Chapter 3
Regions

A region in an image is a group of connected pixels with similar properties.
Regions are important for the interpretation of an image because they may
correspond to objects in a scene. An image may contain several objects and,
in turn, each object may contain several regions corresponding to different
parts of the object. For an image to be interpreted accurately, it must be
partitioned into regions that correspond to objects or parts of an object.
However, due to segmentation errors, the correspondence between regions
and objects will not be perfect, and object-specific knowledge must be used
in later stages for image interpretation.

3.1 Regions and Edges

Consider the simple image shown in Figure 3.1. This figure contains several
objects. The first step in the analysis and understanding of this image is to
partition the image so that regions representing different objects are explicitly
marked. Such partitions may be obtained from the characteristics of the gray
values of the pixels in the image. Recall that an image is a two-dimensional
array and the values of the array elements are the gray values. Pixels, gray
values at specified indices in the image array, are the observations, and all
other attributes, such as region membership, must be derived from the gray
values. There are two approaches to partitioning an image into regions:
region-based segmentation and boundary estimation using edge detection.

73

74 CHAPTER 3. REGIONS

Figure 3.1: This figure shows an image with several regions. Note that regions
and boundaries contain the same information because one representation can
be derived from the other.

In the region-based approach, all pixels that correspond to an object are
grouped together and are marked to indicate that they belong to one region.
This process is called segmentation. Pixels are assigned to regions using some
criterion that distinguishes them from the rest of the image. Two very im-
portant principles in segmentation are value similarity and spatial proximity.
Two pixels may be assigned to the same region if they have similar intensity
characteristics or if they are close to one another. For example, a specific
measure of value similarity between two pixels is the difference between the
gray values, and a specific measure of spatial proximity is Euclidean distance.
The variance of gray values in a region and the compactness of a region can
also be used as measures of value similarity and spatial proximity of pixels
within a region, respectively.

The principles of similarity and proximity come from the assumption that
points on the same object will project to pixels in the image that are spatially
close and have similar gray values. Clearly, this assumption is not satisfied
in many situations. We can, however, group pixels in the image using these
simple assumptions and then use domain-dependent knowledge to match
regions to object models. In simple situations, segmentation can be done with
thresholding and component labeling, as discussed in Chapter 2. Complex

3.1. REGIONS AND EDGES 75

images may require more sophisticated techniques than thresholding to assign
pixels to regions that correspond to parts of objects.

Segmentation can also be done by finding the pixels that lie on a region
boundary. These pixels, called edges, can be found by looking at neighboring
pixels. Since edge pixels are on the boundary, and regions on either side of
the boundary may have different gray values, a region boundary may be
found by measuring the difference between neighboring pixels. Most edge
detectors use only intensity characteristics as the basis for edge detection,
although derived characteristics, such as texture and motion, may also be
used.

In ideal images, a region will be bounded by a closed contour. In principle,
region segmentation and edge detection should yield identical results. Edges
(closed contours) may be obtained from regions using a boundary-following
algorithm. Likewise, regions may be obtained from edges using a region-
filling algorithm. Unfortunately, in real images it is rare to obtain correct
edges from regions and vice versa. Due to noise and other factors, neither
region segmentation nor edge detection provides perfect information.

In this chapter, we will discuss the basic concepts of regions, concentrating
on two issues:

e Segmenting an image into regions
e Representing the regions

This chapter begins with a discussion of automatic thresholding and his-
togram methods for segmentation, followed by a discussion of techniques
for representing regions. Then more sophisticated techniques for region seg-
mentation will be presented. Edge detection techniques will be discussed in
Chapter 5.

In the following section, we will discuss techniques for region formation.
Thresholding is the simplest region segmentation technique. After discussing
thresholding, we will present methods to judge the similarity of regions using
their intensity characteristics. These methods may be applied after an initial
region segmentation using thresholding. It is expected that these algorithms
will produce a region segmentation that corresponds to an object or its part.
Motion characteristics of points can also be used to form and refine regions.
Knowledge-based approaches may be used to match regions to object models.
The use of motion will be discussed in Chapter 14.

76 CHAPTER 3. REGIONS

3.2 Region Segmentation

The segmentation problem, first defined in Section 2.1, is now repeated for
ease of reference: Given a set of image pixels Z and a homogeneity predicate
P(-), find a partition S of the image Z into a set of n regions R;,

U =3

i=1
The homogeneity predicate and partitioning of the image have the properties
that any region satisfies the predicate

P(R;) = True

for all ¢, and any two adjacent regions cannot be merged into a single region
that satisfies the predicate

P(R; U R;) = False.

The homogeneity predicate P(-) defines the conformity of all points in the
region R; to the region model.

The process of converting a gray value image into a binary image is a
simple form of segmentation where the image is partitioned into two sets.
The algorithms for thresholding to obtain binary images can be generalized
to more than two levels. The thresholds in the algorithm discussed in Chap-
ter 2 were chosen by the designer of the system. To make segmentation robust
to variations in the scene, the algorithm should be able to select an appro-
priate threshold automatically using the samples of image intensity present
in the image. The knowledge about the gray values of objects should not
be hard-wired into an algorithm; the algorithm should use knowledge about
the relative characteristics of gray values to select the appropriate threshold.
This simple idea is useful in many computer vision algorithms.

3.2.1 Automatic Thresholding

To make segmentation more robust, the threshold should be automatically
selected by the system. Knowledge about the objects in the scene, the appli-
cation, and the environment should be used in the segmentation algorithm
in a form more general than a fixed threshold value. Such knowledge may
include

3.2. REGION SEGMENTATION i

e Intensity characteristics of objects

e Sizes of the objects

e Fractions of an image occupied by the objects

e Number of different types of objects appearing in an image

A thresholding scheme that uses such knowledge and selects a proper thresh-
old value for each image without human intervention is called an automatic
thresholding scheme. Automatic thresholding analyzes the gray value distri-
bution in an image, usually by using a histogram of the gray values, and uses
the knowledge about the application to select the most appropriate thresh-
old. Since the knowledge employed in these schemes is more general, the
domain of applicability of the algorithm is increased.

