surfaces, which are surfaces that can be represented as dis­
placements from some coordinate plane.

If a surface is a graph surface, then it can be represented as displacements
normal to a plane in space. For example, a range image is a rectangular grid
of samples of a surface

z = f(x, y), (13.9)

where (x, y) are image plane coordinates and z is the distance parallel to the
z axis in camera coordinates.

13.3.1 Planes

Three points define a plane in space and also define a triangular patch in
space with corners corresponding to the points. Let Po, PI' and P2 be three
points in space. Define the vectors el = PI - Po and e2 = P2 - Po. The
normal to the plane is n = el x e2. A point P lies in the plane if

(p - Po) . n = o. (13.10)

Equation 13.10 is one of the implicit forms for a plane and can be written in
the form

ax + by + cz + d = 0, (13.11)

where the coefficients a, b, and c are the elements of the normal to the plane
and d is obtained by plugging the coordinates of any point on the plane into
Equation 13.11 and solving for d.

370 CHAPTER 13. CURVES AND SURFACES

The parametric form of a plane is created by mapping (u, v) coordinates
into the plane using two vectors in the plane as the basis vectors for the
coordinate system in the plane, such as vectors el and e2 above. Suppose
that point Po in the plane corresponds to the origin in u and v coordinates.
Then the parametric equation for a point in the plane is

(13.12)

If the coordinate system in the plane must be orthogonal, then force el and
e2 to be orthogonal by computing e2 from the cross product between el and
the normal vector n,

(13.13)

The explicit form for the plane is obtained from Equation 13.11 by solving
for z. Note that if coefficient c is close to zero, then the plane is close to being
parallel to the z axis and the explicit form should not be used.

13.3.2 Differential Geometry

Differential geometry is the local analysis of how small changes in position
(u, v) in the domain affect the position on the surface, p(u, v), the first deriva­
tives, Pu(u, v) and Pv (u, v), and the surface normal, n(u, v). The geometry
is illustrated in Figure 13.l.

The parameterization of a surface maps points (u, v) in the domain to
points P in space:

p(u,v) = (x(u,v),y(u,v),z(u,v)). (13.14)

The first derivatives, Pu (u, v) and Pv (u, v), are vectors that span the tangent
plane to the surface at point (x, y, z) = p(u, v). The surface normal n at
point p is defined as the unit vector normal to the tangent plane at point
p and is computed using the cross product of the partial derivatives of the
surface parameterization,

Pu X Pv
() (13.15)

n P = II II'Pu x Pv

371 13.3. GEOMETRY OF SURFACES

(u, v) i : dv:

"Aj.dUI ___~/ !
(u+du, v+dv)!

uv parameter plane

Figure 13.1: A parametrically defined surface showing the tangent plane and
surface normal.

The tangent vectors and the surface normal n(u, v) define an orthogonal
coordinate system at point p(u, v) on the surface, which is the framework for
describing the local shape of the surface.

The curvature of a surface is defined using the concept of the curvature
of a planar curve. Suppose that we wish to know the curvature of the sur­
face at some point p on the surface. Consider a plane that slices the surface
at point p and is normal to the surface at point p. In other words, the
surface normal at point p lies in the slicing plane. The intersection of the
plane with the surface is a planar curve that includes point p. The normal
curvature at point p is the curvature of this planar curve of intersection.
Refer to Figure 13.2. The plane is spanned by the surface normal and a
vector in the plane tangent to the surface at p. The normal curvature is not
unique, since it depends on the orientation of the plane about the surface
normal. The minimum and maximum curvatures, "'1 and "'2, are called the

372 CHAPTER 13. CURVES AND SURFACES

(u, v)

Figure 13.2: Diagram illustrating the geometry of the normal curvature at a
point on a surface. The intersecting plane contains the surface normal.

principal curvatures, and the directions in the tangent plane corresponding
to the minimum and maximum curvatures are the principal directions.

The Gaussian curvature is the product of the principal curvatures,

(13.16)

and the mean curvature is the average of the principal curvatures,

(13.17)

The lines of curvature are curves in the surface obtained by following the
principal directions. U mbilic points are locations on the surface, such as the
end of an egg or any point on a sphere, where all normal curvatures (and
hence the two principal curvatures) are equal.

373 13.4. CURVE REPRESENTATIONS

13.4 Curve Representations

Curves can be represented in parametric form x(t), y(t), z(t) with the position
of each point on the curve specified by a function of the parameter t. Many
functions can be used to specify curves in parametric form. For example, we
can specify a line segment starting at (Xl, YI, Zl) and ending at (X2' Y2, Z2) as

x(t) = tX2 + (1 - t)XI (13.18)

y(t) = tY2 + (1 - t)YI (13.19)

z(t) = tZ2 + (1 - t)ZI' (13.20)

for 0 ::; t ::; 1. Cubic polynomials are used in a general representation of
space curves described in the next section.

13.4.1 Cubic Spline Curves

A cubic spline is a sequence of cubic polynomial curves joined end to end to
represent a complex curve. Each segment of the cubic spline is a parametric
curve:

x(t) axt3+ bxt2+ cxt + dx (13.21)

y(t) ayt3 + byt2+ cyt + dy (13.22)

z(t) azt3 + bzt2+ czt + dz, (13.23)

for 0 ::; t ::; 1. Cubic polynomials allow curves to pass through points with a
specified tangent and are the lowest-order polynomials that allow nonplanar
curves.

These equations can be represented more compactly by organizing the
coefficients into vectors. If the coefficient vectors are written as

a (ax,ay,az) (13.24)

b (bx, by, bz) (13.25)

c (cx, cy, cz) (13.26)

d (dx, dy, dz) (13.27)

and p(t) = (x(t), y(t), z(t)), then a cubic polynomial curve can be written as

p(t) = at3 + bt2+ ct + d. (13.28)

374 CHAPTER 13. CURVES AND SURFACES

More complex curves are represented as sequences of cubic polynomials joineJ
at their end points:

a l t
3 + b l t

2 + CIt + d l
a2t3 + b2t2 + C2 t + d2

(13.29)

for 0 ::; t ::; 1. Note that ai, b i , Ci, and d i are the vectors of coefficients for
curve segment i. If we define cubic polynomial segment i on the unit interval
i-I ::; t ::; i, then the entire sequence is defined on the interval 0 ::; t ::; n
and the sequence of cubic polynomial segments can be treated as a single
parametric curve starting at point PI (0) and ending at point Pn (n). This
sequence of cubic polynomials is called a cubic spline and is a common way
of representing arbitrary curves in machine vision and computer graphics.

13.5 Surface Representations

This section will cover some simple surface representations that are used in
machine vision.

13.5.1 Polygonal Meshes

Planar polygons, also called planar facets or faces, can used to model complex
objects. Planes were covered in Section 13.3.1. In this section, we will show
how many planar facets can be combined to model the surface of an object
using a polygonal mesh.

