
Chapter 4

Image Filtering

When an image is acquired by a camera or other imaging system, often
the vision system for which it is intended is unable to use it directly. The
image may be corrupted by random variations in intensity, variations in
illumination, or poor contrast that must be dealt with in the early stages of
vision processing.

This chapter discusses methods for image enhancement aimed at elimi-
nating these undesirable characteristics. The chapter begins with histogram
modification, followed by a brief review of discrete linear systems and fre-
quency analysis, and then coverage of various filtering techniques. The Gaus-
sian smoothing filter is covered in depth.

4.1 Hi~togram Modification

Many images contain unevenly distributed gray values. It is common to find
images in which all intensity values lie within a small range, such as the
image with poor contrast shown in Figure 4.1. Histogram equalization is a
method for stretching the contrast of such images by uniformly redistributing
the gray values. This step may make threshold selection approaches more
effective. In general, histogram modification enhances the subjective quality
of an image and is useful when the image is intended for viewing by a human
observer.

A simple example of histogram modification is image scaling: the pixels
in the range [a,b] are expanded to fill the range [ZbZk]. The formula for

112

4.1. HISTOGRAM MODIFICATION 113

Figure 4.1: An image with poor contrast.

mapping a pixel value z in the original range into a pixel value z' in the new
range IS

z'

(4.1)-

The problem with this scheme is that when the histogram is stretched ac-
cording to this formula, the resulting histogram has gaps between bins (see
Figure 4.2). Better methods stretch the histogram while filling all bins in
the output histogram continuously.

If the desired gray value distribution is known a priori, the following
method may be used. Suppose that Pi is the number of pixels at level Zi in
the original histogram and qi is the number of pixels at level Zi in the desired
histogram. Begin at the left end of the original histogram and find the value
k1 such that

kl -1 kl

L Pi ::; q1 < LPi'
i=l i=l

(4.2)

The pixels at levels Zl, Z2, . . . , Zkl-1 map to level Zl in the new image. Next,

114 CHAPrnR4. ~AGEF~TEmNG

Figure 4.2: The original image has very poor contrast since the gray values
are in a very small range. Histogram scaling improves the contrast but leaves
gaps in the final histogram. Top: Original image and histogram. Bottom:
Image and resulting histogram after histogram scaling.

find the value k2 such that

k2-1 k2

.L Pi :::; ql + q2 < .L Pi.
i=l i=l

(4.3)

The next range of pixel values, Zk1,. . . , Zk2-1,maps to level Z2. This procedure
is repeated until all gray values in the original histogram have been included.
The results of this approach are shown in Figure 4.3.

If the histogram is being expanded, then pixels having the same gray
value in the original image may have to be spread to different gray values in
the new image. The simplest procedure is to make random choices for which
output value to assign to each input pixel. Suppose that a uniform random
number generator that produces numbers in the range [0,1) is used to spread
pixels evenly across an interval of n output values qk,qk+b. . . , qk+n-l. The
output pixel number can be computed from the random number r using the
formula

(4.4)

4.2. LINEAR SYSTEMS 115

Figure 4.3: The original image has very poor contrast since the gray values
are in a very small range. Histogram equalization improves the contrast
by mapping the gray values to an approximation to a uniform distribution.
However, this method still leaves gaps in the final histogram unless pixels
having the same gray levels in the input image are spread across several gray
levels in the output image. Top: Original image and histogram. Bottom:
Image and resulting histogram after histogram equalization.

In other words, for each decision, draw a random number, multiply by the
number of output values in the interval, round down to the nearest integer,
and add this offset to the lowest index.

4.2 Linear Systems

Many image processing operations can be modeled as a linear system:

Input
8(x, y)

Output
g(x,y)

Linear system

116 CHAPTER 4. IMAGE FILTERING

For a linear system, when the input to the system is an impulse 8(x, y)
centered at the origin, the output g(x, y) is the system's impulse response.
Furthermore, a system whose response remains the same irrespective of the
position of the input pulse is called a space invariant system:

Input
8(x-xo, Y-Yo)

Linear space
invariant system

Output
g(x-xo, Y-Yo)

A linear space invariant (L8I) system can be completely described by its
impulse response g(x, y) as follows:

Input
f(x,y)

L8I system

g(x,y)
Output
h(x,y)

where f(x, y) and h(x, y) are the input and output images, respectively. The
above system must satisfy the following relationship:

a . II (x, y) + b . 12(x, y) ~ a . hI (x, y) + b . h2(x, y)

where lI(x, y) and h(x, y) are the input images, hl(x, y) and h2(x, y) are the
output images corresponding to II and 12, and a and b are constant scaling
factors.