Suppose that an image contains n objects 01,0, ..., O, including the
background, and gray values from different populations =y, ..., 7, with prob-
ability distributions p;(z),...,pn(z). In many applications, the probabilities
Py, ..., P, of the objects appearing in an image may also be known. Using
this knowledge, it is possible to rigorously formulate the threshold selection
problem. Since the illumination geometry of a scene controls the probability
distribution of intensity values p;(z) in an image, one cannot usually pre-
compute the threshold values. As we will see, most methods for automatic
threshold selection use the size and probability of occurrence and estimate
intensity distributions by computing histograms of the image intensities.

Many automatic thresholding schemes have been used in different ap-
plications. Some of the common approaches are discussed in the following
sections. To simplify the presentation, we will follow the convention that
objects are dark against a light background. In discussing thresholds, this
allows us to say that gray values below a certain threshold belong to the ob-
ject and gray values above the threshold are from the background, without
resorting to more cumbersome language. The algorithms that we present in
the following sections can easily be modified to handle other cases such as
light objects against a dark background, medium gray objects with back-
ground values that are light and dark, or objects with both light and dark
gray values against a medium gray background. Some algorithms can be gen-
eralized to handle object gray values from an arbitrary set of pixel values.

78 CHAPTER 3. REGIONS

Count

\ ~ Image

P % 100% intensities

Figure 3.2: The shaded areas in the histogram represent p percent of the
image area. The threshold is selected so that p percent of the histogram is
assigned to the object. '

P-Tile Method

The p-tile method uses knowledge about the area or size of the desired object
to threshold an image. Suppose that in a given application objects occupy
about p percent of the image area. By using this knowledge to partition
the gray value histogram of the input image, one or more thresholds can be
chosen that assign p percent of the pixels to the object. Figure 3.2 gives an
example of a binary image formed using this technique.

Clearly, this method is of very limited use. Only a few applications, such
as page readers, allow such an estimate of the area in a general case.

Mode Method

If the objects in an image have the same gray value, the background has a
different gray value, and the image pixels are affected by zero-mean Gaussian
noise, then we may assume that the gray values are drawn from two normal
distributions with parameters (u;,07) and (p2,02). The histogram for an
image will then show two separate peaks, as shown in Figure 3.3. In the ideal
case of constant intensity values, o7 = o5 = 0, there will be two spikes in the
histogram and the threshold can be placed anywhere between the spikes. In
practice, the two peaks are not so well separated. In this case, we may detect

3.2. REGION SEGMENTATION 79

0 2.0 - . 255
(a) (b)

Figure 3.3: Ideally, the intensities of the background and objects will be
widely separated. In the ideal case, the threshold T' can be anywhere between
the two peaks, as shown in (a). In most images, the intensities will overlap,
resulting in histograms as shown in (b).

peaks and valleys in the histogram, and the threshold may be set to the pixel
value corresponding to the valley. It can be shown that the probability of
misclassification is minimized by this choice of the threshold when the size
of the object is equal to that of the background (see Exercise 3.2). In most
applications, since the histogram is sparsely populated near the valley, the
segmentation is not sensitive to the threshold value.

The determination of peaks and valleys is a nontrivial problem, and many
methods have been proposed to solve it. For an automatic thresholding
scheme, we should have a measure of the peakiness and valleyness of a point
in a histogram. A computationally efficient method is given in Algorithm 3.1.
This method ignores local peaks by considering peaks that are at some min-
imum distance apart. The peakiness is based on the height of the peaks
and the depth of the valleys; the distance between the peaks and valleys is
ignored.

This approach can be generalized to images containing many objects with
different mean gray values. Suppose there are n objects with normally dis-
tributed gray values with parameters (uy,01), (2,02), ..., (ttn,0n), and the
background is also normally distributed with parameters (ug,0q). If the
means are significantly different, the variances are small, and none of the ob-

80 CHAPTER 3. REGIONS

Algorithm 3.1 Peakiness Detection for Appropriate Threshold
Selection

1. Find the two highest local mazima in the histogram that are at some
minimum distance apart. Suppose these occur at gray values g; and g;.

2. Find the lowest point g in the histogram H between g; and g;.
3. Find the peakiness, defined as min(H(g;), H(g;))/H (gx).!

4. Use the combination (g;, g9;, gr) with highest peakiness to threshold the
image. The value g is a good threshold to separate objects correspond-
ing to g; and g;.

jects is very small in size, then the histogram for the image will contain n+1
peaks. The valley locations 11, T5, ..., T, can be determined, and pixels with
gray values in each interval (T;, T;4;] can be assigned to the corresponding
object (see Figure 3.4).

Iterative Threshold Selection

An iterative threshold selection method starts with an approximate threshold
and then successively refines this estimate. It is expected that some prop-
erty of subimages resulting from the threshold can be used to select a new
threshold value that will partition the image better than the first threshold.
The threshold modification scheme is critical to the success of this approach.
The method is given in Algorithm 3.2.

Adaptive Thresholding

If the illumination in a scene is uneven, then the above automatic thresh-
olding schemes may not be suitable. The uneven illumination may be due
to shadows or due to the direction of illumination. In all such cases, the
same threshold value may not be usable throughout the complete image (see
Figure 3.5). Non-adaptive methods analyze the histogram of the entire image.

If the valley region shows a great deal of “spikiness” with many empty bins, then a
certain amount of smoothing may be required to remove the possibility of division by zero.

3.2. REGION SEGMENTATION 81

Count

] A B (38

Image intensities

Figure 3.4: Histogram for an image containing several objects with differing
intensity values.

Methods to deal with uneven illumination or uneven distribution of gray
values in the background should look at a small region of an image and then
analyze this subimage to obtain a threshold for only that subimage. Some
techniques have been developed to deal with this kind of situation.

A straightforward approach to segment such images is to partition the
image into m X m subimages and select a threshold T;; for each subimage
based on the histogram of the ijth subimage (1 < 7, j < m). The final
segmentation of the image is the union of the regions of its subimages. The
results of this method are shown in Figure 3.6.