In Chapter 6, we showed how a polyline can be represented by the list
of coordinates for the vertices that connect the line segments. Likewise, a
polygonal mesh is represented by the list of vertex coordinates for the vertices
that define the planar polygons in the mesh. Since many polygons may share
each vertex, we will use an indirect representation that allows each vertex to
be listed once. Number the vertices from 1 to n and store the coordinates

375 13.5. SURFACE REPRESENTATIONS

for each vertex once:

(Xl, Yl, Zl)
(X2' Y2, Z2)

(13.30)

Represent each face by a list of the vertices in the polygon for the face. To
ensure the consistency needed for using the vertex information, follow the
convention of listing the vertices in the order in which they are encountered,
moving clockwise around the face as seen from the outside of the object
or from the same side of the surface (for example, above the surface). For
outward-facing normals, this means that the vertex order follows the left­
hand rule: the order of the vertex around the polygon is the same as the
direction of the fingers of the left hand with the thumb pointing in the di­
rection of the surface normal. This representation makes it very easy to find
all of the vertices for a given face, and any change in the coordinates of a
vertex automatically (indirectly) changes all faces that use the vertex. The
list of vertices representation does not explicitly represent the edges between
adjacent faces and does not provide an efficient way to find all faces that
include a given vertex. These problems are resolved by using the winged
edge data structure.

The winged edge data structure is a network with three types of records:
vertices, edges, and faces. The data structure includes pointers that can be
followed to find all neighboring elements without searching the entire mesh or
storing a list of neighbors in the record for each element. There is one vertex
record for every vertex in the polygonal mesh, one edge record for every edge
in the polygonal mesh, and one face record for every face in the polygonal
mesh. The size of the face, edge, or vertex record does not change with the
size of the mesh or the number of neighboring elements. Both vertices at the
ends of an edge and both faces on either side of an edge can be found directly;
all of the faces (edges) that use a vertex can be found in time proportional to
the number of faces (edges) that include the vertex; all of the vertices (edges)
around a face can be found in time proportional to the number of vertices
(edges) around the face.

376 CHAPTER 13. CURVES AND SURFACES

Figure 13.3: Each edge record contains pointers to the two vertices at the
ends of the edge, the two faces on either side of the edge, and the four wing
edges that allow the polygonal mesh to be traversed.

The winged edge data structure can handle polygons with many sides (the
representation is not limited to polygonal meshes with triangular facets), and
it is not necessary for all polygons in the mesh to have the same number of
sides. The coordinates of vertices are only stored in the vertex records; the
position of a face or edge is computed from the vertex coordinates.

Each face record points to the record for one of its edges, and each vertex
record points to the record for one of the edges that end at that vertex. The
edge records contain the pointers that connect the faces and vertices into a
polygonal mesh and allow the polygonal mesh to be traversed efficiently. Each
edge record contains a pointer to each of the vertices at its ends, a pointer
to each of the faces on either side of the edge, and pointers to the four wing
edges that are neighbors in the polygonal mesh. Figure 13.3 illustrates the

377 13.5. SURFACE REPRESENTATIONS

information contained in an edge record. The faces, vertices, and wing edges
are denoted by compass directions. This notation is just a convenience; in
a polygonal mesh, there is no global sense of direction. Each wing allows
the faces on either side of the edge to be traversed in either direction. For
example, follow the northeast wing to continue traversing clockwise around
the east face.

Whether a given face is east or west of an edge depends on the order
in which faces were entered in the winged edge data structure. As a face
is traversed, it is necessary to check if the face is east or west of each edge
that is encountered. If the face is east of the edge, follow the northeast wing
clockwise around the face or the southeast wing counterclockwise around the
face. Otherwise, if the face is west of the edge, follow the southwest wing
clockwise around the face or the northwest wing counterclockwise around the
face.

Directions like clockwise and counterclockwise are viewer-centered; in
other words, they assume that the polygonal mesh is seen from a partic­
ular position. When creating and using the polygonal mesh, it is necessary
to adhere to some convention that provides an orientation for the viewer­
centered directions relative to the polygonal mesh. Directions around the
face are given from the side of the face with the surface normal pointing to­
ward the viewer. Clockwise means the direction around the face indicated by
how the fingers of the left hand point when the thumb points in the direction
of the surface normal; counterclockwise means the direction around the face
indicated by how the fingers of the right hand point when the thumb points
in the direction of the surface normal. All face normals point to the outside
if the polygonal mesh represents the boundary of a volume. If the polygonal
mesh represents a surface, then the normals all point to the same side of
the surface. If the surface is a graph surface, then the normals point in the
direction of positive offsets from the domain. For example, if the polygonal
mesh represents the graph surface z = f(x, y), then the projection ofthe face
normals onto the z axis is positive.

The algorithm for adding a face to a polygonal mesh is stated in Algorithm
13.1 and the algorithm for traversing the edges (or vertices) around a face is
stated in Algorithm 13.2. Algorithm 13.1 assumes that the vertices are listed
in clockwise order around the face, assuming the conventions described above.
Algorithm 13.2 can be modified to find all edges (or faces) around a given
vertex.

378 CHAPTER 13. CURVES AND SURFACES

Algorithm 13.1 Adding a Face to a Winged Edge Data Structure
The input is a list of successive vertices for the face, including vertex numbers
which are used to uniquely identify each vertex and the vertex coordinates,
listed in clockwise order around the face.

1. 	 For each vertex in the list of vertices, add a record for the vertex to
the winged edge data structure if the vertex is not already in the data
structure.

2. 	 For each pair of successive vertices (including the last and first vertices),
add a record for the edge if an edge with those vertices is not currently
in the data structure.

3. 	 For each of the records for edges around the face, add the wings for
clockwise and counterclockwise traversal around the face. The wing
fields in each record that are affected depend on whether the new face
being inserted in the data structure is the east or west face of each edge
record.

4. 	 Create a record for the face and add a pointer to one of the edges.

13.5.2 Surface Patches

Portions of curved graph surfaces can be represented as surface patches mod­
eled using bivariate (two-variable) polynomials. For example, a plane can be
represented as

(13.31)

and curved surface patches can be modeled using higher-order polynomials.
Bilinear patches, so named because any cross section parallel to a coor­

dinate axis is a line,

(13.32)

biquadratic patches,

(13.33)

379 13.5. SURFACE REPRESENTATIONS

bicubic patches,

z ao + alx + a2Y + a3XY + a4x2 + a5y2
(13.34)+ a6 x3 + a7x2 y + a8x y2 + agx3,

and biquartic patches,

Z 	 =

(13.35)

are bivariate polynomials that are frequently used in machine vision to rep­
resent surface patches.

Polynomial surface patches are good for modeling portions of a surface,
such as the neighborhood around a point, but surface patches are not conve­
nient for modeling an entire surface and cannot model surfaces that are not
graph surfaces. More complex surfaces can be modeled using cubic spline
surfaces, presented in the next section.

Algorithm 13.2 Follow the Edges Clockwise Around a Face
The inputs are a pointer to the record for the face to traverse and a procedure
to invoke for each edge that is visited.

