
Chapter 14

Dynamic Vision'

Most biological vision systems have evolved to cope with the changing world.
Machine vision systems have developed in the same way. For a computer vi-
sion system, the ability to cope with moving and changing objects, changing
illumination, and changing viewpoints is essential to perform several tasks.
Although early computer vision systems were concerned primarily with static
scenes, computer vision systems for analyzing dynamic scenes are being de-
signed for different applications.

The input to a dynamic scene analysis system is a sequence of image
frames taken from a changing world. The camera used to acquire the image
sequence may also be in motion. Each frame represents an image of the
scene at a particular instant in time. The changes in a scene may be due
to the motion of the camera, the motion of objects, illumination changes, or
changes in the structure, size, or shape of an object. It is usually assumed
that the changes in a scene are due to camera and/or object motion, and
that the objects are either rigid or quasi-rigid; other changes are not allowed.
The system must detect changes, determine the motion characteristics of the
observer and the objects, characterize the motion using high-level abstrac-
tion, recover the structure of the objects, and recognize moving objects. In
applications such as video editing and video databases, it may be required
to detect macro changes in a sequence. These changes will partition the
segment into many related segments exhibiting similar camera motion or a
similar scene in a sequence.

406



14. DYNAMIC VISION 407

A scene usually contains several objects. An image of the scene at a given
time represents a projection of the scene, which depends on the position of
the camera. There are four possibilities for the dynamic nature of the camera
and world setup:

1. Stationary camera, stationary objects (SCSO)

2. Stationary camera, moving objects (SCMO)

3. Moving camera, stationary objects (MCSO)

4. Moving camera, moving objects (MCMO)

For analyzing image sequences, different techniques are required in each of
the above cases. The first case is simply static-scene analysis.

In many applications, it may be necessary to process a single image to
obtain the required information. This type of analysis has been the topic of
discussion in the earlier chapters in this book.

Some applications require information extracted from a dynamic envi-
ronment; in some cases a vision system must understand a dynamic process
from a single viewpoint. In applications such as mobile robots or autonomous
vehicles, a vision system must analyze an image sequence acquired while in
motion. As we will see, recovering information from a mobile camera requires
different techniques than those useful when the camera remains stationary.

A sequence of image frames offers much more information to aid in un-
derstanding a scene but significantly increases the amount of data to be
processed by the system. The application of static-scene analysis techniques
to each frame of a sequence requires an enormous amount of computation,
in addition to all of the difficulties of static-scene analysis. Fortunately, re-
search in dynamic-scene analysis has shown that the recovery of information
in many cases is easier in dynamic scenes than in static scenes.

In dynamic-scene analysis, SCMO scenes have received the most atten-
tion. In analyzing such scenes, the goal is usually to detect motion, to extract
masks of moving objects for recognizing them, and to compute their motion
characteristics. MCSO and MCMO scenes are very important in navigation
applications. MCMO is the most general and possibly the most difficult sit-
uation in dynamic scene analysis, but it is also the least developed area of
computer vision.
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Dynamic scene analysis has three phases:

. Peripheral

. Attentive

. Cognitive

The peripheral phase is concerned with extraction of approximate infor-
mation which is very helpful in later phases of analysis. This information
indicates the activity in a scene and is used to decide which parts of the
scene need careful analysis. The attentive phase concentrates analysis on the
active parts of the scene and extracts information which may be used for
recognition of objects, analysis of object motion, preparation of a history of
events taking place in the scene, or other related activities. The cognitive
phase applies knowledge about objects, motion verbs, and other application-
dependent concepts to analyze the scene in terms of the objects present and
the events taking place.

The input to a dynamic scene analysis system is a frame sequence, rep-
resented by F(x, y, t) where x and yare the spatial coordinates in the frame
representing the scene at time t. The value of the function represents the in-
tensity of the pixel. It is assumed that the image is obtained using a camera
located at the origin of a three-dimensional coordinate system. The pro-
jection used in this observer-centered system may be either perspective or
orthogonal.

Since the frames are usually taken at regular intervals, we will assume
that t represents the tth frame of the sequence, rather than the frame taken
at absolute time t.

14.1 Change Detection

Detection of changes in two successive frames of a sequence is a very impor-
tant step for many applications. Any perceptible motion in a scene results in
some change in the sequence of frames of the scene. Motion characteristics
can be analyzed if such changes are detected. A good quantitative estimate
of the motion components of an object may be obtained if the motion is re-
stricted to a plane that is parallel to the image plane; for three-dimensional
motion, only qualitative estimates are possible. Any illumination change in



14.1. CHANGE DETECTION 409

a scene will also result in changes in intensity values, as will scene changes
in a TV broadcast or a movie.

Most techniques for dynamic-scene analysis are based on the detection of
changes in a frame sequence. Starting with frame-to-frame changes, a global
analysis of the sequence may be performed. Changes can be detected at
different levels: pixel, edge, or region. Changes detected at the pixel level
can be aggregated to obtain useful information with which the computational
requirements of later phases can be constrained.

In this section, we will discuss different techniques for change detection.
We will start with one of the simplest, yet one of the most useful change
detection techniques, difference pictures, and then discuss change detection
for edges and regions.

14.1.1 Difference Pictures

The most obvious method of detecting change between two frames is to
directly compare the corresponding pixels of the two frames to determine
whether they are the same. In the simplest form, a binary difference picture
DPjk(x, y) between frames F(x, y, j) and F(x, y, k) is obtained by:

if IF(x,y,j) - F(x,y,k)1 > T
otherwise

(14.1)

where T is a threshold.
In a difference picture, pixels which have value 1 may be considered to be

the result of object motion or illumination changes. This assumes that the
frames are prope1;}yregistered. In Figures 14.1 and 14.2 we show two cases
of change detection, one due to illumination changes in a part of image and
the other due to motion of an object.

A concept discussed in Chapter 3, thresholding, will playa very important
role here also. Slow-moving objects and slowly varying intensity changes may
not be detected for a given threshold value.

Size Filter

A difference picture obtained using the above simple test on real scenes usu-
ally results in too many noisy pixels. A simple size filter is effective in elimi-
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Figure 14.1: Two frames from a sequence, (a) and (b), and their difference
picture, (c). Notice that the changed areas (shown in black) are due to the
motion of objects. We used T = 25.

(a) (b) (c)

Figure 14.2: Two frames from a sequence, (a) and (b), and their difference
picture, (c). Notice that the changed areas are due to the changes in the
illumination in the part of the scene. We used T = 25.

nating many noisy areas in the difference picture. Pixels that do not belong
to a connected cluster of a minimum size are usually due to noise and can be
filtered out. Only pixels in a difference picture that belong to a 4-connected
(or 8-connected) component larger than some threshold size are retained
for further analysis. For motion detection, this filter is very effective, but
unfortunately it also filters some desirable signals, such as those from slow or
small moving objects. In Figure 14.3 we show the difference picture for the
frames shown in Figure 14.1 with T = 10 and the result of the size filtering.
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Figure 14.3: The difference picture for the frames shown in Figure 14.1 with
T = 10 and the result of the size filtering are shown in (a) and (b), respec-
tively. Notice that size filtering has removed many noisy regions in the image.
All regions below 10 pixels were filtered out.

Robust Change Detection

To make change detection more robust, intensity characteristics of regions or
groups of pixels at the same location in two frames may be compared using
either a statistical approach or an approach based on the local approxima-
tion of intensity distributions. Such comparisons will result in more reliable
change detection at the cost of added computation.

A straightforward domain-independent method for comparing regions in
images is to consider corresponding areas of the frames. These corresponding
areas may be the superpixels formed by pixels in nonoverlapping rectangular
areas comprising m rows and n columns. The values of m and n are selected
to compensate for the aspect ratio of the camera. Thus, a frame partitioned
into disjoint superpixels, as shown in Figure 14.4(a), may be considered.
Another possibility is to use a local mask, as in all convolutions, and compare
the intensity distributions around the pixel, as shown in Figure 14.4(b).

One such method is based on comparing the frames using the likelihood
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Figure 14.4: Partitioning frames for applying the likelihood ratio test. In
(a) we show nonoverlapping areas, called superpixels, and (b) shows regular
masks representing the local area of a pixel.

ratio. Thus, we may compute

(14.2)

(where J.land (J2 denote the mean gray value and the variance for the sample
areas from the frames) and then use

ifA>r
otherwise (14.3)

where r is a threshold. The likelihood ratio test combined with the size filter
works quite well for many real world scenes. In Figure 14.5, we show the
results of change detection using the likelihood ratio test.

The likelihood test discussed above was based on the assumption of uni-
form second-order statistics over a region. The performance of the likelihood
ratio test can be improved significantly by using facets and quadratic sur-
faces to approximate the intensity values of pixels belonging to superpixels.
These-higher order approximations allow for better characterization of inten-
sity values and result in more robust change detection.