Variable Thresholding

Another useful technique in the case of uneven illumination is to approximate
the intensity values of the image by a simple function such as a plane or
biquadratic. The function fit is determined in large part by the gray value
of the background. Histogramming and thresholding can be done relative
to the base level determined by the fitted function. This technique is also
called background normalization. For example, Figure 3.7 shows a three-
dimensional plot of the box image with uneven illumination. If a planar
function were fitted to this function, it would lay somewhere between the two
rough surfaces representing the box and the background. Now, by using this
fitted plane as the basis for thresholding, the box can be easily segmented.
Any points in the image that are above the plane will be part of the box
and anything below will be part of the background.

82 CHAPTER 3. REGIONS

wni -l
- il
e
|
‘.;1 2.00
(d)
2000 r—__l—__,-
s |
uﬂﬂ” I Ul 1L l‘m@ﬁm) 2
(e) (f)

Figure 3.5: An example of an image with uneven illumination which is not
amenable to regular thresholding. (a) Original image with uniform illumi-
nation. (b) Histogram of original. (c) Simulated uneven illumination. (d)
Box with uneven illumination. (e) Histogram of box with uneven illumina-
tion. (f) Box thresholded at approximate valley of histogram, T' = 72. Note
that regular thresholding is not effective in segmenting the object from the
background.

3.2. REGION SEGMENTATION 83

Algorithm 3.2 Iterative Threshold Selection

1. Select an initial estimate of the threshold, T. A good initial value is the
average intensity of the image.

2. Partition the image into two groups, Ry and R>, using the threshold T .
3. Calculate the mean gray values py and o of the partitions R, and R».

4. Select a new threshold:

T = - (p1 + p2).

B3| =

5. Repeat steps 2—4 until the mean values py and ps in successive iterations
do not change.

Ty, Ty, T3
h A 4
BEca
Image

\
&’ZITL |£,3

Figure 3.6: The process of adaptive thresholding on an image which is not
amenable to regular thresholding.

ege

Ll

-

P Y

(8) (h)

()

Figure 3.7: The results of variable thresholding on an image that is not
amenable to regular thresholding. (a) Original image with uneven illumina-
tion. (b) 3-D plot of original image. (c) Histogram of original image. (d)
Thresholded original, T = 85. (e) Thresholded original, T = 165. (f) Ap-
proximated planar function. (g) Plot of difference between original image
and fitted plane. This is the normalized image. (h) The normalized image.
(i) Histogram of normalized image. (j) Thresholded result, T = 110.

84

3.2. REGION SEGMENTATION 85

Algorithm 3.3 Double Thresholding for Region Growing
1. Select two thresholds T, and T5.

2. Partition the image into three regions: Ry, containing all pizels with
gray values below Ty, Rs, containing all pizels with gray values between
T, and T3, wnclusive; and Rs, containing all pizels with gray values
above T5.

3. Visit each pizel assigned to region Ry. If the pizel has a neighbor in
region Ry, then reassign the pizel to region R;.

4. Repeat step 3 until no pizels are reassigned.

5. Reassign any pizels left in region Ry to region Rj3.

Double Thresholding

In many applications, it is known that certain gray values belong to objects.
However, there may be additional gray values that belong to either objects or
the background. In such a case, one may use a conservative threshold T; to
obtain the core of the object and then use some method to grow the object
regions. The methods used for growing these regions will depend on the
specific application. Common approaches include using another threshold to
accept pixels if they have a neighbor that is a core pixel or by using intensity
characteristics, such as a histogram, to determine points to be included in
the object region. A simple approach is to accept all points that are below
a second threshold T; and are connected to the original set of points. This
approach is outlined in Algorithm 3.3, and the results are shown in Figure 3.8.

In Algorithm 3.3, region R; is the core region, region R, is the fringe
region (also called the intermediate or transition region), and region Rj is
the background. The core region is grown by adding pixels from the fringe
that are neighbors of core pixels. After region growing, any pixels that are not
in the core region are background pixels. The double thresholding algorithm
for region growing implements the principles of value similarity and spatial
proximity. Fringe pixels have values that are close to the values of core pixels

86 CHAPTER 3. REGIONS

since the two sets of pixels are adjacent in the histogram, and fringe pixels
are spatially close to core pixels since they are neighbors.

3.2.2 Limitations of Histogram Methods

As discussed above, one may use information in the histogram of an image
to select an appropriate threshold for segmentation. This approach is useful
in those applications where objects have constant gray values. If the illumi-
nation is different in different parts of a scene, then a single threshold may
not be sufficient to segment the image, even if the image contains only one
object. In such cases one must use techniques that effectively partition an
image, arbitrarily, and select thresholds for each subimage independently.
We also saw some other heuristics for using histogram-based segmentation.
If the images are complex, these approaches will also perform poorly.

The most basic limitation of the histogram-based approaches is due to the
fact that a histogram throws away spatial information about the intensity
values in an image. The histogram describes the global intensity distribution.
Several images with very different spatial distributions of gray values may
have similar histograms. For example, one cannot distinguish between a
random distribution of black and white points, a binary checkerboard, and
an image that is half black and half white just on the basis of their histograms.
The global nature of a histogram limits its applicability to complex scenes.
It does not exploit the important fact that points from the same object are
usually spatially close due to surface coherence.

3.3 Region Representation

Regions are used in many contexts and can be represented in many alter-
native forms. Different representations are suitable in different applications.
Some applications require computations only for a single region, while others
require relationships among different regions of an image. In this section,
we will discuss a few commonly used representations of regions and study
their features. It must be mentioned here that regions can also be repre-
sented as closed contours. We will discuss those representations separately
in Chapter 6.

3.3. REGION REPRESENTATION

@)

i

g

2500]

204

2

i

1500F

100

(b)

2 Wﬁ% i m L

(c) (d)
() (f)

Figure 3.8: An image that is difficult to segment using a single threshold
and its segmentation using double thresholding. (a) Original image. (b)
Histogram of original image. (c¢) Core region, T} = 70. (d) Results after
growing the core region using a second threshold, 75 = 155. Compare this
with the results using regular thresholding shown in (e) and (f). (e) Threshold
= Ts. (f) T} < Threshold < T>. Note that it is impossible to segment the
entire right square without using region growing threshold.