1. 	 Get the first edge from the face record and make it the current edge.

2. 	 Process the current edge: perform whatever operations must be done as
each edge is visited. For example, to compile a list of vertices clockwise
around the face, record the vertex at the end of the edge in the direction
of traversal.

3. 	 If the west face of the current edge is being circumnavigated, then the
next edge is the southwest wing.

4. 	 If the east face of the current edge is being circumnavigated, then the
next edge is the northeast wing.

5. 	 If the current edge is the first edge, then the traversal is finished.

6. 	 Otherwise, go to step 2 to process the new edge.

380 CHAPTER 13. CURVES AND SURFACES

13.5.3 Tensor-Product Surfaces

In Section 13.4.1, we showed how a complex curve can be represented para­
metrically as a sequence of cubic polynomials. This representation can be
extended to get a parametric representation for complex surfaces.

Write the equation for a parametric cubic polynomial curve in matrix
notation:

(13.36)

Note that each coefficient is actually a three-element column vector.
A tensor-product surface representation is formed from the combination

of two curve representations, one in each parametric coordinate,

(13.37)

where each ~ is a three-element row vector, each h j is a three-element column
vector, and each product aihj is the pairwise product of the coefficients for
each coordinate. The parametric surface can be written as

p(u,v) = UTMV, (13.38)

with

(13.39)u=rf1

and

(13.40)
v= rn

The elements of the 4 x 4 matrix M are the vectors of coefficients for each
coordinate in the parametric surface. In this notation, we can see that the

381 13.6. SURFACE INTERPOLATION

tensor-product surface is literally the product of two curves: one curve in
the u coordinate and another curve in the v coordinate. Any cross section
through the tensor-product cubic polynomial surface, parallel to a coordinate
axis in the parametric domain, is a parametric cubic polynomial curve. In
other words, if one coordinate is fixed, then the result is a parametric cubic
polynomial curve with the other coordinate as the curve parameter.

13.6 Surface Interpolation

This section shows how some of the surface representations presented above
can be used to interpolate samples of a graph surface, such as depth mea­
surements obtained with binocular stereo or active triangulation. Surface
interpolation may be necessary when depth measurements do not conform to
the uniform grid format required for image processing. It may be necessary
to interpolate depth measurements onto a uniform grid before using image
processing algorithms such as edge detection and segmentation.

13.6.1 Triangular Mesh Interpolation

Suppose that we have obtained samples Zk of a graph surface, Z = f(x, y),
at scattered points (Xk' Yk) for k = 1, ... ,n using binocular stereo or active
triangulation and we need to interpolate the depth measurements at grid
locations [i,jj in the image plane. The coordinates (Xj, Yi) at each location
in the n x m grid (image array) are given by

m-1
Xj =J- (13.41)

2
n-1

- -i+-- (13.42)Yi 2 .

We need to interpolate the Z value at each point (Xj, Yi)'
Use the scattered point coordinates and depth values (Xk' Yk, Zk) to create

a triangular mesh. Since the depth measurements are from a graph surface,
each triangle has an explicit planar equation

(13.43)

with coefficients calculated from the formulas presented in Section 13.3.1.
For each grid location, find the triangle that encloses point (Xj, Yi) and use

http:i+--(13.42
http:J-(13.41

382 CHAPTER 13. CURVES AND SURFACES

the equation corresponding to this triangle to calculate the depth value at
the grid location:

(13.44)

13.6.2 Bilinear Interpolation

Sometimes it is necessary to interpolate values that already lie on a rectilinear
grid. For example, rectification, discussed in Section 12.5, requires that the
image intensity at a location between grid coordinates be interpolated from
the pixel values at the four nearest grid locations. Bilinear interpolation is
an easy method for interpolating values on a rectilinear grid.

The function
(13.45)

is called bilinear because if one variable is set to a constant, then the function
is linear in the other variable. In other words, each cross section of a bilinear
surface patch taken parallel to a coordinate axis is a line segment. For any
rectangle in the plane with sides parallel to the coordinate axes, there is a
unique bilinear polynomial that interpolates the corner values.

Suppose that we need to interpolate the value at point (x, y) between four
values on a rectilinear grid. The point is enclosed by a rectangle with sides
parallel to the coordinate axes; the corners of the rectangle are the closest
grid coordinates to the point at which the value is to be interpolated. The
corner coordinates are (Xl, YI), (Xl, Y2), (X2' YI), and (X2' Y2) with values Zn,

Z12, Z21, and Z22, respectively, as shown in Figure 13.4.
The coefficients of the bilinear interpolant are determined by the values

at the four corners of the grid rectangle and are computed by plugging each
grid coordinate and value into Equation 13.45:

Zn al + a2 x I + a3YI + a4 X IYI (13.46)

Z12 al + a2 X l + a3Y2 + a4 X IY2 (13.47)

Z21 al + a2 x 2 + a3Yl + a4 X 2Yl (13.48)

Z22 al + a2 X 2 + a3Y2 + a4 X 2Y2 (13.49)

and solving the four simultaneous equations for the coefficients of the inter­
polant:

X2Y2 Zn - X2YIZl2 - XIY2 Z21 + XIYIZ22
(13.50)

(X2 - XI)(Y2 - Yl)

383 13.6. SURFACE INTERPOLATION

Figure 13.4: The bilinear interpolant is used to estimate the value between
samples on a rectilinear grid. The values at the corners are known and
uniquely determine the coefficients of the bilinear interpolant.

-Y2 Z11 + YIZ12 + Y2 Z21 - YIZ22
a2 (13.51)

(X2 - Xl)(Y2 - Yl)

-X2 Z11 + X2 Z12 + XIZ21 - XIZ22

a3 (13.52)

(X2 - Xl)(Y2 - Yl)

Zll - Z12 - Z21 + Z22
a4 = (13.53)

(X2 - Xd(Y2 - Yl) .

The bilinear interpolant has a very simple form for the special case where
the rectilinear grid is a square with unit spacing between the rows and
columns. Let the point (x, y) at which interpolation is to be performed
be given as offsets (8x,8y) from the upper left corner of a grid square. The
bilinear interpolant is

This formula can be used to interpolate the pixel value at an image plane
point that is between the pixel locations.

384 CHAPTER 13. CURVES AND SURFACES

13.6.3 Robust Interpolation

In Section 6.8.3, we presented the least-median-squares algorithm for fitting
lines to edge points with outliers. Least-median-squares regression can be
used to fit surface patches to depth measurements with outliers.

Least-median-squares is a robust regression algorithm with a breakdown
point of 50% like the median on which it is based. The localleast-median­
squares estimator uses least-median-squares regression to fit a parametric
model over local neighborhoods in the data. The algorithm finds the param­
eters that minimize the median of the squared residuals:

(13.55)

where a is an estimated parameter vector and f(Xi, Yi; a) is an estimate of
the actual value of the graph surface at point measurement (Xi, Yi, Zi).