14.1. CHANGE DETECTION 413

(a)

(b)

Figure 14.5: The results of the likelihood ratio test on the image pair in Fig.
14.1 for (a) superpixels and (b) regular masks.

Note that the likelihood ratio test results in detecting dissimilarities at
the superpixellevel. Since the tests use the likelihood ratio, they can only
determine whether or not the areas under consideration have similar gray-
level characteristics; information about the relative intensities of the areas is
not retained. As shown later, the sign of the changes can also provide useful
information for the analysis of motion.

Accumulative Difference Pictures

Small or slow-moving objects will usually result in a small number of changes
using differencing approaches. A size filter may eliminate such pixels as noise.
This problem of detecting small and slow-moving objects is exacerbated when
using robust differencing approaches since superpixels effectively raise the size
threshold for the detection of such objects.

By analyzing the changes over a sequence of frames, instead of just be-
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(b) (c)

Figure 14.6: Results for change detection using accumulative difference pic-
tures. In (a)and (b)we show the first and last frames, respectively, of a
synthetic object in motion. The accumulative difference picture is given in
(c).

tween two frames, this problem may be solved. An accumulative difference
picture may be used to detect the motion of small and slow-moving objects
more reliably. An accumulative difference picture is formed by comparing
every frame of an image sequence to a reference frame and increasing the
entry in the accumulative difference picture by 1 whenever the difference for
the pixel, or some measure for the superpixel, exceeds the threshold. Thus,
an accumulative difference picture ADPk is computed over k frames by

ADPo(x, y)

ADPk(x, y)

o

ADPk-1(X, y) + DP1k(x, y).

(14.4)

(14.5)

The first frame of a sequence is usually the reference frame, and the accu-
mulative difference picture AD Po is initialized to O. Small and slow-moving
objects can be detected using an ADP. In Figure 14.6, results of detecting
changes using accumulative difference pictures are shown.

Difference Pictures in Motion Detection

The most attractive aspect of the difference picture for motion detection is its
simplicity. In its simplest form, the difference picture is noise-prone. Changes
in illumination and registration of the camera, in addition to electronic noise
of the camera, can result in many false alarms. A likelihood ratio in conjunc-
tion with a size filter can eliminate most of the camera noise. Changes in
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illumination will create problems for all intensity-based approaches and can
be handled only at a symbolic level. Misregistration of frames results in the
assignment of false motion components. If the misregistration is not severe,
accumulative difference pictures can eliminate it.

It should be emphasized that measuring dissimilarities at the pixel level
can only detect intensity changes. In dynamic scene analysis, this is the low-
est level of analysis. After such changes have been detected, other processes
are required to interpret these changes. Experience has shown that the most
efficient use of the difference picture is to have peripheral processes direct
the attention of interpretation processes to areas of the scene where some
activity is taking place. Approximate information about events in a scene
may be extracted using some features of difference pictures.

14.1.2 Static Segmentation and Matching

Segmentation is the task of tdentifying the semantically meaningful compo-
nents of an image and grouping the pixels belonging to such components.
Segmentation need not be performed in terms of objects; some predicates
based on intensity characteristics may also be used. Predicates based on
intensity characteristics are usually called features. If an object or feature
appears in two or more images, segmentation may be necessary in order to
identify the object in the images. The process of identifying the same object
or feature in two or more frames is called the correspondence process.

Static-scene analysis techniques can be used to segment, or at least par-
tially segment, each frame of a dynamic sequence. Matching can then be
used to determine correspondences and detect changes in the location of cor-
responding segments. Cross-correlation and Fourier domain features have
been used to detect cloud motion. Several systems have been developed
which segment each frame of a sequence to find regions, corners, edges, or
other features in the frames. The features are then matched in consecutive
frames to detect any displacement. Some restriction on the possible matches
for a feature can be achieved by predicting the new location of the feature
based on the displacements in previous frames.

The major difficulty in the approaches described above is in segmentation.
Segmentation of an image of a static scene has been a difficult problem. In
most cases, a segmentation algorithm results in a large number of features
in each frame, which makes the correspondence problem computationally
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quite expensive. Moreover, it is widely believed that motion detection can
be used to produce better segmentation, as opposed to the techniques of
segmentation and matching used to determine motion above.

14.2 Segmentation Using Motion

The goal of many dynamic-scene analysis systems is to recognize moving
objects and to find their motion characteristics. If the system uses a sta-
tionary camera, segmentation generally involves separating moving compo-
nents in the scene from stationary components. Then the individual moving
objects are identified based either on their velocity or on other characteris-
tics. For systems using a moving camera, the segmentation task may be the
same as above or may include further segmentation of the scene's stationary
components by exploiting the camera motion. Most research efforts for the
segmentation of dynamic scenes have assumed a stationary camera.

Researchers in perception have known for a long time that motion cues
are helpful for segmentation. Computer vision techniques for segmenting
SCMO scenes perform well compared to techniques for segmenting stationary
scenes. Segmentation into stationary and nonstationary components, in a
system using a moving camera, has only recently received attention. One
problem in segmenting moving-observer scenes is that every surface in the
scene has image plane motion. This is precisely what can be used to aid the
separation of moving and stationary objects in stationary-camera scenes. For
segmenting moving-camera scenes, the motion assigned to components in the
images due to the motion of the camera should be removed. The fact that
the image motion of a surface depends both on the surface's distance from
the camera and on the structure of the surface complicates the situation.

Segmentation may be performed using either region-based or edge-based
approaches. In this section, some approaches for the segmenting of dynamic
scenes are discussed.

14.2.1 Time- Varying Edge Detection

As a result of the importance of edge detection in static scenes, it is rea-
sonable to expect that time-varying edge detection may be very important
in dynamic-scene analysis. In segment-and-match approaches, efforts are
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Figure 14.7: In (a) and (b), two frames of a sequence are shown. In (c),
edges are detected using the time-varying edge detector.

wasted on attempting to match static features to moving features. These
static features are obstacles to extracting motion information. If only mov-
ing features are detected, the computation needed to perform matching may
be substantially reduced.

A moving edge in a frame is an edge, and moves. Moving edges can be de-
tected by combining the temporal and spatial gradients using a logical AND
operator. This AND can be implemented through multiplication. Thus, the
time-varying edginess of a point in a frame E(x, y, t) is given by

dF(x, y, t) dF(x, y, t)
dS dt

E(x, y, t) . D(x, y)

(14.6)

(14.7)

where dF(x, y, t)/dS and dF(x, y, t)/dt are, respectively, the spatial and tem-
poral gradients of the intensity at point (x, y, t). Various conventional edge
detectors can be used to compute the spatial gradient, and a simple differ-
ence can be used to compute the temporal gradient. In most cases, this edge
detector works effectively. By applying a threshold to the product, rather
than first differencing and then applying an edge detector or first detecting
edges and then computing their temporal gradient, this method overcomes
the problem of missing slow-moving or weak edges. See Figures 14.7 and
14.8.

As shown in Figure 14.8, this edge detector will respond to slow-moving
edges that have good edginess and to poor edges that are moving with ap-
preciable speed. Another important fact about this detector is that it does
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1 5

Figure 14.8: A plot showing the performance of the edge detector. Note
that slow-moving edges will be detected if they have good contrast, and that
poor-contrast edges will be detected if they move well.

not assume any displacement size. The performance of the detector is satis-
factory even when the motion of an edge is very large.

14.2.2 Stationary Camera

Using Difference Pictures

Difference and accumulative difference pictures find the areas in a scene which
are changing. An area is usually changing due to the movement of an object.
Although change detection results based on difference pictures are sensitive to
noise, the areas produced by a difference picture are a good place from which
to start segmentation. In fact, it is possible to segment a scene with very
little computation using accumulative difference pictures. In this section,
such an approach is discussed.