88 CHAPTER 3. REGIONS

Most region representations can be classified into one of the following
three classes:

1. Array representations
2. Hierarchical representations

3. Symbolic representations

3.3.1 Array Representation

The basic representation for regions is to use an array of the same size as the
original image with entries that indicate the region to which a pixel belongs.
Referring back to Chapter 2, Figure 2.12(b) is a representation of regions in
the image shown in Figure 2.12(a). Thus, if element 7, j of the array has the
value «, then the corresponding pixel in the image belongs to region a. The
simplest example of this representation is a binary image where each pixel
belongs to either region 0, the background, or region 1, the foreground.

Another scheme uses membership arrays (images), commonly called masks
or bitmaps. Each region is associated with a binary image, its mask, that
indicates which pixels belong to that region. By overlaying masks on the orig-
inal image, intensity characteristics of regions can be found. One advantage
to this scheme is that ambiguous situations, where the region membership
of a pixel cannot be definitely decided, can be handled by allowing the pixel
to be a member of more than one region. The corresponding pixel will be 1
in more than one mask. Array representations contain region information in
iconic or image form. Symbolic information is not explicitly represented.

The last few years have seen increased use of gray value images in com-
puter applications. This popularity is due to widespread use of raster graph-
ics terminals and decreased memory costs. Array representation preserves all
details of regions required in most applications. This has made binary masks
a very popular representation in computers and much hardware support is
available to manipulate them.

3.3.2 Hierarchical Representations

Images can be represented at many different resolutions. Clearly, by reduc-
ing an image’s resolution, thus reducing the size of the array, some data is

3.3. REGION REPRESENTATION 89

lost, making it more difficult to recover information. However, reduction in
resolution results in reduced memory and computing requirements. Hierar-
chical representation of images allows representation at multiple resolutions.
In many applications, one can compute properties of images first at a low
resolution and then perform additional computations over a selected area of
the image at a higher resolution. Hierarchical representations are also used
for browsing in images. We present two commonly used forms of hierarchical
representations: pyramids and quad trees.

Pyramids

A pyramid representation of an n x n image contains the image and k reduced
versions of the image. Usually n is a power of 2 and the other images are
n/2 xn/2, n/4 xnf4,...,1 x 1. In a pyramid representation of an image,
the pixel at level [is obtained by combining information from several pixels
in the image at level [+ 1. The whole image is represented as a single pixel
at the top level, level 0, and the bottom level is the original (unreduced)
image. A pixel at a level represents aggregate information represented by
several pixels at the next level. Figure 3.9 shows an image and its reduced
versions in a pyramid. Here the pyramid is obtained by simply averaging
the gray values in 2 X 2 neighborhoods. It is possible, however, to devise
other strategies to form reduced-resolution versions. Similarly, it is possible
to taper the pyramid in nonlinear ways.

An implementational point is that the entire pyramid fits into a linear
array of size 2(2%xlevel),

Quad Trees

A quad tree may be considered an extension of pyramids for binary images.
A quad tree contains three types of nodes: white, black, and gray. A quad
tree is obtained by recursive splitting of an image. A region in an image is
split into four subregions of identical size, as shown in Figure 3.10. For each
subregion, if all points in the region are either white or black, then this region
is no longer considered as a candidate for splitting; if it contains pixels of
both kinds, it is considered to be a “gray region” and is further split into four
subregions. An image obtained using this recursive splitting is represented
in a tree structure. The splitting process is repeated until there are no gray

90 CHAPTER 3. REGIONS

Level 3 Level2 Levell Level0
S EREL (55 5,
, | 1x1
i 2x2
! 4x4
e

Level (log,n)

hxn

Figure 3.9: The original image is a 512 x 512 image; its reduced-resolution
versions are successively obtained by averaging four points. All successive
versions are shown here. Note that the low resolution images have been
enlarged for display.

regions in the tree. Each node in this structure is either a leaf node or has
four children—thus the name quad tree.

Quad trees are finding increasing application in spatial databases. Several
algorithms have been developed for converting a raster array to a quad tree
and a quad tree to a raster array. Algorithms for computing several pictorial
properties have also been developed. The last few years have seen efforts to
represent a quad tree using codes to reduce the memory required by pointers.

3.3.3 Symbolic Representations

A region can be represented using symbolic characteristics. Some commonly
used symbolic characteristics are:

e Enclosing rectangle

3.3. REGION REPRESENTATION 91

(a)

(b)

(c)

FEreEr

(d ’

Figure 3.10: The building of a quad tree. (a) Original image, “gray region.”
(b) Original split into four subregions (the left node in the tree corresponds to
the top left region in the image). Note that two of these regions are also gray
regions. (c) Splitting the gray regions from (b) into four subregions. One of
these regions is still a gray region. (d) Splitting of the last gray region and
the final quad tree.

92 CHAPTER 3. REGIONS

e Centroid
e Moments
e Fuler number

Other characteristics such as the mean and variance of intensity values, al-
though not symbolic representations, are also commonly used to represent
regions in an image. These measures are straightforward generalizations of
the calculations introduced in Chapter 2. In addition, other application-
dependent features of a region may be represented. When representing an
image for interpretation, we may be required to represent relationships among
neighboring regions also.

3.3.4 Data Structures for Segmentation

When implementing region merging and splitting algorithms for segmenting
an image (discussed in Section 3.4), information about the regions which
have been formed must be maintained in some data structure. Since merge
and split operations use information about boundaries between regions, as
well as general characteristics of the regions, several data structures have
been proposed to allow easy manipulation of region characteristics. In this
section, we will discuss a few data structures that facilitate region merging
and splitting.

Region Adjacency Graphs

A region adjacency graph (RAG) is used to represent regions and relation-
ships among them in an image. The emphasis is on the partitions of an
image in the form of regions and the characteristics of each partition. As
shown in Figure 3.11, the following conventions are used. Nodes are used
to represent regions, and arcs between nodes represent a common boundary
between regions. Different properties of regions may be stored in the node
data structure. The RAG emphasizes the adjacency of regions and plays a
vital role in segmentation. After an initial segmentation based on primitive
characteristics such as intensity values, the results may be represented in a
RAG, and then regions may be combined to obtain a better segmentation.
A method to generate the RAG is given in Algorithm 3.4.