For such a system, the output h(x, y) is the convolution of f(x, y) with
the impulse response g(x, y) denoted by the operator * and is defined as:

h(x,y) f(x, y) * g(x, y)

i:i:f(x', y')g(x - x', y - y') dx'dy'. (4.5)

For discrete functions, this becomes:

h[i, j] = f[i, j] * g[i,j]
n m

= L: L:f[k,l]g[i - k,j -1].
k=II=1

(4.6)

4.2. LINEAR SYSTEMS 117

Figure 4.4: An example of a 3 x 3 convolutionmask. The origin of the
convolutionmask corresponds to location E and the weights A, B, . . . I are
the valuesof g[-k, -l], k, 1= -1,0, +1.

If f and h are images, convolution becomes the computation of weighted
sums of the image pixels. The impulse response, g[i, j], is referred to as
a convolution mask. For each pixel [i,j] in the image, the value h[i, j] is
calculated by translating the convolution mask to pixel [i,j] in the image, and
then taking the weighted sum of the pixels in the neighborhood about [i,j]
where the individual weights are the corresponding values in the convolution
mask. This process is illustrated in Figure 4.4 using a 3 x 3 mask.

Convolution is a linear operation, since

for any constants al and a2. In other words, the convolution of a sum is
the sum of the convolutions, and the convolution of a scaled image is the
scaled convolution. Convolution is a spatially invariant operation, since the
same filter weights are used throughout the image. A spatially varying filter
requires different filter weights in different parts of the image and hence
cannot be represented by convolution.

-.
A B C

-. ---. - --. . I---'
pi ;P2. - -

D E F P4 PsPfj h[i,j]1'71's PlI t-- =-,- -' -
,G H I , ,- " -

"
--

118 CHAPrnR4. rnAGEF~TEmNG

Fourier Transform

An n x m image can be represented by its frequency components as follows:

f[k, l] = ~ 1
71"

171"F(u, v) dku d1v dudv
47r -71"-71"

(4.7)

where F(u, v) is the Fourier transform of the image. The Fourier transform
encodes the amplitude and phase of each frequency component and is defined
as

F(u, v) F{f[k, l]}
n m

L L f[k, l] e-jku e-j1v
k=ll=l

(4.8)

where F denotes the Fourier transform operation. The values near the ori-
gin of the (u, v) plane are called the low-frequency components of the Fourier
transform, and those distant from the origin are the high-frequency compo-
nents. Note that F(u, v) is a continuous function.

Convolution in the image domain corresponds to multiplication in the spa-
tial frequency domain. Therefore, convolution with large filters, which would
normally be an expensive process in the image domain, can be implemented
efficiently using the fast Fourier transform. This is an important technique in
many image processing applications. In machine vision, however, most algo-
rithms are nonlinear or spatially varying, so the Fourier transform methods
cannot be used. In most cases where the vision algorithm can be modeled
as a linear, spatially invariant system, the filter sizes are so small that im-
plementing convolution with the fast Fourier transform provides little or no
benefit; hence, linear filters, such as the smoothing filters discussed in the
following sections, are usually implemented through convolution in the image
domain.

4.3 Linear Filters

As mentioned earlier, images are often corrupted by random variations in in-
tensity values, called noise. Some common types of noise are salt and pepper
noise, impulse noise, and Gaussian noise. Salt and pepper noise contains ran-
dom occurrences of both black and white intensity values. However, impulse

4.3. LINEAR FILTERS 119

(a)

(c) (d)

Figure 4.5: Examples of images corrupted by salt and pepper, impulse,
and Gaussian noise. (a) & (b) Original images. (c) Salt and pepper noise.
(d) Impulse noise. (e) Gaussian noise.

noise contains only random occurrences of white intensity values. Unlike
these, Gaussian noise contains variations in intensity that are drawn from a
Gaussian or normal distribution and is a very good model for many kinds of

sensor noise, such as the noise due to camera electronics (see Figure 4.5).
Linear smoothing filters are good filters for removing Gaussian noise and,

in most cases, the other types of noise as well. A linear filter is implemented
using the weighted sum of the pixels in successive windows. Typically, the
same pattern of weights is used in each window, which means that the linear
filter is spatially invariant and can be implemented using a convolution mask.
If different filter weights are used for different parts of the image, but the

filter is still implemented as a weighted sum, then the linear filter is spatially
varying. Any filter that is not a weighted sum of pixels is a nonlinear filter.
Nonlinear filters can be spatially invariant, meaning that the same calculation

is performed regardless of the position in the image, or spatially varying. The
median filter, presented in Section 4.4, is a spatially invariant, nonlinear filter.

120 CHAPTER 4. IMAGE FILTERING

Figure 4.6: An example illustrating the mean filter using a 3 x 3 neighbor-
hood.