Let us define absolute, positive, and negative difference pictures and ac-
cumulative difference pictures as follows:
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DP12(X, y) { 1 if IF(x, y, 1) - F(x, y, 2)I > T (14.8)
0 otherwise

PDP12(X, y)
{

1 if F(x, y, 1) - F(x, y, 2) > T
(14.9)

0 otherwise

N D P12(x, y)
{

1 if F(x, y, 1) - F(x, y, 2) < T
(14.10)

0 otherwise

AADPn(x, y) AADPn-1(x, y) + DP1n(x, y) (14.11)

P ADPn(x, y) P ADPn-1(x, y) + PDgn(x, y) (14.12)
N ADPn(x, y) NADPn-1(x, y) + NDP1n(x, y). (14.13)

Depending on the relative intensity values of the moving object and the
background being covered and uncovered, PADP and NADP provide com-
plementary information. In either the PADP or NADP, the region due to the
motion of an object continues to grow after the object has been completely
displaced from its projection in the reference frame, while in the other, it
stops growing. The area in the PADP or NADP corresponds to the area
covered by the object image in the reference frame. The entries in this area
continue to increase in value, but the region stops growing in size. Accumu-
lative difference pictures for a synthetic scene are shown in Figure 14.9. A
test to determine whether or not a region is still growing is needed in order
to obtain a mask of an object. The mask can then be obtained from the ac-
cumulative difference picture where the object's area stops growing after the
object is displaced from its projection. In its simplest form, this approach has
one obvious limitation. Masks of moving objects can be extracted only after
the object has been completely displaced from its projection in the reference
frame. However, it appears that properties of difference and accumulative
difference pictures can be used to segment images in complex situations,
such as running occlusion. To prevent running occlusions from disrupting
segmentation, the segmentation process should not wait for an object's cur-
rent position to be completely displaced from its projection in the reference
frame. Regions in the accumulative difference pictures can be monitored as
opposed to monitoring the reference frame projections of objects. Simple
tests on the rate of region growth and on the presence of stale entries allow a
system to determine which regions are eventually going to mature and result
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(b)

(e)

(c)

(f)

Figure 14.9: (a)-(c) show frames 1, 5, and 7 of a scene containing a moving
object. The intensity-coded positive, negative, and absolute ADPs are shown
in parts (d), (e), and (f), respectively.

in a mask for an object in the reference frame. Early determination of refer-
ence frame positions of objects, and hence, extraction of masks for objects,
allows a system to take the action necessary to prevent running occlusion.

14.3 Motion Correspondence

Given two frames of a sequence, one can analyze them to determine fea-
tures in each frame. To determine the motion of objects, one can establish
the correspondence among these features. The correspondence problem in
motion is similar to the correspondence problem in stereo. In stereo, the
major constraint used is the epipolar constraint. However, in motion, other
constraints must be used. In the following we describe a constraint propaga-



14.3. MOTION CORRESPONDENCE 421

tion approach to solve the correspondence problem. Since this approach is
similar to the problem for stereo, and for historical reasons, we present the
formulation similar to that for stereo.

Relaxation Labeling

In many applications, we are given a set of labels that may be assigned
to objects that may appear in the "world." Possible relationships among
different objects in this world and the conditions under which a certain set
of labels mayor may not be applied to a set of objects is also known. The
relationships among the objects in the image may be found using techniques
discussed in earlier chapters. Now, based on the knowledge about the labels
in the domain, proper labels must be assigned to the objects in the image.
This problem is called the labeling problem.

The labeling problem may be represented as shown in Figure 14.10. Each
node represents an object or entity which should be assigned a label. The arcs
connecting nodes represent relations between objects. This figure represents
the observed entities and relations among them in a given situation. We
have to assign labels to each entity based on the label set and the constraints
among the labels for the given domain.

Assume that we have a processor at each node. We define sets R, C, L,
and P for each node. The set R contains all possible relations among the
nodes. The set C represents the compatibility among these relations. The
compatability among relations helps in constraining the relationships and
labels for each entity in an image. The set L contains all labels that can be
assigned to nodes, and the set P represents the set of possible levels that
can be assigned to a node at any instant in computation. Each processor
knows the label of its node and all nodes which are connected to it. It also
knows all relations involving its node and the sets Rand C. Assume that
in the first iteration the possible label set Pl of node i is L for all i. In
other words, all nodes are assigned all possible labels initially. The labeling
process should then iteratively remove invalid labels from pl to give Pik+1.
Since at any stage labels are discarded considering only the current labels of
the node, its relations with other nodes, and the constraints, each processor
has sufficient information to refine its label set Pik. Thus, it is possible for
all processors to work synchronously. Note that at any time a processor
uses only information directly available to it, that is, information pertaining
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Third propagation
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Figure 14.10: Parallel propagation in graphs.

only to its object. Each iteration, however, propagates the effect through its
neighbor or related nodes, to other nodes that are not directly related. The
circle of influence of a node increases with each iteration. This propagation
of influence results in global consistency through direct local effects.

In most applications, some knowledge about the objects is available at
the start of the labeling process. Segmentation, or some other process which
takes place before labeling, often gives information that can be used to refine
the initial set Pi for a node. This knowledge can be used to refine the initial
label sets for objects. The labeling process is then used to further refine these
sets to yield a unique label for each object. The labeling problem now may
be considered in a slightly different form than the above. Based on some
unary relations, a label set Pl can be assigned to an object. The correct
label is uncertain. However, a confidence value can be assigned to each label
lk E Pl. The confidence value, like a subjective probability, indicates a belief
that the entity may be assigned this label based on the available evidence
in the image. Thus, for each element lk E Pi, a nonnegative probability Pik
represents the confidence that the labellk is the correct label for node i. This
confidence value may be considered the membership value if approaches from
fuzzy set theory are used in constraint propogation.

The task of the labeling process is to use the constraints to refine the
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confidence value for each label. The confidence value Pik is influenced by
the confidence values in the labels of the connected nodes. Thus, in the tth
iteration, the confidence value P~kfor the label lk at node i is the function
of the confidence value P~k1 and the confidence values of the labels of all
directly related nodes. In each iteration a node looks at the labels of all its
related nodes and then uses the known constraints to update the confidence
in its labels. The process may terminate either when each node has been
assigned a unique label or when the confidence values achieve a steady state.
Note that in place of just the presence or absence of a label, there is now a
continuum of confidence values in a label for an object.

The above process, commonly called the relaxation labeling process, at-
tempts to decide which of the possible interpretations is correct on the basis
of local evidence. Interestingly, though, the final interpretation is globally
correct. In each iteration, the confidence in a label is directly influenced only
by directly related nodes. However, this influence is propagated to other
nodes in later iterations. The sphere of influence increases with the number
of iterations. In relaxation labeling, the constraints are specified in terms of
compatibility functions. Suppose that objects Oi and OJ are related by ~j,
and under this relation labels Lik and Ljl are highly "likely" to occur. The
knowledge about the likelihood of these labels can be expressed in terms of a
function that will increase the confidence in these labels for the objects under
consideration. In such a situation, the presence of Lik at Oi encourages the
assignment of Ljl to OJ. It is also possible that the incompatibility of certain
labels can be used to discourage labels by decreasing their confidence values.

In the following, we discuss an algorithm that uses relaxation labeling
to determine disparity values in images. The algorithm to determine optical
flow, discussed later in this chapter, also is an example ofrelaxation labeling.

Disparity Computations as Relaxation Labeling

The matching problem is to pair a point Pi = (Xi, Yi) in the first image with
a point Pj = (Xj, Yj) in the second image. The disparity between these points
is the displacement vector between the two points:

(14.14)

The result of matching is a set of conjugate pairs.
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In any kind of matching problem, there are two questions that must be
answered:

. How are points selected for matching? In other words, what are the
features that are matched?

. How are the correct matches chosen? What constraints, if any, are
placed on the displacement vectors?

Three properties guide matching:

Discreteness, which is a measure of the distinctiveness of individual points

Similarity, which is a measure of how closely two points resemble one an-
other

Consistency, which is a measure of how well a match conforms to nearby
matches

The property of discreteness means that features should be isolated points.
For example, line segments would not make good features since a point can
be matched to many points along a line segment. Discreteness also minimizes
expensive searching by reducing the problem of analyzing image disparities
to the problem of matching a finite number of points.

The set of potential matches form a bipartite graph, and the matching
problem is to choose a (partial) covering of this graph. As shown in Figure
14.11, initially each node can be considered as a match for each node in
the other partition. Using some criterion, the goal of the correspondence
problem is to remove all other connections except one for each node. The
property of similarity indicates how close two potential matching points are
to one another; it is a measure of affinity. Similarity could be based on any
property of the features that are selected to implement discreteness.

The property of consistency is implied by the spatial continuity of surfaces
in the scene and assumes that the motion is well behaved. Consistency allows
the obvious matches to improve the analysis of more difficult matches. Some
points are sufficiently distinct and similar that it is easy to match them; this
match can assist in matching nearby points.

The discrete feature points can be selected using any corner detector or a
feature detector. One such feature detector is the Moravec interest operator.
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Figure 14.11: (a) A complete bipartite graph. Here each node in group A
has a connection with each node in group B. Using a characteristic of nodes
(points) and some other knowledge, a correspondence algorithm must remove
all but one connection for each node, as shown in (b).

This operator detects points at which intensity values are varying quickly in
at least one direction. This operator can be implemented in the following
steps:

1. Compute sums of the squares of pixel differences in four directions
(horizontal, vertical, and both diagonals) over a 5 x 5 window.

2. Compute the minimum value of these variances.

3. Suppress all values that are not local maxima.

4. Apply a threshold to remove weak feature points.

Any feature detector can be used in place of the above operator. One can
use a corner detector or computed curvature values at every point and select
high curvature points as features.