Least-median-squares can be used to grid surface samples that contain
outliers. For example, binocular stereo depth measurements contain outliers
due to mismatches, and range cameras may generate outliers at surface dis­
continuities. If least-median-squares is used to fit surface patches to depth
measurements in local neighborhoods, then the surface fits will be immune
to outliers. When the surface patches are used to grid the data, the outliers
do not influence the grid values. Compare this algorithm with interpolation
using a triangular mesh, presented in Section 13.6.1, which is very sensitive
to outliers. Fitting surface patches with least-median-squares is very use­
ful for processing sparse depth measurements that may be contaminated by
outliers. We call this process cleaning and gridding the depth measurements.

A straightforward expression for least-median-squares is difficult to write,
but the algorithm for implementing it is easy to explain. Assume that the
surface patches are fit to the depth measurements in a local neighborhood
about each grid point. The algorithm can be easily extended to fit higher­
order surface patches. For each grid point, select the n depth measurements
that are closest to the grid point. From this set, try all possible combinations
of m data points, where m is the number of data points used to fit the surface
patch. For each of the k subsets of the data points in the local neighborhood,

(13.56)k = (:),

385 13.7. SURFACE APPROXIMATION

fit a surface patch to the points in the subset and denote the corresponding
parameter vector by ak. Compare all data points in the local neighborhood
with the surface patch by computing the median of the squared residuals:

(13.57)

After surface patches have been fit to all possible subsets, pick the parameter
vector ak corresponding to the surface patch with the smallest median of
squared residuals.

This procedure is computationally expensive since the model fit is re­
peated (~) times for each local neighborhood; however, each surface fit is
independent, and the procedure is highly parallelizable. Adjacent neighbor­
hoods share data points and could share intermediate results. In practice, it
may be necessary to try only a few of the possible combinations so that the
probability of one of the subsets being free of outliers is close to 1.

13.7 Surface Approximation

Depth measurements are not free of errors, and it may be desirable to find
a surface that approximates the data rather than requiring the surface to
interpolate the data points.

If depth measurements are samples of a graph surface,

z = f(x, y), (13.58)

then it may be desirable to reconstruct this surface from the samples. If we
have a model for the surface,

(13.59)

with m parameters, then the surface reconstruction problem reduces to the
regression problem of determining the parameters of the surface model that
best fit the data:

X2
n

= L(Zi - f(xi,Yi;al,a2, ... ,am))2. (13.60)
i=l

If we do not have a parametric model for the surface and still need to
reconstruct the surface from which the depth samples were obtained, then

386 CHAPTER 13. CURVES AND SURFACES

we must fit a generic (nonparametric) surface model to the data. The task
is to find the graph surface Z = f(x, y) that best fits the data:

2
n

X = 2:)Zi - f(Xi, Yi))2. (13.61)
i=l

This is an ill-posed problem since there are many functions that can fit the
data equally well; indeed, there are an infinite number of functions that
interpolate the data. The term ill-posed means that the problem formulation
does not lead to a clear choice, whereas a well-posed problem leads to a
solution that is clearly the best from the set of candidates.

We need to augment the approximation norm in Equation 13.61 to con­
strain the selection of the approximating surface function to a single choice.
There are many criteria for choosing a function to approximate the data. A
popular criterion is to choose the function that both approximates the data
and is a smooth surface. There are many measures of smoothness, but we will
choose one measure and leave the rest for further reading. For the purposes
of this discussion, the best approximation to the data points {(Xi, Yi, Zi)} for
i = 1, ... ,n is the function Z = f (x, y) that minimizes

(13.62)

with a > o. This norm is the same as Equation 13.61 except for the addition
of a smoothness term, weighted by a. The smoothness term is called the
regularizing term or stabilizing functional, or stabilizer for short. The weight
a is called the regularizing parameter and specifies the trade-off between
achieving a close approximation to the data (small a) and forcing a smooth
solution (large a). The first term in Equation 13.62 is called the problem
constraint. The process of augmenting a problem constraint by adding a sta­
bilizing functional to change an ill-posed problem into a well-posed problem
is called regularization.

The notion of a well-posed problem is stronger than just requiring a
unique solution. An approximation problem such as Equation 13.61 may
have a unique solution, but the shape of the solution space is such that many
other, very different solutions may be almost as good. A well-posed problem
has a solution space where the solution corresponding to the minimum of the
norm is not only unique, but is definitely better than the other solutions.

387 13.7. SURFACE APPROXIMATION

The solution to the regularized surface approximation problem in Equa­
tion 13.62 is obtained by using variational calculus to transform Equation
13.62 into a partial differential equation. Numerical methods are used to
change the partial differential equation into a numerical algorithm for com­
puting samples of the approximating surface from the depth measurements.

The partial differential equation for this problem in the variational cal­
culus is

o?v4 f(x, y) + f(x, y) - z(x, y) = 0, (13.63)

which may be solved using finite difference methods as explained in Section
A.4.

Another approach is to replace the partial derivatives in Equation 13.62
with finite difference approximations and differentiate with respect to the so­
lution f to get a system of linear equations that can be solved using numerical
methods.

13.7.1 Regression Splines

Another approach to surface approximation is to change Equation 13.61 into
a regression problem by substituting a surface model for the approximating
function. Of course, if we knew the surface model, then we would have for­
mulated the regression problem rather than starting from Equation 13.61. If
we do not know the surface model, we can still start with Equation 13.61 and
substitute a generic surface representation, such as tensor-product splines, for
the approximating function and solve the regression problem for the parame­
ters of the generic surface representation. This technique is called regression
splines.

Many surface representations, including tensor-product splines, can be
represented as a linear combination of basis functions:

f(x, y; ao, aI, a2,···, am) = L
m

aiBi(x, y) (13.64)
i=O

where ai are the scalar coefficients and Bi are the basis functions. With
tensor-product splines, the basis functions (and their coefficients) are orga­
nized into a grid: n m

f(x, y) = L L aijBij(x, y). (13.65)
i=O j=O

388 CHAPTER 13. CURVES AND SURFACES

I ~
-3 -2 -1 0 1 2 3 4 5 6 7

Figure 13.5: The B-spline curve in one dimension is a linear combination of
basis functions located at integer positions in the interval [0, m].

With either of these two equations, if we substitute the generic surface model
into Equation 13.61, the result is a system of linear equations that can be
solved for the regression parameters. Since the system of equations is sparse,
it is better to use sparse matrix techniques, rather than singular value de­
composition, for solving this regression problem.

The methods for calculating regression splines will be presented in detail,
starting with the one-dimensional case. The B-spline in one dimension is a
linear combination of basis functions,

L
m

aiBi(x). (13.66)
i=O

Assume that the B-spline basis functions are spaced uniformly at integer
locations. The B-spline basis function Bi (x) is nonzero over the interval
[i, i + 4). The basis functions are located at positions °through m, so there
are m + 1 coefficients that define the shape of the B-spline basis curve. (Refer
to Figure 13.5.)