3.3. REGION REPRESENTATION 93

Figure 3.11: The region adjacency graph for a segmented image. Top: Seg-
mented image. Middle: Region adjacency graph. Bottom: The dual of the
region agacency graph.

94 CHAPTER 3. REGIONS

Algorithm 3.4 Region Adjacency Graph

1. Scan the membership array a and perform the following steps at each
pizel indez [i, j].

2. Let ry = ali;j].

3. Visit the neighbors [k, 1] of the pizel at [i, j|. For each neighbor, perform
the following step.

4. Let ro = alk,l]. If ry # ro, add an arc between nodes ry and ro in the
region adjacency graph.

The dual of a region adjacency graph may also be used in some situations.
In the dual representation, nodes represent boundaries and arcs represent the
regions that are separated by the boundaries.

Pictufe Trees

The picture tree emphasizes the inclusion of a region within another region.
This representation, shown in Figure 3.12, is usually recursive. A version of
this representation, the quad tree discussed in an earlier section, has received
significant attention. In a picture tree, the emphasis is on nesting regions,
while in a quad tree, rectangular regions are split into four rectangles of equal
size, independent of the location of regions. A picture tree is usually produced
by recursively splitting an image into component parts. Splitting stops when
a region with constant characteristics has been reached. This representation
will be discussed in detail in a later section on shape representations.

Super Grid

In some applications, it is desirable to store segmentation information in
an image array. The representation of boundaries in this situation creates
some problems. Intuitively, boundaries should be located between the pixels
of two adjacent regions. However, often boundaries become actual pixels in
image representations. This dilemma is solved by introducing a super grid
on the image grid (see Figure 3.13). If the original image is N x N, then the

3.3. REGION REPRESENTATION 95

®

.

Figure 3.12: An example of the construction of a picture tree representing
the inclusion relationships among regions.

96 CHAPTER 3. REGIONS

Figure 3.13: A super grid region representation. Left: Picture grid. Middle:
Traditional boundary representation. Right: Super grid representation. Note
that the boundary is now between the two regions, unlike the traditional
representation.

supergrid is (2N +1) x (2N +1). Each pixel is surrounded by eight nonpixel
points on the super grid. Nonpixel points are used to indicate whether or not
there is a boundary between two pixels, and in what direction the boundary
runs. This representation simplifies merge and split operations by explicitly
representing the boundary between any two pixels of an image.

3.4 Split and Merge

A simple intensity-based segmentation usually results in too many regions.
Even in images where most humans see very clear regions with constant
gray value, the output of a thresholding algorithm may contain many extra
regions. The main reasons for this problem are high-frequency noise and a
gradual transition between gray values in different regions.

After the initial intensity-based region segmentation, the regions may
need to be refined or reformed. Several approaches have been proposed for
postprocessing such regions obtained from a simple segmentation approach.
Some of these approaches use domain-dependent knowledge, while other ap-
proaches use knowledge about the imaging process. The refinement may be
done interactively by a person or automatically by a computer. In an au-
tomatic system, the segmentation will have to be refined based on object

3.4. SPLIT AND MERGE 97

characteristics and general knowledge about the images.

Automatic refinement is done using a combination of split and merge
operations. Split and merge operations eliminate false boundaries and spu-
rious regions by merging adjacent regions that belong to the same object,
and they add missing boundaries by splitting regions that contain parts of
different objects. Some possible approaches for refinement include:

Merge adjacent regions with similar characteristics.

Remove questionable edges.

Use topological properties of the regions.

Use shape information about objects in the scene.
e Use semantic information about the scene.

The first three approaches use only information about image intensity com-
bined with other domain-independent characteristics of regions. A discussion
of approaches for region refinement follows.

3.4.1 Region Merging

The merge operation combines regions that are considered similar. A high-
level merge algorithm is given in Algorithm 3.5. The algorithm can be
adapted to any of the measures of region similarity discussed in the following
sections.

However, when applying a simple algorithm such as this, one may still get
into trouble. Consider the following example. We have an image with three
adjacent regions A, B, and C. The similarity predicate determines separately
that A and B are similar and that B and C are similar. However, A and C
are not. When merging similar regions, local decisions to merge A and B,
and separately B and C, will collapse the three regions into a single region
even when A and C are not similar. In this case, one must take additional
region characteristics into consideration before merging similar regions.

The most important operation in the merge algorithm is to determine
the similarity between two regions. Many approaches have been proposed
to judge the similarity of regions. Broadly, the approaches to judge the
similarity are based either on the gray value of regions or on the weakness

98 CHAPTER 3. REGIONS

Algorithm 3.5 Region Merging

1. Form initial regions in the image using thresholding (or a similar ap-
proach) followed by component labeling.

2. Prepare a region adjacency graph (RAG) for the image.
3. For each region in an image, perform the following steps:

(a) Consider its adjacent region and test to see if they are similar.

(b) For regions that are similar, merge them and modify the RAG.

4. Repeat step 3 until no regions are merged.

of boundaries between the regions, and may include the spatial proximity of

regions.
Two approaches to judging the similarity of adjacent regions are:

1. Compare their mean intensities. If the mean intensities do not differ
by more than some predetermined value, the regions are considered
similar and should be candidates for merging. A modified form of this
approach uses surface fitting to determine whether the regions may be
approximated by one surface.

2. Assume that the intensity values are drawn from a probability distri-
bution. Consider whether or not to merge adjacent regions based on
the probability that they will have the same statistical distribution of
intensity values. This approach uses hypothesis testing to judge the
similarity of adjacent regions and is discussed in more detail below.

Merging Statistically Similar Regions

This approach considers statistical characteristics of two adjacent regions
to decide whether or not they should be merged. Assume that the regions
in an image have constant gray value corrupted by statistically independent,

3.4. SPLIT AND MERGE 99

additive, zero-mean Gaussian noise, so that the gray values are drawn from
normal distributions. Suppose that two adjacent regions R; and R, contain
m; and my points, respectively. There are two possible hypotheses:

Hy: Both regions belong to the same object. In this case, the intensities are
all drawn from a single Gaussian distribution with parameters (uo, 03).