Next one must pair each feature point in the first image with all points in
the second image within some maximum distance. This will eliminate many
connections from the complete bipartite graph. The connections removed are
those that are between points far away in two images and hence unlikely to
be candidate matches. Each node ai has position (Xi, Yi) in the first image
and a set of possible labels (disparity vectors). The disparity labels are
displacement vectors or the undefined disparity, which allows some feature
points to remain unmatched.
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The initial probabilities of a match are computed using a measure of
similarity between the feature points in the two images. A good measure is
the sum of the squares of the pixel differences, Si, in corresponding windows.
The following approach may be used for assigning these probabilities.

Let I be a candidate label at a point. This label represents a disparity
vector at the point. First we compute wi(/), which represents the similarity
between the point (Xi, Yi) and its potential match at disparity I.

1
wi(/) =

(I)'1 + CSi
(14.15)

where Si(I) is the sum of the squared differences corresponding to label I, and
C is some positive constant. The probability that this point has undefined
disparity is obtained by first defining

p?(undefined) = 1 - max(wi(/)). (14.16)

This probability is determined based on the strength of the most similar
point for (Xi, Yi). If there are no strongly similar points, then it is likely
that the point has no match in this image. The probabilities of the various
matches (labels) are

. Wi(I)
pi(llz) =

~ Wi (I')'
(14.17)

where pi(/li) is the conditional probability that ai has label I given ai is
matchable, and the sum is over all labels I' excluding the "undefined" label.
The probability estimates are refined using the consistency property and
iterative relaxation algorithm. In this approach, the labels at each node are
strengthened or weakened based on the labels of the neighboring nodes in
that iteration. The most important property used here is that all disparities
should be similar in a given neighborhood. Thus, similar disparities of nodes
in a neighborhood should strengthen each other and dissimilar ones should
be weakened. This is accomplished using the following approach.

Let us consider probability for disparity vectors of all neighbors of ai. For
each neighbor, sum the probability of labels (disparities) that are close to,
or similar to, the disparity of ai:

qf(/) = L L pJ(l'). (14.18)
Neighbors Nearby

of ai disparities
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Figure 14.12: This figure shows two frames of a sequence and the disparities of
the matched feature points (shown magnified by a factor of 5) after applying
the relaxation labeling algorithm.
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The probabilities are now refined with the iterative calculation:

(14.19)

for constants A and B. Constants A and B are selected to control the rate of
convergence of the algorithm. The updated probabilities must be normalized.
Usually, a good solution is obtained after only a few iterations. To speed up
the algorithm, matches with low probability are removed.

In Figure 14.12, we show two frames of a sequence and disparities found
using the above algorithm. Interested readers should see [21] for an in-depth
analysis of disparity calculations.

14.4 Image Flow

Image flow is the distribution of velocity, relative to the observer, over the
points of an image. Image flow carries information which is valuable for an-
alyzing dynamic scenes. Several methods for dynamic-scene analysis have
been proposed which assume that image flow information is available. Un-
fortunately, however, although image flow has received a significant amount
of attention from researchers, the techniques developed for computing im-
age flow do not produce results of the quality which will allow the valuable
information to be recovered. Current methods for computing image flow,
information which is critical in optical flow, and the recovery of such infor-
mation are discussed in this section.

Definition 14.1 Image flow is the velocity field in the image plane due to
the motion of the observer, the motion of objects in the scene, or apparent
motion which is a change in the image intensity between frames that mimics
object or observer motion.

14.4.1 Computing Image Flow

Image flow is determined by the velocity vector of each pixel in an image.
Several schemes have been devised for calculating image flow based on two or
more frames of a sequence. These schemes can be classified into two general
categories: feature-based and gradient-based. If a stationary camera is used,
most of the points in an image frame will have zero velocity. This is assuming
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that a very small subset of the scene is in motion, which is usually true. Thus,
most applications for image flow involve a moving camera.

14.4.2 Feature-Based Methods

Feature-based methods for computing image flow first select some features in
the image frames and then match these features and calculate the disparities
between frames. As discussed in an earlier section, the correspondence may
be solved on a stereo image pair using relaxation. The same approach may
be used to solve the correspondence problem in dynamic scenes. However,
the problem of selecting features and establishing correspondence is not easy.
Moreover, this method only produces velocity vectors at sparse points. This
approach was discussed above as disparity analysis.

14.4.3 Gradient-Based Methods

Gradient-based methods exploit the relationship between the spatial and
temporal gradients of intensity. This relationship can be used to segment
images based on the velocity of points.

Suppose the image intensity at a point in the image plane is given as
E(x, y, t). Assuming small motion, the intensity at this point will remain
constant, so that

dE
= 0

dt
.

Using the chain rule for differentiation, we see that

(14.20)

BE dx BE dy BE _
0

Bx dt + By dt + Bt - . (14.21)

Using
dx

U=-
dt (14.22)

and
dy

v =
dt'

(14.23)

the relationship between the spatial and temporal gradients and the velocity
components is:

(14.24)
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Figure 14.13: If one sees a point using a tube such that only one point is
visible, then motion of the point cannot be determined. One can only get the
sense of the motion, not the components of the motion vector. This problem
is commonly called the aperture problem.

In the above equation, Ex, Ey, and Et can be computed directly from the
image. Thus, at every point in an image, there are two unknowns, u and
v, and only one equation. Using information only at a point, image flow
cannot be determined. This can be explained using Figure 14.13. This is
known as the aperture problem. The velocity components at a point cannot
be determined using the information at only one point in the image without
making further assumptions.

It can be assumed that the velocity field varies smoothly over an image.
Under this assumption, an iterative approach for computing image flow using
two or more frames can be developed. The following iterative equations are
used for the computation of image flow. These equations can be derived
using the variational approach discussed below.

p
Uaverage - Ex

D
p

Vaverage- Ey
D

U (14.25)

v (14.26)

where
P = Exuaverage + Eyvaverage + Et (14.27)
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and
D = ,\2+ E; + E;. (14.28)

In the above equations Ex, Ey, Et, and ,\ represent the spatial gradients
in the x and y directions, the temporal gradient, and a constant multiplier,
respectively. When only two frames are used, the computation is iterated
over the same frames many times. For more than two frames, each iteration
uses a new frame.

An important fact to remember about gradient-based methods is that
they assume a linear variation of intensities and compute the point-wise
velocities under this assumption. It is typically expected that this assumption
is satisfied at edge points in images and, hence, the velocity can be computed
at these points. The smoothness constraint is not satisfied at the boundaries
of objects because the surfaces of objects may be at different depths. When
overlapping objects are moving in different directions, the constraint will also
be violated. These abrupt changes in the velocity field at the boundaries
cause problems. To remove these problems, some other information must be
used to refine the optical flow determined by the above method.

14.4.4 Variational Methods for Image Flow

Recall that the aperture problem says that the image-flow velocity at a point
in the image plane cannot be computed by only using the changes in the
image at that point without using information from other sources. Image
flow can be computed using variational methods that combine the image
flow constraint equation with an assumption about the smoothness of the
image-flow velocity field. The image-flow constraint equation is

(14.29)

where u and v are the x and y components of the image-flow, respectively,
and Ex, Ey, and Et are the spatial and temporal derivatives of the image
intensity. For a smoothness measure, use the sum of the squared magnitudes
of each image flow component as the integrand in the regularization term:

[(
OU

)

2

(
ou

)

2

(
OV

)

2

(
ov

)

2

]
JJ ox + oy + ox + oy dx dy. (14.30)
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Combine the smoothness measure with a measure of deviations from the
problem constraint weighted by a parameter that controls the balance be-
tween deviations from the image-flow constraint and deviations from smooth-
ness:

JJ {(ExU+EYV+Et)'+ v'
r (~~)~ (~:)'+ (~:) ~ (~;)']} dx dy

(14.31)
Use the calculus of variations to transform this norm into a pair of partial
differential equations

V2\J2U E;u + ExEyv + ExEt (14.32)

v2\J2V ExEyu + E;v + EyEt. (14.33)

Use finite difference methods to replace the Laplacian in each equation with
a weighted sum of the flow vectors in a local neighborhood, and use iterative
methods to solve the difference equations.

14.4.5 Robust Computation of Image Flow

The motion information can be unreliable at motion boundaries, since the
process of occluding or disoccluding the background does not obey the image-
flow constraints of Equation 14.24. The incorrect motion constraints are
outliers. Robust methods avoid the problems caused by incorrect motion
constraints at boundaries.

Image flow can be computed using robust regression with least-median-
squares regression. The least-median-squares algorithm is applied over suc-
cessive neighborhoods. Within each neighborhood, the algorithm tries all
possible pairs of constraint lines. The intersection of each pair of constraint
lines is computed and the median of the square of the residuals is computed
to assign a cost to each estimate. Each intersection and its cost are stored.
After all possible pairs have been tried, the intersection corresponding to
the minimum cost is used as the estimate for the image-flow velocity for the
center of the neighborhood.