The B-spline curve is defined on the interval from x = 3 to x = m + 1.
The basis function at x = °extends three intervals to the left of the curve
and the basis function at x = m + 1 extends three intervals to the right of
the curve. The extra intervals beyond the ends of the curve establish the
boundary conditions for the ends of the curve and must be included so that
the first and last curve segments on the intervals [0,1) and [m, m + 1) are
defined correctly.

Each B-spline basis function is nonzero over four integer intervals (seg­
ments). Since the basis functions overlap, each interval is covered by four
basis functions. Each segment hi (x) of the basis function Bi (x) is a cubic
polynomial that is defined only on its integer interval, as illustrated in Fig­
ure 13.6. The cubic polynomials for the individual segments of the B-spline

389 13.7. SURFACE APPROXIMATION

o 1 234

Figure 13.6: Each B-spline basis function co~~ of four cubic polynomials
that are nonzero on adjacent integer intervals. "

are

bo(x)
x 3

6
(13.67)

b1 (x)
1 + 3x + 3x2

- 3x3

6
(13.68)

b2 (x)
4 - 6x2 + 3x3

6
(13.69)

b3 (x)
1 ­ 3x + 3x2 - x3

6
(13.70)

It is not correct to simply add these cubic polynomials together to get a B­
spline basis function since each segment is restricted to its interval; that is,
each segment must be treated as nonzero outside of the interval over which
it is intended to be used. To evaluate a particular B-spline basis function at
a particular location x, it is necessary to determine in which segment x lies
(in which piece of the B-spline basis function x is located) and evaluate the
corresponding cubic polynomial.

Suppose that x is located in the interval [i, i + 1). The B-spline curve is
the linear combination of m + 1 B-spline basis functions:

L
m

aiBi(x). (13.71)
i=O

390 CHAPTER 13. CURVES AND SURFACES

Since each B-spline basis function covers four intervals, the interval [i, i + 1)
is covered by B-spline basis function Bi (x) and the three basis functions to
the left: Bi- 1 (X), Bi- 2(X), and Bi- 3(X). So to evaluate the B-spline curve at
x in the interval [i, i + 1), it is only necessary to evaluate the portion of the
linear combination that corresponds to the four B-spline basis functions that
cover the interval:

(13.72)

Since each B-spline basis function consists of four cubic polynomial segments,
with each segment defined over its own interval, it is only necessary to evalu­
ate the cubic polynomial segments from each basis function that correspond
to the interval containing the location at which the cubic spline curve is being
evaluated. The value of the B-spline curve at location x in interval [i, i + 1)
IS

(13.73)

To evaluate a B-spline curve at any location, it is necessary to determine the
interval in which the location x lies and apply the formula in Equation 13.73,
with the index i for the starting point of the interval, so that the correct
coefficients for the four B-spline basis functions that cover the interval are
used.

The formula for evaluating a B-spline curve in Equation 13.73 can be
used for linear regression since the model is linear in the coefficients. It does
not matter that the equation contains terms with powers of x. This model
can be used to develop a regression algorithm for determining the coefficients
of the B-spline from a set of data points (Xi, Zi). Each data point yields one
equation that constrains four of the B-spline coefficients:

(1 - 3Xi + 3x; - X7)ai-3 (4 - 6x; + 3x7)ai-2
6 + 6

(1 + 3Xi + 3x; - 3X7)ai-l Xrai
+ 6 + -6- = Zi· (13.74)

These equations are used to form a system of linear equations,

Ma=b, (13.75)

391 13.7. SURFACE APPROXIMATION

where the solution a is the column vector of B-spline coefficients ai, the
column vector on the right-hand side is the vector of data values Zi, and each
row of the matrix M is zero except at the four elements corresponding to
the coefficients of the B-spline basis functions that cover the interval that
contains Xi. The system of linear equations can be solved using singular
value decomposition, but since the system of equations is sparse, it is better
to use sparse matrix techniques [197J.

For surface approximation in three dimensions, the model is a tensor­
product B-spline surface:

n m n m

(13.76)
i=O j=O i=O j=O

The surface approximation problem is solved by minimizing the norm

N

X2
= 2:)z(k) - f(x, y)? (13.77)

k=l

Replace the general surface model with the expression for the tensor-product
B-spline surface:

(13.78)

The data values range over a single index since the data can occur at scattered
points in the plane. Each data value Zk is located at point (Xk' Yk) in the x-y
plane.

The formulation of the regression problem for determining the coefficients
of the tensor-product B-spline surface is similar to the one-dimensional case
presented above. Each basis function Bij (x, y) covers 16 grid rectangles in
[i, i + 4) x [j, j + 4). Since the basis functions overlap, each grid rectangle
is covered by 16 basis functions. Each basis function consists of 16 bicubic
polynomial patches. Each patch is defined on a grid rectangle and is nonzero
outside of its grid rectangle.

Assume that the grid is uniform, so all grid rectangles are squares of the
same size. The formulas for the bicubic patches in the B-spline basis functions
are the same for each grid square. Each tensor-product basis function can
be separated into the product of one-dimensional basis functions

(13.79)

392 CHAPTER 13. CURVES AND SURFACES

and each of the one-dimensional basis functions consists of four cubic poly­
nomials. Each of the 16 polynomial patches defined on a grid rectangle is
the product of two cubic polynomials, one in x and the other in y. The four
cubic polynomials in x are

3x
bo(x) (13.80)

6
1 + 3x + 3x2 - 3x3

b1 (x) (13.81)
6

4 - 6x2 + 3x3
b2(x) (13.82)

6
1 - 3x + 3x2 - x3

b3(x) (13.83)
6

The four cubic polynomials in yare identical except for the change of variable:

y3
bo(Y) - (13.84)

6
1 + 3y + 3y2 - 3y3

b1(y) (13.85)
6

4 - 6y2 + 3y3
b2(y) (13.86)

6
1 - 3y + 3y2 _ y3

b3(y) (13.87)
6

The 16 polynomial patches in a B-spline basis function are formed from the
pairwise products of the polynomials given above. The formula for evaluating
the B-spline surface at point (x, y) in the grid is

3 3

L L aijbj(x)bi(y). (13.88)
i=O j=o

Substituting the formulas for the one-dimensional cubic polynomials yields
the formula for evaluating the B-spline surface. The terms for each of the 16
coefficients are listed in the following table.