H;: The regions belong to different objects. In this case, the intensities
of each region are drawn from separate Gaussian distributions with
parameters (u;,0%) and (ua, 03).

In general, these parameters are not known but are estimated using the
samples. For example, when a region contains n pixels having gray levels, g;,

i=1,2,...,n, drawn from a normal distribution given by
1 _(gi=m)?
(g:) = e wt (3.1)
2mo

the Maximum Likelihood estimation equations for the parameters are given
by

igi (3.2)
P (3.3)

Under the hypothesis Hy, all pixels are independently drawn from a single
distribution, N (po,o3). The joint probability density under Hj is given by

mj+ma
p(glagQ:!' c s Gmi+mo | HO) T H p(gs [HO) (34)
1=1
T L e (3.5)
bt \/27:'00
1 B Ben S et i
— e 220 3.6
(\/2—71-0-0)7711+m2 ()
1 my+m
= e_(_r:';_zl (3.7)

(V2mgg)mr+ma

100 CHAPTER 3. REGIONS

Under the hypothesis H;, m; pixels belong to region 1 with a distribution
N(u1,01) and mo pixels belong to region 2 with a distribution N(uz,03).
Under this hypothesis, the joint density function is given by

([H)= e
2 jrrry MY IR p SRSt .- | m T T —— e e 2

pig1, 92 Gmys Gmq+1 Imi+ma 1 (\/'2—71:0'1)""1 (\/ﬂﬂ'g)mz
(3.8)

The likelihood ratio, L, is then defined as the ratio of the probability densities
under the two hypotheses

p(91, 92, .. | H1)

L = 3.9
p(gl1921“' I H‘D) ()
0.6711+m2
e St
o (3.10)

The values of the parameters o, 01, and o, in the above equation are esti-
mated from Egs. 3.2 and 3.3 using all the (m; + my) pixels, m; pixels from
region 1 and m, pixels from region 2, respectively. If the likelihood ratio L
is below a threshold value, there is strong evidence for the likelihood that
there is only one region and the two regions may be merged.

This approach may also be used for edge detection. Since the likelihood
ratio indicates when two regions should be considered to be separate, it
indicates when there should be a boundary between the two regions. For
edge detection, the likelihood ratio between neighborhoods on either side of
a point may be used to detect the presence of edges.

There are other possible modifications to this ratio which can play an
important role in many applications. The likelihood ratio was derived under
the assumption that a region contains constant gray values which, due to
noise, have a normal distribution. It is possible to assume that the underlying
intensity distribution is not constant but rather planar or quadratic. The
likelihood ratio in these cases may be derived and used in a similar way.

3.4.2 Removing Weak Edges

Another approach to merging is to combine two regions if the boundary be-
tween them is weak. This approach attempts to remove weak edges between
adjacent regions by considering not only the intensity characteristics, but also
the length of the common boundary. The common boundary is dissolved if

3.4. SPLIT AND MERGE 101

Figure 3.14: Approach 1: Merging by removing weak boundaries if the ra-
tio of the weak boundary to the minimum region perimeter is above some
threshold. Left: The two regions should not be merged because the weak
boundary is very short as compared to the perimeter of the smaller region.
Right: The two regions should be merged into a single region because the
weak part of the common boundary is a significant fraction of the perimeter
of the smaller region. Note that the strong boundary is marked by a bold
line whereas the weak boundary is marked simply by a change in color of the
two regions.

the boundary is weak and the resulting boundary (of the merged region)
does not change gray value too quickly. The notation used in the following
discussion is illustrated in Figures 3.14 and 3.15.

A weak boundary is one for which the intensities on either side differ
by less than an amount T'. Other criteria, such as edgeness values, may be
used to determine the strength of an edge point that is on the boundary
separating two regions. In an algorithm to merge regions by dissolving weak
boundaries between regions, one must consider the relative lengths of the
weak and complete boundaries between the regions. Two approaches which
consider the relative lengths are:

102 CHAPTER 3. REGIONS

Figure 3.15: Approach 2: Merging by removing weak boundaries if the ratio
of the weak boundary to the total common boundary is above some threshold.
Left: The two regions should not be merged because the weak boundary is
small when compared to the total common boundary. Right: The two regions
should be merged into a single region because the weak part of the boundary
is almost the same as the total common boundary. Note that the strong
boundary is marked by a bold line whereas the weak boundary is marked
simply by a change in color of the two regions.

1. Merge adjacent regions R; and R if

W

? B

where W is the length of the weak part of the boundary, 7 is a threshold,
and S = min(S;,S2) is the minimum of the perimeters of the two
regions as shown in Figure 3.14. In this algorithm, the performance
depends on 7. For a small value of 7, there will be too many region
merges. For a high value, the algorithm becomes too conservative. A
good heuristic value for 7 is 0.5.

2. Merge adjacent regions R; and R, if

W>
S

3.4. SPLIT AND MERGE 103

where S is now the common boundary as shown in Figure 3.15. The
parameter value 7 = 0.75 usually yields satisfactory results.

3.4.3 Region Splitting

If some property of a region is not constant, the region should be split. The
segmentation based on the split approach starts with large regions. In many
cases, one may start with the whole image as the starting region. A split
algorithm is given in Algorithm 3.6.

Several decisions must be made before a region is split. The problem is
usually in deciding when a property is not constant over a region and how
to split a region so that the property for each of the resulting components
is constant. These questions are usually application-dependent and require
knowledge of the characteristics of regions in that application. In some ap-
plications, the variance of the intensity values is used as a measure for how
close the gray values are to being constant. In other applications, a function
is fitted to approximate the underlying intensity values. The error between
this function and the actual intensity values is used as the measure of region
similarity.

More difficult than deciding if the gray values are constant across a region
is deciding where to split a region. One approach used to determine the best
boundary for dividing a region is to consider the measures of edge strength
within the region. The easiest methods for splitting regions are those that
divide the region into a fixed number of equal-sized regions; these are called
regular decomposition methods. The quad tree representation for images,
discussed in Section 3.3.2, is an example of regular decomposition.