There are several steps in computing the intersection of the constraint
lines and the residuals. The constraint lines are represented in polar form
using the distance d of the constraint line from the origin in velocity space
and the angle a of the image gradient:
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d = pcos(o: - (3), (14.34)

where p(x, y) and (3(x, y) are the speed and direction of motion, respectively.
Let the coordinates of the first constraint line be d1 and 0:1, and the co-
ordinates of the second constraint line be d2 and 0:2. The position of the
intersection in rectangular coordinates is

d1 sin 0:2 - d2 sin 0:1
sin( 0:1 - 0:2)

d2 cos 0:1 - d1 COS0:2
sin( 0:1 - 0:2)

x (14.35)

y = (14.36)

The fit of the model to the constraint lines is the median of the squared
residuals:

(14.37)

The r residual between the motion estimate and each constraint line is the
perpendicular distance of the constraint line from the estimate x and y. The
residual is given by

r = x COS0: + y sin 0:. (14.38)

The position of the intersection of the pair of constraint lines, given by Equa-
tion 14.36, is a candidate solution. The median of the squared residuals of
the constraint lines with respect to the candidate is computed and saved,
along with the candidate, as a potential solution. The median of the squared
residuals is the median of the square of the perpendicular distance of each
constraint line in the neighborhood from the candidate.

The typical neighborhood size is 5 x 5. An n x n neighborhood contains
n2 constraint lines. The number of possible pairs of constraint lines in an
n x n neighbor hood would be

(14.39)

A 5 x 5 neighborhood would yield 300 pairs. It is not necessary to try all
possible pairs if computation time is restricted. Rousseeuw and Leroy [207,
p. 198] provide a table showing the number of trials that must be run to
fit a model with p parameters and 95% confidence to data sets with var-
ious percentages of outliers. Assume that at most 50% of the constraints
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Figure 14.14: Image flow computed using the least-median-squares algo-
rithm. Two frames of a synthetic image sequence were computed by filling a
64 x 64 background image and a 32 x 32 foreground image with pixels from a
uniform random number generator. The foreground image was overlayed on
the center of the background image to create the first frame and overlayed
one pixel to the right to create the second frame.

in the neighborhood will be outliers. The local estimate of the image-flow
velocity field requires only two constraint lines. From the table published by
Rousseeuw and Leroy, only 11 pairs of constraints would have to be tried to
provide a consistent estimate with 95% confidence. Using more pairs would
increase the odds of finding a consistent estimate. If fewer than all possi-
ble pairs of constraint lines are used, the pairs should be selected so that
the constraints in each pair are far apart. This reduces the problems with
ill-conditioning caused by intersecting constraint lines that have nearly the
same orientation. A preprogrammed scheme could be used for selecting the
constraint line pairs in each neighborhood. The results using this approach
are shown in Figure 14.14.
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14.4.6 Information in Image Flow

Many researchers have studied the types of information that can be extracted
from an image-flow field, assuming that high-quality image flow has been
computed. Let us assume an environment which contains rigid, stationary
surfaces at known depths, and that the observer, the camera, moves through
this world. The image flow can be derived from the known structure. Thus,
the structure of the environment can be obtained, in principle, from the
computed image-flow field.

Areas with smooth velocity gradients correspond to single surfaces in the
image and contain information about the structure of the surface. Areas with
large gradients contain information about occlusion and boundaries, since
only different objects at different depths can move at different speeds relative
to the camera. Using an observer-based coordinate system, a relationship
between the surface orientation and the smooth velocity gradients can be
derived. The orientation is specified with respect to the direction of motion
of the observer.

The translational component of object motion is directed toward a point
in the image called the focus of expansion (FOE) when the observer is ap-
proaching or the focus of contraction when the observer is receding; see Figure
14.15. This point is the intersection of the direction of object motion in the
image plane. Surface structure can be recovered from the first and second
spatial derivatives of the translational component. The angular velocity is
fully determined by the rotational component. .

The importance of the FOE for recovering structure from the translational
components of image flow encouraged several researchers to develop methods
for determining the FOE. If the FOE is correctly determined, it may be used
for computing the translational components of image flow. Since all flow
vectors meet at the FOE, their direction is already known and only their
magnitude remains to be computed. Thus, the two-dimensional problem of
the computation of image flow is reduced to a one-dimensional problem. This
fact has been noted by many researchers. However, it has not been applied,
possibly due to the uncertainty in the proposed approaches for locating the
FOE in real scenes.
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Figure 14.15: The velocity vectors for the stationary components of a scene,
as seen by a translating observer, meet at the focus of expansion (FOE).

14.5 Segmentation Using a Moving Camera

If the camera is moving, then every point in the image has nonzero velocity
relative to it.! The velocity of points relative to the camera depends both
on their own velocity and on their distance from the camera. Difference
picture-based approaches may be extended for segmenting moving camera
scenes. Additional information will be required, however, to decide whether
the motion at a point is due solely to its depth or is due to a combination
of its depth and its motion. Gradient-based approaches will also require
additional information.

If the camera's direction of motion is known, then the FOE with respect
to the stationary components in a scene can easily be computed. The FOE
will have coordinates

lWith the exception of the pathological case where object points are moving with the
same velocity as the camera.
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in the image plane, where dx, dy, dz is the camera displacement between
frames. As discussed in a later section, the velocity vectors of all the station-
ary points in a scene project onto the image plane so that they intersect at
the FOE. A transformation with respect to the FOE may be used to simplify
the task of segmentation. The ego-motion polar (EMP) transformation of an
image transforms a frame F(x', y', t) into E(r', 8, t) using

E(r', 8, t) = F(x', y', t) (14.42)

where
r' = V(x' - x/)2 + (y' - YIP (14.43)

and

8 = tan-1
(

y; - Y{
) . (14.44)

x -xI

In EMP space, stationary points are displaced only along the 8 axis be-
tween the frames of an image sequence, while points on moving objects are
displaced along the r' axis as well as the 8 axis. Thus, the displacement in
the EMP space may be used to segment a scene into its stationary and non-
stationary components. In Figure 14.16, three frames of a sequence acquired
by a moving camera are shown. The results of the segmentation are shown
in Figure 14.17.

A method for representing object motion in images, acquired by a moving
camera, is derived from the fact that all of the velocity vectors of stationary
objects in a scene acquired by a translating observer intersect at the FOE. An
image frame may be transformed, with respect to the FOE, to a second frame
in which the abscissa is r' and the ordinate is 8. Under this transformation,
it is possible to segment a dynamic scene into its moving and stationary
components, as discussed earlier.

14.5.1 Ego-Motion Complex Log Mapping

More information about moving, as well as stationary, objects may be ex-
tracted using a complex logarithmic mapping (CLM) rather than the simple
polar mapping. Let us define

w = loga, (14.45)
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(a) (b) (c)

Figure 14.16: Three frames of a scene acquired by a moving camera are
shown in (a), (b), and (c).

Figure 14.17: Moving objects are segmented from stationary objects, in the
frames shown in Figure 14.16, using EMP segmentation. Moving objects
appear brighter.
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where wand a are complex variables:

I . I I ( n .. n ) I _i9a = x + JY = r cos u + J sm u = r e- (14.46)

and
w = u(z) + jv(z). (14.47)

Under this transformation, it can be shown that

u(r', e) = log r'

v(r', e) = e.

(14.48)

(14.49)
The above results state that if the observer is moving, the horizontal dis-

placement of a stationary point in CLM space depends only on the depth
of the point and, furthermore, the vertical displacement is zero. This fact is
very useful, not only in segmenting dynamic scenes into moving and station-
ary components, but also in determining the depth of stationary points. It
has been shown that the retino-striate mapping can be approximated by a
complex log function. This mapping is considered to be responsible for size,
rotation, and projection invariances in biological systems. In the following
discussion it is shown that if the mapping is obtained with respect to the
FOE, rather than the center of the image, some other advantages can be
achieved.