393 13.7. SURFACE APPROXIMATION

32x3/9 - X
3y2/3 +x y3/6

(x3 3
_ 3x3y + 3x3y2 _ x y3)/18

(1 + 3x + 3x2 - 3x3)y3/18

ai-l,j-l (1 + 3x + 3x2 - 3x3)/18 + (1 + 3x + 3x2 - 3x3)y/6

+ (1 + 3x + 3x2 - 3x3)y2/6 - (1 + 3x + 3x2 - 3x3)y3/6

ai-l,j-2 2(1 + 3x + 3x2 - 3x3)/9 - (1 + 3x + 3x2 - 3x3)y2/3

+ (1 + 3x + 3x2 - 3x3)y3/6

ai-l,j-3 (1 + 3x + 3x2 - 3x3)/18 - (1 + 3x + 3x2 - 3x3)y/6

+ (1 + 3x + 3x2 - 3x3)y2/6 - (1 + 3x + 3x2 - 3x3)y3/18

(4 - 6x2 + 3x3)y3/18

ai-2,j-l (4 - 6x2+ 3x3)/18 + (4 - 6x2+ 3x3)y/6

+ (4 - 6x2 + 3x3)y2 /6 - (4 - 6x2 + 3x3)y3 /6

ai-2,j-2 2(4 - 6x2+ 3x3)/9 - (4 - 6x2+ 3x3)y2/3

+ (4 - 6x2 + 3x3)y3/6

ai-2,j-3 (4 - 6x2 + 3x3)/18 - (4 - 6x2 + 3x3)y/6

+ (4 - 6x2 + 3x3)y2/6 - (4 - 6x2 + 3x3)y3/18

(1 - 3x + 3x2 - x3)y3/18

ai-3,j-l (1 - 3x + 3x2 - x3)/18 + (1 - 3x + 3x2 - x3)y/6

+ (1 - 3x + 3x2 - x3)y2/6 - (1 - 3x + 3x2 - x3)y3/6

ai-3,j-2 2(1 - 3x + 3x2 - x3)/9 - (1 - 3x + 3x2 - X
3)y2/3

+ (1 - 3x + 3x2 - x3)y3/6

ai-3,j-3 (1 - 3x + 3x2 - x3)/18 - (1- 3x + 3x2 - x3)y/6

+ (1 - 3x + 3x2 - X
3)y2/6 - (1- 3x + 3x2 - x3)y3/18

These expressions are evaluated at the desired location (x, y), multiplied by
the corresponding coefficient ai,j, and summed together to get the value of
the B-spline surface at (x, y).

The formula for evaluating a B-spline surface is also the model used in
the regression problem for determining the coefficients of the B-spline surface.
There are (n + 1) x (m + 1) coefficients in the B-spline surface. Each data
point (Xk' Yk, Zk) yields one equation that constrains 16 of the coefficients.
As in the one-dimensional case, the regression problem leads to a system of

394 CHAPTER 13. CURVES AND SURFACES

linear equations,
Ma=b, (13.89)

where the solution a is the vector of B-spline coefficients (the two-dimensional
grid of coefficients is unfolded into a column vector), the column vector b
on the right-hand side is the vector of data values Xk for k = 1, ... ,N, and
each row of the matrix is zero except for the 16 elements corresponding to
the coefficients of the basis functions that cover the grid square containing
(Xk' Yk).

This method can be used to smooth images by fitting a B-spline surface
to the uniform grid of pixels and sampling the spline surface. It is not nec­
essary for the B-spline grid to correspond to the image grid; in fact, more
smoothing is achieved if the B-spline grid has greater spacing. The B-spline
basis function is like the Gaussian smoothing filter, covered in Chapter 4,
and the widths of the B-spline basis functions are determined by the spacing
of the B-spline grid. When using the formulas presented above for the B­
spline regression problem, the image locations (Xj, Yi) for the pixel values Zij

in the image must be mapped into the grid coordinate system of the B-spline
surface. After the B-spline coefficients have been determined, the B-spline
surface can be sampled as needed, taking samples at the grid coordinates
of the original image or at other coordinates, to calculate the pixels of the
smoothed image.

The development of the equation for the B-spline surface shows that a B­
spline is just a set of bicubic surface patches, which were presented in Section
13.5.2. The difference between a set of bicubic patches and the B-spline
surface is that the bicubic patches in the B-spline surface are continuous up
to second order, where the patches join, whereas an arbitrary collection of
bicubic patches need not be continuous at all. The tensor-product B-spline
surface is smooth, in the sense of having C 2 continuity, and can be used to
model objects such as human bodies and organs, automobile body panels,
and the skin of aircraft.

In many practical applications, the tensor-product B-spline surface must
be in parametric form: (x,y,z) = (x(u,v),y(u,v),z(u,v)). As with the no­
tation presented in Section 13.5.3, t,he coefficients for the spline surface in
the regression problem will be three-element vectors, one element for each
of the x, y, and z coordinates. The u-v domain is rectangular and is subdi­

13.7. SURFACE APPROXIMATION 395

vided into a uniform grid (equal spacing between the basis functions). The
most difficult part is constructing a formula for mapping (x, y, z) point mea­
surements into the u-v domain so that the point measurements are correctly
associated with the bicubic patches that make up the B-spline surface.

13.7.2 Variational Methods

The surface approximation problem can also be cast as a problem in vari­
ational calculus. The problem is to determine the surface z = f(x, y) that
approximates the set of depth measurements Zk at locations (Xk' Yk) in the
image plane.

There are an infinite number of surfaces that will closely fit any set of
depth measurements, but the best approximation can be defined as the sur­
face that comes close to the depth measurements and is a smooth surface.
The best approximation is obtained by minimizing the functional

[02 2
2 n 2 f 0f of 0f 1

X = E(Zk - f(Xk, Yk)) +J J OX2 + 2 ox OY + Oy2 dx dy. (13.90)

This minimization problem is solved using variational calculus to obtain the
partial differential equation

n

\14f(x, y) = I)Zk - f(Xk, Yk)). (13.91)
k=l

Appropriate boundary conditions must be chosen for the edges of the graph
surface.

13.7.3 Weighted Spline Approximation

The problem with the surface approximation methods presented so far is
that the solutions are smooth surfaces, even across discontinuities in the data
that most likely correspond to surface boundaries in the scene. Smoothness
is explicit in the smoothness functional used for the variational methods in
Section 13.7.2 and is implicit in the choice of a smooth generic function for the
regression splines presented in Section 13.7.1. If the approximating surface
could be formulated as a set of piecewise smooth functions,

M

f(x, y) = U fl(X, y), (13.92)
1=1

396 CHAPTER 13. CURVES AND SURFACES

and the depth measurements could be segmented into regions with one region
for each piecewise smooth function, then the solution would more accurately
reflect the structure of the surfaces in the scene. However, this leads to al­
gorithms for manipulating surfaces that are beyond the scope of this book.
Some aspects of surface segmentation will be discussed in Section 13.8. We
can avoid some difficult topics in surface representation and still achieve a
good surface approximation that conforms to discontinuities by changing the
smoothness functional in Equation 13.62 to reduce smoothing across discon­
tinuities in the depth data. This approach leads to weighted regularization.

In one dimension, the weighted regularization norm is

f,(Yi - f(Xi))2 + JW(X) [JXX(X)]2 dx. (13.93)
i=l

If the weight function w (x) is choosen to be small at discontinuities in the
data and large elsewhere, then the weight function cancels the smoothness
criterion at discontinuities.