Algorithm 3.6 Region Splitting
1. Form iwnitial regions in the image.
2. For each region in an image, recursively perform the following steps:

(a) Compute the variance in the gray value for the region.

(b) If the variance is above a threshold, split the region along the ap-
propriate boundary.

104 CHAPTER 3. REGIONS

Algorithm 3.7 Split and Merge Region Segmentation
1. Start with the entire image as a single region.

2. Pick a region R. If P(R) is false, then split the region into four subre-
gions.

3. Consider any two or more neighboring subregions, R, Rs,...,R,, in
the image. If P(RiURyU---UR,,) is true, merge the n regions into a
single region.

4. Repeat these steps until no further splits or merges take place.

The quad tree approach, however, must be modified for use in segment-
ing nonbinary (gray value) images. Instead of considering black and white
regions, we must use the variance of the image intensity to decide whether a
region should be split. Due to the numerous ways in which a region may be
split, splitting regions is generally more difficult than merging them.

3.4.4 Split and Merge

Split and merge operations may be used together. After a presegmentation
based on thresholding, a succession of splits and merges may be applied to
refine the segmentation. Combined split and merge algorithms are useful for
segmenting complex scenes. Domain knowledge may be introduced to guide
the split and merge operations.

Suppose that an image is partitioned into a set of regions, {R;}, for
k=1,2,...,m. All of the pixels in a region will be homogeneous according to
some property defined by a predicate P applied to the region. The predicate
represents the similarity between the pixels in a region. For example, the
predicate could be defined using the variance in gray values within a region:

1 if the variance is small

0 otherwise. (3.11)

P(R) = {

The split and merge algorithm for region segmentation is outlined in
Algorithm 3.7.

3.5. REGION GROWING 105

3.5 Region Growing

In many images, the gray values of individual regions are not nearly constant
and more sophisticated techniques must be used for segmentation. The best
techniques are those based on the assumption that the image can be parti-
tioned into regions that can be modeled by simple functions. This idea can
be applied naturally for region segmentation.

The segmentation problem set forth in Section 3.2 leads to an algorithm
that starts with seed regions and then grows the regions to form larger regions
satisfying these constraints. For the example in this text, the homogeneity
predicate is based on fitting planar and biquadratic functions to the gray val-
ues in a region. However, in general, the homogeneity predicate can be based
on any characteristic of the regions in the image such as average intensity,
variance, texture, or color. The algorithm is given here as Algorithm 3.8.

The algorithm begins by partitioning the image into n X n regions where
n is typically between 5 and 9. Regions are merged if a single planar or
biquadratic function can be fit to the gray values in both regions. The planar
and biquadratic models are a linear combination of basis functions. The basis
functions span the variable-order bivariate polynomials, so the model is

f(.’L‘, y)aam) = Z aijxtyja (312)
i+j<m
where the order m of the model is restricted to 0 < m < 2. This means that
the region models are restricted to planar and biquadratic functions.
The homogeneity predicate is based on the distance of points in a region
from the function that models the region:

r(R,a,m)= > d*(z,y,a,m) (3.13)
(z,y)ER

where the distance is ordinary Euclidean distance:

dz(x! Y, aam) = [g(xm y) T f(m$ y,a, m)]2 7 (314)

The gray value g(z,y) at point (z,y) in the image plane is the gray value
of the pixel at that image location. Given a set of points R, the problem is
to find the order m of the model and the model parameters a that minimize
the error function x*(R,a, m). This is a least-squares problem that can be

106

CHAPTER 3. REGIONS

Algorithm 3.8 Region Growing Using Planar and Biquadratic
Models

L

2

Partition the image into initeal seed regions REO).

Fit a planar model to each seed region. If the chi-squared error is small
enough, accept the seed region and its model; otherwise, reject the seed
Tegion.

For each region, find all points that are compatible with the region by ex-
trapolating the region model to the neighbors of the region. Compatible
points are defined as

C'i(k] ={(z,y)|d*(z,y,a,m)<e and (z,y) is a 4-neighbor of ng}UC,;(k)}
where € is the compatibility threshold.

If there were no compatible points, increase the order of the model:
m +— m + 1. If the model order is larger than the mazximum model
order, then do not grow the region further; otherwise, continue region
growing by returning to step 3.

Form the new region ngﬂ) == RE“U C,—Uc}, refit the model at the same or-

der to the new region, and compute the goodness of fit Xz(REkH), a,m).

Compute the difference between the old and new goodness of fit for the
region model:

k+1 k
P = e o0 B = i, e BEY)

If p*+1) < Ty, continue region growing by returning to step 3.

Increase the order of the model: m <— m+1. If the model order is larger
than the mazimum model order, then do not grow the region further.

Refit the region model at the new model order m. If the error of fit
decreases, accept the new model order and continue region growing by
returning to step 3; otherwise, do not grow region R; further.

3.5. REGION GROWING 107

solved using singular value decomposition. Refer to [196] and Appendix B
for a complete discussion on singular value decomposition.

The reason that the compatibility of points is checked against the surface
patch before the surface is refit to the combined set of points is that least-
squares fitting is very sensitive to outliers. If an outlier is added to the
region before fitting, then the surface patch can be so severely distorted by
the outlier that it no longer fits even the points that actually belong to the
region.

It is not possible to know in advance how the image should be partitioned
into regions that are modeled by distinct surface patches, since this is the
segmentation problem itself. One can use a rigorous approach to find a
conservative seed region. It is possible to use a conservative thresholding for
finding the seed. One may also use a sophisticated approach to find initial
seeds using the domain knowledge or the nature of images. For example, in
range images differential geometric characteristics may be used to find initial
seed regions. A computationally efficient approach to do this is to use some
general image characteristics to identify such seed regions. One may partition
the image into 7 x 7 seed regions and then fit surface patches to these seed
regions. The seed regions are accepted based on the chi-squared error in the
fit of the surface patch. If a 7 x 7 patch is rejected, then it is replaced by
overlapping 5 x 5 surface patches to get higher resolution. Regions are grown
by acquiring compatible points. Points are compatible with a region if the
surface patch for the region can be extended to include the point such that
the value of the point is not far from the surface. The surface patch is refit
over the new domain which includes the original points plus the compatible
points.