14.5.2 Depth Determination

First assume a camera is translating along its optical axis in a static world.
For a stationary point in the environment, with real-world coordinates (x, Y,z)
relative to the observer at a time instant, the perspective projection, (x', y'),
of this point onto the image plane is given by

(14.50)

(14.51)

assuming that the projection plane is parallel to the x-y plane at z = 1.
The latter assumption simplifies the derivation without loss of generality.
For translational motion along the direction of the gaze of the observer, the
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relationship between the distance r' of the projection of the point from the
center of the image and the distance z of the scene point from the observer
IS

dr'
=

d..jx,2 + y,2 _ r'
dz dz z

By the chain rule for differentiation,

(14.52)

du
dz

du dr'
--
dr' dz'

(14.53)

and from Equation 14.48,
du 1
- -
dr' r"

(14.54)

Therefore, we have
du
dz

~ .
(
_r'

)
_

r' z

1
(14.55)

z

Similarly, to find dv / dz,

dB
dz

d(tan-1 ~)
dz

o (14.56)

and
dv
dz

dv dB
---
dB dz

o. (14.57)

In Equation 14.55 we see that the depth, z, of a point can be determined
from the horizontal displacement, du, in CLM space for that point and from
the velocity, dz, of the observer. This is a formalization of the observable
phenomenon that near objects appear to get bigger faster than far objects,
as you approach them. Furthermore, the axial movement of the observer will
result only in a horizontal change in the mapping of the image points, since
dv/dz = O. There will be no vertical movement of the mapped points. Thus,
the correspondence of points between the two mapped images will become
easier, since there is only a horizontal change in the points' locations over
time. Now, assuming that there is sufficient control of the camera to be
able to determine the amount of its movement, both variables necessary to
determine image depths are readily available. Thus, it is possible to recover
depth, in principle, if the camera motion is along its optical axis.
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]

x z- - z y z - y. 2 (-; - a). dZz2 + 2 (-; - b). dZz2 (14.62)

1
-

V(~ - a)2+ (~ - b)2
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-
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Hence

du 1 1
-
dz (~-a)2+(~-b)2 z

.
[( ~-a) (~: -

~)+ (~ - b)
(~~

-
~)]

(14.64)

14.5. SEGMENTATION USING A MOVING CAMERA 441

In real-life applications of machine vision it is not always possible to
constrain the motion of the camera to be along the optical axis. Thus, the
approach must be extended to arbitrary camera motion. To see that the
depth can be recovered for an arbitrary translational motion of the camera,
let us assume that the transform is taken with respect to the point (a, b) in
the image plane. Then

r' = V(x' - a)2+ (y' - b)2

U = logr' = log V(x' - a)2+ (y' - b)2.

(14.58)

(14.59)

Now
du ~ log r' i. dr'.
dz dz r' dz (14.60)

Let us substitute for x' and y' from Equations 14.50 and 14.51, and evaluate
dr' /dz.

If (a, b) is an arbitrary point in the image, the above equations are compli-
cated and require detailed knowledge of the relationship between the camera
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and the objects in the scene. However, if we let (a, b) be the focus of expan-
sion, the equations become greatly simplified. The focus of expansion (FOE)
is an important point on the image plane. If a camera moves toward the
objects in the scene, the objects appear to get bigger. If the vectors that
represent this expansion of the objects in the image plane are extended, they
will all meet in a single point, the FOE. If the camera is moving away from
the scene, the objects will seem to get smaller. In this case the point at which
the extended vectors meet is called the focus of contraction, the FOC. For
either case, it is the pixel where the path of the translating camera pierces
the image plane. If (a, b) is the FOE, then

dx dy
a = - and b - (14.65)

dz dz'

Substituting for dx j dz and dy j dz

~~ - (~_a)2~(~_b)2'~'[-(;-ar -(;-brJ

1
z

(14.66)

(14.67)

Now let us examine dvjdz, when v is calculated with respect to the FOE
(a, b):

v _ 0 = tan-1
(

yl - b
)X'- a

1 d
(

yl - b
)1 + (;;=: )

2
.

dz x' - a
.

dv
dz

(14.68)

(14.69)

Considering only the second factor of this equation, and substituting for x'
and y',

d
(

yl - b
)

d (1i - b)
dz x' - a = dz (~ - a)

(iE_ a)(z!!:JL- y) l - ( '11.- b)( zdx - X ) l
z dz z2 Z dz z2

(~ - a)2

(~ - a)(* - ~) - (~ - b)(* - ;)
z(;-a)2

(14.70)

(14.71)

(14.72)
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Remembering that dx /dz = a and dy /dz = b,

d
(

yl - b
)

_
dz x' - a

(; - a)(b - ~) - (; - a)(b - ~)
z(; - a)2 (14.73)

(14.74)- O.

Therefore,
dv
dz = O. (14.75)

Note that when the mapping is done with respect to the FOE, then the
displacement in the u direction depends only on the z coordinate of the
point. For other values of (a, b) the above property will not be true. Thus,
if the FOE is known or can be computed, the approach can be applied to an
arbitrarily translating camera, as long as there is some movement in depth
(dz is in the denominator and so cannot be zero). This extension is called
the ego-motion complex logarithmic mapping (ECLM) since it is based on
the motion parameters of the camera itself.

14.6 Tracking

In many applications, an entity, a feature or an object, must be tracked over
a sequence of frames. If there is only one entity in the sequence, the problem
is easy to solve. In the presence of many entities moving independently
in a scene, tracking requires the use of constraints based on the nature of
objects and their motion. Due to inertia, the motion of a physical entity
cannot change instantaneously. If a frame sequence is acquired at a rate
such that no dramatic change takes place between two consecutive frames,
then for most physical objects, no abrupt change in motion can be observed.
The projection of a smooth three-dimensional trajectory is also smooth in
the two-dimensional image plane. This allows us to make the smoothness
assumption in images. This property is used to formulate path coherence.
Path coherence implies that the motion of an object at any point in a frame
sequence will not change abruptly.

We can combine the solution of the correspondence problem for stere-
opsis and motion. The following three assumptions help in formulating an
approach to solve the correspondence problem:
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. The location of the given point will be relativelyunchanged from one

frame to the next frame.

. The scalar velocity of a given point will be relatively unchanged from

one frame to the next.

. The direction of motion of a given point will be relatively unchanged

from one frame to the next frame.

We can also use the smoothness of image motion in monocular image se-

quences. To formalize the idea of the smoothness of motion, let us firstfor-

malize the idea of path coherence which states that the motion of an object

at any time instant cannot change abruptly.

14.6.1 Deviation Function for Path Coherence

To use the above properties in an algorithm, we formulate a function to
implement the above ideas concretely and use it to evaluate motion properties
in a frame sequence. The path coherence function should follow these four
guiding principles:

1. The function value is always positive.

2. It should consider the amount of angular deviation without any effect
of the sign of the direction of motion.

3. The function should respond equally to the incremental speed.

4. The function should be normalized in the range 0.0 to 1.0.

Trajectories oftwo point-tokens are shown in Figure 14.18. Let the tra-
jectory be represented as

(14.76)

where Ti is trajectory and pik represents a point in the kth image. If the coor-
dinates of the point are given by the vector Xi in the frame, the coordinates
in the kth frame can be represented as Xik. Representing the trajectory in
vector form,

(14.77)
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Figure 14.18: The trajectories of two points. The points in the first, second,
and third frames are labeled 0, 6., and 0, respectively.

Now let us consider the deviation dik in the path of the point in the kth
frame. The deviation in the path is a measure of path coherence, given by

(14.78)

where 1Jis a path coherence function. The deviation for the complete trajec-
tory is defined as

n-l
Di = L dl.

k=2

If there are m points in a sequence of n frames resulting in m trajectories,
the deviation of all trajectories should be considered, which is given by

(14.79)

m n-l

D(T1, T2, T3,..., Tm) = L L dik.

i=k k=2
(14.80)

Thus, the correspondence problem is solved by maximizing the smoothness of
motion; that is, the total deviation D is minimized to find the set of correct
trajectories.

14.6.2 Path Coherence Function

After understanding the trajectory function, let us define a constraint func-
tion for path coherence. If the sampling rate of the camera is high enough,
then change in the direction and velocity of any moving point in consecutive
time frames is smooth.
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Figure 14.19: Deviations in a trajectory.

This is described by the deviation function:

(14.81)

In the vector form it can represented as

where WI and W2are weights that are selected to assign differing importance
to direction and velocity changes (see Figure 14.19).

Note that the first term is the dot product of displacement vectors and the
second considers the geometric and arithmetic mean of the magnitude. The
first term in the above expression can be considered as direction coherence,
and the second term can be considered as speed coherence. The weight can
be selected in the range 0.00 to 1.00 such that their sum is 1.

One of the main difficulties with the use of multiple frames is the problem
of occlusion. When working with a large sequence of frames, it is possible
that some objects may disappear totally or partially. Similarly, some new
objects may appear in the frame sequence from some intermediate frame on-
ward. In addition, the changing geometry of objects due to motion and the
changes in scene illumination over the frame sequence can cause significant
changes in the feature point data that is to be matched over the frames.
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All these changes in the feature point data set lead to incorrect correspon-
dence, if such a correspondence is obtained by performing minimization to
extract a globally smooth set of complete trajectories. By forcing the trajec-
tories to satisfy some local constraints and allowing them to be incomplete,
if necessary, trajectories in the presence of occlusion can be obtained.

14.6.3 Path Coherence in the Presence of Occlusion

Two limitations of the path coherence algorithm are:

· It assumes that the same number of feature points are available in every
frame.

· It assumes that the same set of feature points are being extracted in
every frame.