In two dimensions, the norm for weighted spline surface approximation is

with the weight function given by

(13.95)

where p(x, y) is the gradient of the surface from which the samples were
taken. Note that the regularizing parameter a from Equation 13.62 has been
absorbed into the weight function.

Variational methods can be used to transform Equation 13.94 into a par­
tial differential equation, as shown in Section 13.7.2 and Appendix A.3, or
the method of regression splines can be used to replace Equation 13.94 with
a linear regression problem. The weight function in Equation 13.94 is com­
puted from an approximation to the gradient by assuming that the weights
are constant over the span of the grid on which the tensor-product basis
functions are defined.

397 13.8. SURFACE SEGMENTATION

13.8 Surface Segmentation

A range image is a uniform grid of samples of a piecewise smooth graph
surface

z = f(x, y). (13.96)

This section will describe how a set of range samples, defined on a uniform
grid, can be segmented into regions that have similar curvature and how to
approximate each region with low-order bivariate polynomials. The variable­
order surface segmentation algorithm, which is like the region-growing tech­
niques described in Section 3.5, will be presented. Surface curvature prop­
erties are used to estimate core regions, which are grown to cover additional
range samples. The regions are modeled by bivariate surface patches (see
Section 13.5.2). The segmentation algorithm grows the regions by extending
the surface patches to cover range samples that are neighbors of the region
if the residual between the new range samples and the surface patch is low.

The surface segmentation problem is formally stated as follows. A piece­
wise smooth graph surface z = f(x, y) can be partitioned into smooth surface
primitives

n

Z = f(x, y) = L fz(x, y)~(x, y, I) (13.97)
Z=l

with one surface primitive for each region Rz• The characteristic function

(
X I = {1 if (x, y) ERz (13.98)~ , y,) 0 otherwise

represents the segmentation of the range data into surface patches (regions).
The surface for each region is approximated by a polynomial patch

f(x, y) = L aijXiy3 (13.99)
i+j'S.m

for points (x, y) E Rz. The surface model includes planar, bilinear bi­
quadratic, bicubic, and biquartic polynomial patches, which provide a nested
hierarchy of surface representations.

The characteristic function ~(x, y, I) can be implemented as a list of the
locations [i, j] of the pixels that are in each region. Other representations
such as bit masks or quad trees, described in Section 3.3, can be used.

398 CHAPTER 13. CURVES AND SURFACES

K[i,j]
o+

H[i,j] 0

+

Peak Ridge
Saddle
ridge

~ Flat
Minimal
surface

Pit Valley
Saddle
valley

Table 13.1: The eight surface types defined by the signs of the mean and
Gaussian curvatures.

13.8.1 Initial Segmentation

The core regions for the initial segmentation are estimated by computing the
mean and Gaussian curvatures and using the signs of the mean and Gaussian
curvatures to form initial region hypotheses. The portion of the regions near
the region boundaries can include samples that do not belong in the regions
since it can be difficult to accurately estimate the curvature in the vicinity of
the transitions between regions. The regions are shrunk to core regions (see
Section 2.5.12) to ensure that the initial region hypotheses do not include
any falsely labeled samples. There are eight surface types corresponding to
the signs of the mean and Gaussian curvatures, listed in Table 13.1. These
surface types are used to form core regions.

Assume that the range data are a square grid of range samples that may
be processed like an image. The first and second partial derivatives of the
range image, ix, iy, ixx, ixy, iyy , are estimated by convolving the range
image with separable filters to estimate the partial derivatives. Compute the

399 13.8. SURFACE SEGMENTATION

mean curvature

. .j = (1 + f;[i,jJ)fxx[i,jj + (1 + f;[i,jJ) fyy - 2fx[i,jJjy[i,jJjxy[i,jj
H[Z,) 3

2 (VI + f;[i,jj + f;[i,jj)
(13.100)

and the Gaussian curvature

. .j _ fxx[i,jJjyy[i,jj - f;y[i,jj
K[Z,) - 2

(1 + J;[i,jj + f;[i,jj)

using the estimates of the first and second partial derivatives of the range
image. Compute an integer label that encodes the signs of the mean and
Gaussian curvatures using the formula

T[i,jj = 1 + 3(1 + sgn(H[i,j])) + (1 + sgn(K[i,j])). (13.101)

Use the sequential connected components algorithm (Section 2.5.2) to group
range samples with identical labels into connected regions and reduce the
size of the regions to a conservative core of range samples using a shrink or
erosion operator. A size filter can be used to discard regions that are too
small to correspond to scene surfaces. The regions that remain form the
seeds that initialize the region-growing process.

13.8.2 Extending Surface Patches

Bivariate polynomials are fit to the range samples in the core regions. The
surface fit starts with a planar patch, m = 1, and the order of the surface
patch is increased until a good fit (root-mean-square error below a threshold)
is achieved. If a good fit is not achieved, then the region is discarded.

The rest of the segmentation algorithm tries to extend the regions to cover
neighboring range samples. Unassigned range samples are added to regions
using a region-growing process. The similarity predicate for deciding if a
range sample should be added to a region is based on comparing the value
of the range sample to the bivariate surface patch evaluated at the same
location as the range sample. If the residual between the surface patch and
range sample is below a threshold, then the range sample is included in the set
of candidates for inclusion in the region; otherwise, the range sample is not
added to the region. The bivariate surface patch is refit to all range samples

400 CHAPTER 13. CURVES AND SURFACES

in the region, including the samples that are currently in the region and the
set of candidates, increasing the order of the surface patch if necessary, up
to the maximum order. If the fitting error is below a threshold, then the
candidates are permanently added to the region; otherwise, the entire set
of candidates is discarded. Region growing continues until no regions are
enlarged. The segmentation algorithm is summarized in Algorithm 13.3.

Algorithm 13.3 Surface Segmentation
Segment a range image into regions represented as a surface patches.

1. 	 Compute the first and second partial derivatives of the range zmage
using separable filters.

2. 	 Compute the mean and Gaussian curvature at each image location.

3. 	 Label each range pixel with the surface type.

4. 	 Shrink the regions to eliminate false labels near the region boundaries.

5. 	 Identify core regions using the sequential connected components algo­
rithm.

6. 	 Remove core regions that are too small.

7. 	 Fit a bivariate patch to each region.

8. 	 For each region, determine the set of neighboring pixels with values that
are close to the value of the surface patch evaluated at the location of the
neighbor. This set of pixels are candidates for inclusion in the region.

9. 	 Refit the surface patch to the union of the set of pixels in the region and
the set of candidates. If the fit is acceptable, add the set of candidates
to the region; otherwise, discard the set of candidates.

10. Repeat steps 8 through 9 until no region is changed.

Note that it is possible for a set of candidates to be discarded because
some of the candidates should be included in another region. Later, some of
the candidates may be retested and included in the region. Once a pixel is
assigned to a region, the assignment cannot be reversed.