One may allow points to be associated with more than one region. The
ambiguity is resolved by a postprocessing step that performs model selection.
In classic region growing, each point is associated with at most one region.
This constraint can be enforced by modifying the algorithm so that one region
takes a point away from another region only if reassigning the point improves
the fit of the surface patch model for both regions. More precisely, reassign
a point only if the combined error for surface fits for both regions is lower.
Figure 3.16 shows the results of this approach.

The classical region segmentation techniques described earlier can be viewed
as region growing techniques where the surface patches are restricted to con-
stants. In other words, the assumption is that regions are nearly constant

108 CHAPTER 3. REGIONS

(a) (b)
Figure 3.16: The segmentation of an image using the region growing algo-
rithm is given here. Part (a) shows the results for an intensity image and (b)
shows results for a range image.

in image intensity and the image can be partitioned into regions of piece-
wise constant image intensity. More sophisticated segmentation techniques
generalize the assumptions on the variation in image intensity to allow more
realistic intensity variations due to shading.

Further Reading

After more than two decades of intensive research efforts, segmentation still
remains a difficult problem in machine vision. Several approaches do not use
any domain-specific information in the early stages of vision [163]. On the
other hand, some psychophysicists believe that every aspect of perception
uses domain information extensively [203]. Computer vision research has
been influenced by both these views. Haralick and Shapiro [101] present a
review of early segmentation techniques.

A discussion of thresholding methods for region formation is given in the
books by Rosenfeld and Kak [206], and Haralick and Shapiro [103]. For an
introduction to quad trees, see the book by Samet [210]. Pyramid represen-
tations are discussed in several sources; for an introduction see [230].

Region growing has been a popular topic. A statistical approach for

EXERCISES 109

merging regions was proposed by Yakimovsky [258]. An algorithm for region
growing was developed by Besl and Jain [28].

Color can be used for segmentation. A representative treatment of seg-
mentation techniques using color information is given in [105]. For an early
work based on histograms of colors, see [189]. Geman and Geman’s [85]
stochastic relaxation approach for segmentation and restoration of images
has attracted significant attention. The relaxation method, also known as
simulated annealing, has many applications in image analysis.

Explicit application of knowledge for segmentation has been addressed
in many systems [30, 119, 165, 183]. Knowledge-based approaches definitely
have strong appeal and will potentially be very useful for segmentation of
complex images. So far their success has been limited due to poor perfor-
mance of operators in domain-independent early processing. Model-based
reasoning can help [49]. The model-based reasoning will emerge as a power-
ful approach in many applications of machine vision.

Considerable work on region growing for land use classification and related
applications has been done in the field of remote sensing [208].

Exercises

3.1 Regions and boundaries may be considered duals of each other. They
also contain equivalent information. Do you see advantages of one over
the other in machine vision applications? Why?

A 3.2 In the automatic thresholding approach based on the mode method,
the bottom of the valley is usually used as the threshold value. As-
suming that the object and the background are of equal size in the
image and their intensity values are drawn from two different Gaussian
probability distributions N(u;,0) and N(us, o), show that the recom-
mended threshold indeed results in the optimal threshold because it
minimizes the misclassification error. Obtain an expression for the op-
timal threshold for the general case when the object pixels cover p% of
the image area and the object and background distributions are given
by N(p1,01) and N(p2, 02), respectively.

3.3 What knowledge about the objects in images is used in the p-tile and
mode methods for automatically selecting the threshold value?

110

3.4

3.5

)(3.6

3.7

3.8

3.9

3.10

CHAPTER 3. REGIONS

What is the limitation of histogram-based methods for finding regions
in an image? How can this be overcome in most applications? Can you
suggest a postprocessing method for correcting the results obtained
using a histogram-based method for images that contain objects that
do not have Gaussian distributions for their intensity values?

Pyramid representations are appearing in many different forms. In
many common multimedia applications thumbnail sketches are used.
What are thumbnail sketches? Can you consider these schemes a subset
of pyramid schemes?

Find the quad tree representation for the following object.

wi0{i{l}j3i12 180
gta414314183 il
SESSIRER S0 4
SESE s SRsR L
JHES A SR s B R R
ER IR RE ey YR
LRt Inde ol
1/1(0|0|0f0]|1]1

Kodak’s photo-CD form of image representation has become popular in
several applications. What is this representation? What are its useful
features?

Quad tree representations have a serious limitation for applications
in machine vision. A connected component in an image may be dis-
tributed at distant nodes in this representation. Can you suggest a
scheme to modify quad trees to remove this limitation?

Another serious problem with quad trees is the rotation and scaling of
regions. What will happen to the quad tree of an image if a region in
it is translated, rotated, or scaled? Can you suggest some solutions to
overcome these problems?

Show that the pyramid representation of an n X n image actually does
fit within a linear array of size 2(22xlevel).

COMPUTER PROJECTS 111

>%.11

Assume that regions in an image have an intensity distribution that is
planar combined with Gaussian noise. Thus, intensity value at a point
of the region can be represented as

I(z,y) = Az + By + C + N(0, o). (3.15)

Derive the likelihood ratio-based merge criterion under this assumption.

Computer Projects

3.1

3.2

3.3

3.4

Consider three different types of images: an office scene, an outdoor
scene, and maybe a scene containing just one simple object. Imple-
ment an automatic thresholding scheme and study the results for these
images.

Put two simple objects on a desk. Select one light and one dark ob-
ject. Illuminate the scene such that light comes from the direction of
the light object. Develop a suitable automatic thresholding scheme to
segment the image as best as you can. Now change the direction of
illumination by moving your light source so that the illumination is
from the direction of the dark object. See whether your algorithm still
works. If not, experiment and make it work in these and similar other
cases.

Implement the likelihood ratio-based approach for merging regions. Use
it as a postprocessing step in your earlier experiments.

Implement the region growing approach for finding regions in an image.
Use it in your earlier experiments. Now compare the results of all
these approaches and find the strengths and weaknesses of all these
approaches for different situations in images.