In practice, the number of feature points can drastically change from
frame to frame. Even when the feature point count is the same over all the
frames, it may not necessarily be the same set of feature points that was
extracted in the earlier frames. Thus, while searching for a smooth set of
trajectories, we must allow the possibility of obtaining incomplete trajectories
indicating either occlusion, appearance of a new object, or simply the absence
of the corresponding feature points in the subsequent or earlier frames due to
poor feature detection. Moreover, some constraints in the form of maximum
possible displacement and maximum local smoothness deviation must be
placed on the acceptable trajectories to avoid chance groupings of distant
feature points that may happen to form a smooth path.

Given a set pj of mj feature points for each of the n frames, the algorithm
below finds the maximal set of complete or partially complete trajectories
that minimizes the sum of local smoothness deviations for all the trajectories
obtained subject to the conditions that the local smoothness deviation for
none of the trajectories exceeds <Pmaxand the displacement between any two
successive frames for any trajectory is always less than dmax. The above local
constraints limit the acceptable location of a feature point in the next frame
given its location in two previous frames.
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14.6.4 Modified Greedy Exchange Algorithm

To account for missing points due to occlusion, phantom points are used.
Phantom feature points are hypothetical points which are used as fillers to
extend all trajectories over the given frame set. These points are introduced
during the trajectory initialization phase as described later. The notion of
phantom feature points serves two purposes: it allows us to satisfy the local
constraints, and it provides a way to deal with incomplete trajectories. For
the notion of phantom feature points to be useful, we must define the displace-
ment and local smoothness deviation values for a trajectory that has some
phantom feature points assigned to it. For computing the frame-to-frame
displacement for a trajectory Ti, a displacement function Disp(P/, p/+1) is
defined as follows:

Dis (Pi k, p.k+1) = {
Euclidean Disp( p/ , p/+1 ) if ~oth points. are true featurep %
dmax pomts otherwIse.

This definition of frame-to-frame displacement for a trajectory implies
that a phantom feature point always moves by a fixed amount dmax. For
computing the local smoothness deviation for a trajectory Ti in the kth frame
function, DEV(Pik-1, pik, Pik+l) is defined as follows:

{

0 if Pik-1 is a phantom point

D EV (Pik-1 , pik, pik+ 1) = <P(~k-l , Pi k , Pi k+1). if all three are true feature points

<Pmax otherwise.

The above definition of the local smoothness deviation function is equivalent
to the path coherence function if all three feature points are true feature
points. It introduces a penalty of <Pmaxfor not having a true feature for Ti
in the subsequent frame or missing a true feature point in the current frame,
the kth frame. There is no penalty if a trajectory begins from the current
frame under consideration. However, as the greedy exchange algorithm is
applied alternately in the forward and backward directions, it is clear that
the assignment of phantom feature points in the subsequent frames or earlier
frames is equally discouraged. With the above definitions for computing the
displacement and local smoothness deviation values, the steps of the modified
greedy exchange algorithm are as follows:
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Initialization:

1. For each of the mk true feature points in pk, k = 1,2,..., n - 1, de-
termine the nearest neighbor in pHI that is within the distance dmax.
Resolve arbitrarily in case of multiple choices.

2. Form initial trajectories by linking the nearest neighbors in the succes-
sive frames. Extend all incomplete trajectories using phantom feature
points to span n frames.

3. For every trajectory of step 2 above, form an additional trajectory
consisting only of phantom feature points.

Exchange Loop:

forward-flag = on;
backward- flag = on;
For each frame index k = 2 to n - 1:

while (forward-flag == on or backward-flag = on)
do

if (forward-flag == on) then
begin

for i = 1 to m - 1
for j = i + 1 to m

if within constraints of dmax
calculate:

G ..k
tJ

(14.83)

Pick the ij pair with maximum gain.
if (gain is greater than 0)
begin

Exchange the point in (k + l)th frame.
Set backward-flag on.

end (if)
else

Set forward-flag off.
end (if)
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else if (backward-flag == on) then
begin

for i = 1 to m - 1
for j = i + 1 to m

if within constraints of dmax
calculate Gi/ from Equation 14.83.

Pick the ij pair with maximum gain.
if (gain is greater than 0)
begin

Exchange the point in (k + l)th frame.
Set backward-flag on.

end (if)
else

Set forward-flag off.
end (if)

end (while)
end (for)

Termination:

Repeat the exchange loop until there are no more frames.

The exchange operation of the above algorithm must be applied alter-
nately in the forward and backward directions. The number of trajectories
formed during step 2 of the initialization depends on the quality of the data.
In an ideal case, where the same set of m feature points are consistently
present in all the frames, only m trajectories will be formed and none of these
will have any phantom points. In the worst case, when the feature points of
anyone frame do not have any correlation with the feature points of any other
frame, the number of trajectories formed can be as large as the total count of
true feature points from all the frames. In general, the number of trajecto-
ries formed will be at least mmax, where mmax = max(ml, m2,...) mn), and
different trajectories will have different numbers of phantom feature points.

It should be noted that the introduction of phantom feature points does
not require the locations of these points. Also, the introduction of trajec-
tories with only phantom feature points during step 3 of the initialization
phase does not affect the overall sum of local smoothness deviation values,
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the criterion being minimized to determine the correspondence. The intro-
duction of these trajectories ensures that no final trajectory will have a local
smoothness deviation value greater than CPmax in any frame. The checking of
the ij pairs in the exchange loop ensures that the dmaxconstraint will not be
violated.

14.7 Shape from Motion

One of the major goals of dynamic scene analysis is to get three-dimensional
information about the structure of objects in the scene and their three-
dimensional motion characteristics. By the structure of an object, we mean
the relative locations of points on the object. Thus, if we know the locations
of points on an object with respect to a reference point, with a scale factor,
then we say that the structure of the object is known. To get this infor-
mation, however, image plane information about objects must be converted
to scene information. As we saw in stereo, by using multiple views of an
object, or by using multiple locations of a camera, this information may be
recovered. The interpretation of two-dimensional displacements in terms of
three-dimensional motion is complicated.

An assumption about the rigidity of objects is helpful in recovering the
structure of objects. The rigidity assumption states that any set of ele-
ments undergoing a two-dimensional transformation, which has a unique
interpretation as a rigid body moving in space, should be so interpreted.
This assumption provides a much-needed constraint in the scene that can
be used to determine the relative locations of points. The structure-from-
motion theorem states that given three distinct orthographic projections of
four noncoplanar points in a rigid configuration, the structure and motion
compatible with the three views are uniquely determined up to a reflection
about the image plane.

The structure-from-motion theorem provides a precise statement about
constraints and possible solutions. By changing constraints on the types
of objects and types of projections, and by using different mathematical
approaches, many different formulations of the above problem are possible.
Approaches to recovering three-dimensional structures from image sequences
may be divided into the following two general classes.
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Token-Based Methods

Suppose that we have several views of an object available and that these
views can be considered orthographic. An interest operator is applied to
consecutive frames of this sequence and some interesting points or tokens,
such as corners, are extracted. Also suppose that the correspondence prob-
lem between interesting points has been solved, using a method discussed
earlier. If token correspondence has been established, the structure-from-
motion theorem states that it is possible to recover the three-dimensional
location of four noncoplanar points and their motion from their orthogonal
projections. This gives an implicit three-dimensional structure for an object.
Here we will consider an approach to recover this structure.

Suppose that we have four points in space and their orthographic pro-
jections are known in three frames. Let the points be Po, PI, P2, and P3
and the frames be taken at time instants tl, t2, and t3. We represent three-
dimensional coordinates of points as (Xij, Yij, Zij) and two-dimensional coordi-
nates as (x~j' Y:j), where i and j represent the point number, i = 0,1,2,3, and
frame number, j = 1,2,3, respectively. Now we can write the transformation
of three-dimensional points as

(14.84)

and

[

X03

] [

Z02

]

Y;:3 = R23 Y::2 + T23.
Zi,3 Zi,2

In the above, ~j and Tij are rotation matrices and translation vectors from
time ti to time tj. We want to determine rotations matrices, translation vec-
tors, and three-dimensional coordinates of points to determine the motion
and structure. To solve for these quantities, we have image plane coordi-
nates of four points in three frames. Now since we are using orthographic
projections, we know that

(14.85)

X~j = Xij and Y~j = Yij. (14.86)

Upon substituting this information in the above equations, we see that this
is an underconstrained situation; we have too few equations to determine the
required variables.
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Many different approaches have been proposed to solve this undercon-
strained problem. Most of these methods introduce an assumption that al-
lows the formulation of the problem in such a way that one of the known
techniques for determining the unknowns may be applied. We do not dis-
cuss any specific method here. Interested readers may want to study the
references given in the Further Readings section.