401 13.9. SURFACE REGISTRATION

13.9 Surface Registration

The transformation between corresponding points in a set of conjugate pairs
can be determined by solving the absolute orientation problem (Section 12.3),
but there are applications where it is necessary to align two shapes without
point correspondences. For example, it may be necessary to align a set of
range samples to an object model without advance knowledge of how the
point samples correspond to points on the object. This section describes the
iterative closest point algorithm for determining the rigid body transforma­
tion between two views of an object without using point correspondences.

The iterative closest point algorithm can be adapted to a wide variety of
object models including sets of points, curves in two or three dimensions, and
various surface representations. The curves may be represented as polylines,
implicit curves, or parametric curves, and the surfaces may be represented
as faceted surfaces (polygonal meshes), implicit or parametric surfaces, or
tensor-product B-splines. It is not necessary for both views of an object
to have the same representation. For example, one view could be a set of
space curves obtained with active triangulation, and the other view could be
a tensor-product cubic spline surface. The key idea is that points sampled
from the representation for one view can be mapped to the closest points
on the representation for the other view to approximate a set of conjugate
pairs. Solving the absolute orientation problem with these correspondences
will improve the alignment between views. The process of finding closest
point correspondences and solving the absolute orientation problem with
these approximate conjugate pairs can be repeated until the two views are
aligned.

The iterative closest point algorithm will be presented for the case of
registering a set of points with a surface model. Given a set of points P
sampled over the surface of an object and a model M for the object, determine
the set of points on the model that are the closest points to each sample point.
The distance between a point p in the sample set and the model M is

d(p, M) = min I/q - pl/. (13.102)
qEM

Compute Q = {ql, q2, ... , qn}, the set of points q E M that are the closest
points to each point in the sample set P = {Pl,P2,'" ,Pn}. Pair each sample
point P with its closest point q in the model to form a set of conjugate

402 CHAPTER 13. CURVES AND SURFACES

pairs {(PI, ql), (p2, q2), ... , (Pn, qn)}. Solve the absolute orientation problem
using this set of conjugate pairs. Even though the point sets are not true
conjugate pairs, an approximate solution to the transformation between the
views will be obtained. Apply the transformation to the point set P and
recompute the set of closest points Q. Now the point set is closer to the
model and the pairs of points in P and Q will be closer to correct conjugate
pairs. The absolute orientation problem can be solved again and the new
transformation applied to point set P. This procedure is repeated until the
sum of the squared distances between closest points (the root-mean-square
closest point distance) is below a threshold.

In the early iterations, the closest point pairs may be very poor approxi­
mations to true conjugate pairs, but applying the rigid body transformation
obtained by solving the absolute orientation problem with these approximate
conjugate pairs brings the point set closer to the model. As the iterations
continue, the closest point pairs become more like valid conjugate pairs. For
example, if the point set is initially very far from the model, then all points
may be mapped to the same point on the model. Clearly, such a many-to-one
mapping cannot be a valid set of conjugate pairs, but the first iteration pulls
the point set to the model so that the points are centered on the matching
model point and subsequent iterations align the center of the point set with
the center of the model. The final iterations rotate the point set and adjust
its position so that the point set is aligned with the model. The steps of
iterative closest point registration are listed in Algorithm 13.4.

Algorithm 13.4 Iterative Closest Point Registration
Register a set of points to a surface modeled as a polygonal mesh.

1. Compute the set of closest points.

2. Compute the registration between the point sets.

3. Apply the transform to register the point sets.

4. Return to step 1 unless the registration error is within tolerance.

FURTHER READING 	 403

Further Reading

An excellent introduction to the differential geometry of curves and surfaces
is the book by do Carmo [67]. Bartels, Beatty, and Barsky [22] have written
an excellent introduction to spline curves and surfaces. The series of books,
called Graphics Gems, contains much useful information on geometry, curves,
and surfaces [89]. The most recent volume includes a disk with code for all
of the algorithms presented in the series.

Surface reconstruction is a common problem in computer vision [92, 232,
233, 35]. Surface reconstruction is required for fitting a surface to sparse
depth values from binocular stereo and range sensors [28, 92, 232]. Sinha
and Schunck [223] have proposed a two-stage algorithm for surface recon­
struction. The first stage removes outliers from the depth measurements and
interpolates the sparse depth values onto a uniform grid. The second stage
fits weighted bicubic splines to the output from the second stage.

The section on surface segmentation is based on the work of Besl and
Jain [28J. The iterative closest point algorithm was developed by Besl and
McKay [29].

Exercises

13.1 	 Define implicit, explicit, and parametric representations of a surface.
When we consider an image as a two-dimensional mathematical func­
tion, can we consider the image as a surface? If so, which of the three
representations above corresponds to an image?

13.2 	 Given four points in space, how will you determine whether they are
coplanar?

13.3 	 Define principal curvature, Gaussian curvature, and mean curvature
for a surface. What information about the nature of a surface do
you get by knowing these curvature values at a point? Do you get
local information or global information about the surface from these
curvature values?

13.4 	 What is a spline curve? Why are cubic splines frequently used to
represent curves?

404 	 CHAPTER 13. CURVES AND SURFACES

13.5 	 Polygonal meshes are commonly used to represent surfaces. What are
polygonal meshes? Why are they used to represent arbitrary curved
surfaces? How closely can you represent an arbitrary curved surface
using a polygonal mesh?

13.6 	 What is a winged edge data structure? Where and why is one used?

13.7 	 What is a graph surface? Show that a graph surface can be mod­
eled using a bivariate polynomial surface representation. Discuss the
limitations of polynomial patch representations for surfaces.

13.8 	 Define tensor product surface. Compare it with the polynomial sur­
face representation for applications in machine vision. You should
consider three concrete applications in inspection, measurement, and
object recognition and study the requirements of these applications.
Then compare these representations for the specific task requirements.

13.9 	 What is the difference between surface approximation and surface in­
terpolation? What is segmentation: approximation or interpolation?
Explain your answer.

13.10 	What is regularization? When should it be used in computer vision?
Explain your answer using an example where regularization may be
used to solve a problem effectively.

13.11 	Give the mathematical formulation of a B-spline surface. How do you
evaluate the quality of fit for these surfaces?

13.12 	How can you use B-splines for smoothing imges? Which type of ap­
plications will be suitable for spline smoothing?

13.13 	Using differential geometric characteristics, it is possible to classify
the local nature of a surface as one of the eight surface types. Which
characteristics are used and what are the classes?

Computer Projects

13.1 	Write a program to segment images, including range images, starting
with a seed that contains local regions of similar type based on the

405 COMPUTER PROJECTS

differential geometric characteristics. Use a region growing method
to fit biquadratic and bicubic surfaces in an image. Select suitable
region growing and region termination criterion. Apply this program to
several images. Study the error characteristics of surfaces approximated
by your program.

13.2 	Implement an algorithm to take scattered three-dimensional points and
convert them to a uniform grid representation using an interpolation
algorithm. Test the algorithm using the output of a stereo algorithm.