Feature-based methods for the recovery of three-dimensional structure or
for the estimation of motion parameters require two steps: determination
of the precise location of tokens or points, and the correspondence between
tokens or points. If interest operators are applied based on small neighbor-
hoods, then the number of tokens extracted in a real image is very large, mak-
ing correspondence a difficult problem. Interest operators based on a large
neighborhood and higher-order gray-level characteristics result in a more rea-
sonable number of tokens for determining correspondences, but the location
of tokens may not be precise.

Trajectory-Based Methods

The above methods depend on a set of points in two or three frames. If
a token is tracked over several frames by solving correspondences, a two-
dimensional trajectory of the token is obtained. Methods for recovering
three-dimensional structure and motion from trajectories are more reliable
than methods based on sets of features in new frames. A trajectory may
be interpolated to obtain better resolution of the two-dimensional path by
using curve fitting techniques. Moreover, the correspondence problem may
be simplified by considering more than two frames and extending relaxation
across the frames.

Further Reading

Nagel [174] proposed the use of the likelihood ratio for motion detection.
Much of the work presented here on difference and accumulative difference
pictures was done by Jain with other researchers [129, 130, 122, 125].

Fennema and Thompson proposed use of the gradient method to com-
pute optical flow for use in segmentation based on motion [79]. Horn and
Schunck [114] developed the optical flow determination algorithm. Schunck
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[212] developed robust approaches to compute optical flow. Nagel and Enkel-
mann [176] formulate and evaluate an oriented smoothness constraint for
computing optical flow. Determination of optical flow has been a very active
research area. For some recent approaches see [4, 106, 169, 175, 9, 222].
Clocksin [58] and Longuet-Higgins and Prazdny [157] describe the signifi-
cance of optical flow and its potential in extracting information about surface
orientation and structure. Subbarao [229] has presented a rigorous approach
for recovering information from optical flow.

Barnard and Thompson [21] introduced a feature-based matching algo-
rithm to estimate geometrical disparity between images. Recovery of three-
dimensional motion parameters and the three-dimensional structure of ob-
jects has been an active research area. Ullman published a book containing
an extensive discussion of the correspondence problem from the viewpoint
of natural vision [241]. He popularized the structure-jrom-motion problem.
Later Huang, with his students, did pioneering research in recovering motion
characteristics of objects under various conditions [237,77, 76, 249]. Jerian
and Jain showed the sensitivity of various approaches to noise and initial
estimates and provided a polynomial systems solution [134, 133]. Chellappa
and Broida developed a framework for estimating motion in a sequence of
frames using Kalman filters [47, 48].

Ego-motion complex logarithmic mapping was developed by Jain [124,
123, 127]. Schwartz [214,213,215,216] and Cavanaugh [54, 55] have studied
this mapping in the context of biological vision systems.

Jenkin [132] proposed a novel approach for combining the solution of the
correspondence problem for stereopsis and motion. Sethi and Jain [219] de-
veloped a tracking algorithm based on smoothness of motion. The algorithm
for path coherence in the presence of occlusion was developed by by Salari
and Sethi [209]. A large number of image frames taken at short intervals
helps minimize the correspondence problem since the amount of change in
successive images is expected to be very small. This concept has led to
the so-called epipolar plane image analysis in which the images are acquired
using a moving camera. Explicit representation of both the spatial and tem-
poral structure of such image sequences is captured in a spatiotemporal sur-
face. Tracking mechanisms that operate locally on these evolving surfaces
to obtain three-dimensional scene reconstruction are described by Baker and
Bolles in [15]. In the last few years, there have been several other approaches
based on the spatiotemporal image solid. Some of these are [106, 247, 156].
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Determination of optical flow and solving the correspondence problem
have been two difficult problems in dynamic vision. In the last few years,
several techniques have been proposed for direct computation of motion prop-
erties, bypassing optical flow and correspondence [126, 7, 6, 184]. These
approaches appear promising.

Zhang, Faugeras, and Ayache [262] approach the problem of motion de-
termination as a stereo matching and motion estimation problem. Stereo
and motion are also used by Grosso, Sandini, and Tistarelli in their system
described in [94]. However, in their system, the objects remain stationary,
and multiple views are obtained by moving the cameras around the objects
while maintaining the direction of gaze fixed toward a point in space. A sur-
vey of many of the methods for dynamic-scene analysis is given by Aggarwal
and Nandhakumar [2]. A framework for the abstraction of motion concepts
from image sequences is described by Tsotos et al. [238]. It includes semantic
nets for knowledge representation and associated algorithms operating in a
competing and cooperating feedback mode.

Exercises

14.1 What are the three phases in a dynamic-scene analysis system? Con-
sider the task of a driver on a freeway. What are the operations
performed in the three phases of dynamic-scene analysis for this task?

14.2 Define a difference picture. How would you select an appropriate
threshold in a particular application of a difference picture?

14.3 How can you form a difference picture using a statistical approach to
determine dissimilarity of intensity values in an image? How is this
approach better than the one based on the straightforward difference
picture approach?

14.4 What is an accumulative difference picture? What limitations of dif-
ference pictures does it overcome? Does sign of difference help in
motion analysis? How?

14.5 What is the difference between a time-varying edge and a moving
edge? How will you detect moving edges in a dynamic scene? Can
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you use three-dimensional edge detectors to detect motion in an image
sequence?

14.6 Define the correspondence problem in motion analysis. How can you
solve this problem? List various approaches to solve this problem.
What do you think is the problem that makes determination of cor-
responding points so difficult?

14.7 To obtain the feature point locations to subpixel resolution, compute
the x and y moments from the intermediate image of the minimum
variance obtained in step 2 of the Moravec interest operator.

14.8 What is image flow? Where can it be used?

14.9 Derive the motion constraint equation. How can you use this equation
to segment a dynamic scene into moving and stationary objects?

14.10 Define the aperture problem. What problems does it cause in com-
puting image flow? How can you overcome the aperture problem?
Suggest at least two different approaches.

14.11 Define focus of expansion. Where and how it can be used? Is it
related to vanishing points?

14.12 What is complex logarithmic mapping? What properties of this map-
ping make it attractive in dynamic-scene analysis?

14.13 When a camera is moving, all points in the environment are getting
displaced in an image. How can you segment a dynamic scene to
determine moving objects in case of a moving camera?

14.14 What is path coherence? How can you use it for tracking objects in
a scene?

14.15 What is structure-from-motion? Under what conditions can you re-
alistically determine the structure of an object using three frames?

14.16 The top left corner of a 6x8-pixel object is initially located at (0,0). It
moves to the location (4,8) after four frames of uniform velocity. Find
the absolute, positive, and negative accumulative difference pictures.
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14.17 Consider a point object located at world coordinates (10,0,10) at time
t = O. A camera system with a focal length of 2 is located such that
its lens center is at the origin of the world coordinate system and its
optical axis is looking directly at the object at time t = O. The object
is moving with a uniform velocity of (5,0,0).

a. What are the coordinates of the point object in the image plane
at time t = 07

b. Find the image coordinates of the point at t = 1 if

(i) The camera is stationary.

(ii) The camera translates with a uniform velocity of (0,0,5).

14.18 A family decides to enjoy a nice Spring weekend outdoors along with
their pets, Cilly the cat and Billy the dog. Just when they had their
new video camera set up on a tripod and leveled so that its axis
is horizontal, Cilly decides to go after a songbird feasting on some
bread crumbs. Immediately, Billy decides to chase Cilly. After four
seconds of running at constant speed, both Billy and Cilly reach their
destination only to find that the bird just took off in the direction
(0,0,200). Initial positions of all animals and the camera are as shown
in Figure P14.18. The camera height is 5 feet and the focal length of
its lens is 0.25 feet. Assume that the animals are small enough so that
they can be represented as points on the ground. Also, assume that
Billy's instantaneous direction of travel is always toward the current
position of Cilly and that he also travels at constant speed. Find
the image plane coordinates and the direction of optical flow for all
animals at time instances t = 0+ (just after start), t = 2 (an estimate
is enough for Billy's position), and t = 4- (just before end) seconds.
Also mark the direction of optical flow for the bird after it starts its
flight. Mark all distances in the image plane. Note that all distances
are measured from the center of the lens for convenience.

Computer Projects

14.1 Design a system to count how many people entered the coffee room
and what percentage took coffee. Assume that you can use multiple
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cameras if required and you are free to determine the location and
orientation of cameras.

14.2 Implement an accumulative difference picture-based approach for mo-
tion analysis. Use this approach to extract images of all people who
came to your coffee room and took coffee.

14.3 Develop a program to establish correspondence. Use this to determine
all corresponding points in a scene containing at least three objects
moving in different directions.

14.4 Implement a tracking algorithm using path coherence. Test it using a
basketball sequence to track the ball. Modify this algorithm to work
with a mobile camera. Assume that you want to design a mobile robot
that will track a particular moving object (pointed to it interactively).
Apply your tracking algorithm to this problem.

x'x R

Image plane Billy Cilly

Figure P14.18