Mean Filter

One of the simplest linear filters is implemented by a local averaging opera-
tion where the value of each pixel is replaced by the average of all the values
in the local neighborhood:

h[i,j] = ~ L j[k,l]
(k,I)EN

(4.9)

where M is the total number of pixels in the neighborhood N. For example,
taking a 3 x 3 neighborhood about [i,j] yields: .

1 i+1 HI

h[i,j] = 9 L L j[k, I].k=i-II=j-I
(4.10)

Compare this with Equation 4.6. Now if g[i,j] = 1/9 for every [i,j] in the
convolution mask, the convolution operation in Equation 4.6 reduces to the
local averaging operation shown above. This result shows that a mean filter
can be implemented as a convolution operation with equal weights in the
convolution mask (see Figure 4.6). In fact, we will see later that many image
processing operations can be implemented using convolution.

1 1 1

-.!...X 1 1 1
h[i,j]9

1 -- -
1 1 - .-

--

4.3. LINEAR FILTERS

t

r

I
L

121

I .._ 1L ___

I

,

J

Figure 4.7: The results of a 3 x 3, 5 x 5, and 7 x 7 mean filter on the noisy
images from Figure 4.5.

122 CHAP~R4. rnAGEF~TERmG

The size of the neighborhood N controls the amount of filtering. A larger
neighborhood, corresponding to a larger convolution mask, will result in a
greater degree of filtering. As a trade-off for greater amounts of noise reduc-
tion, larger filters also result in a loss of image detail. The results of mean
filters of various sizes are shown in Figure 4.7.

When designing linear smoothing filters, the filter weights should be cho-
sen so that the filter has a single peak, called the main lobe, and symmetry
in the vertical and horizontal directions. A typical pattern of weights for a
3 x 3 smoothing filter is

Linear smoothing filters remove high-frequency components, and the sharp
detail in the image is lost. For example, step changes will be blurred into
gradual changes, and the ability to accurately localize a change will be sacri-
ficed. A spatially varying filter can adjust the weights so that more smoothing
is done in a relatively uniform area of the image, and little smoothing is done
across sharp changes in the image. The results of a linear smoothing filter
using the mask shown above are shown in Figure 4.8.

4.4 Median Filter

The main problem with local averaging operations is that they tend to blur
sharp discontinuities in intensity values in an image. An alternative approach
is to replace each pixel value with the median of the gray values in the local
neighborhood. Filters using this technique are called median filters.

Median filters are very effective in removing salt and pepper and impulse
noise while retaining image details because they do not depend on values
which are significantly different from typical values in the neighborhood.
Median filters work in successive image windows in a fashion similar to linear
filters. However, the process is no longer a weighted sum. For example, take
a 3 x 3 window and compute the median of the pixels in each window centered
around [i, j]:

.!. ! .!.
16 8 16

! 1 1
8 4 "8

1 1 .!.

16 "8 16

4.5. GAUSSIAN SMOOTHING 123

....

Figure 4.8: The results of a linear smoothing filter on an image corrupted by
Gaussian noise. Left: Noisy image. Right: Smoothed image.

1. Sort the pixels into ascending order by gray level.

2. Select the value of the middle pixel as the new value for pixel [i,j].

This process is illustrated in Figure 4.9. In general, an odd-size neighborhood
is used for calculating the median. However, if the number of pixels is even,
the median is taken as the average of the middle two pixels after sorting.
The results of various sizes of median filters are shown in Figure 4.10.

4.5 Gaussian Smoothing

Gaussian filters are a class of linear smoothing filters with the weights chosen
according to the shape of a Gaussian function. The Gaussian smoothing filter
is a very good filter for removing noise drawn from a normal distribution.!
The zero-mean Gaussian function in one dimension is

(4.11)

IThe fact that the filter weights are chosen from a Gaussian distribution and that the
noise is also distributed as a Gaussian is merely a coincidence.

124 CHAPTER 4. IMAGE FILTERING

New pixel value

Sorted by pixel value
10
19
22
36
38 -+- Median value
49
75
98
99

Figure 4.9: An example illustrating the median filter using a 3 x 3 neighbor-
hood.

where the Gaussian spread parameter (J determines the width of the Gaus-
sian. For image processing, the two-dimensional zero-mean discrete Gaussian
function,

(4.12)

is used as a smoothing filter. A plot of this function is shown in Figure 4.11.
Gaussian functions have five properties that make them particularly use-

ful in early vision processing. These properties indicate that the Gaussian
smoothing filters are effective low-pass filters from the perspective of both
the spatial and frequency domains, are efficient to implement, and can be
used effectively by engineers in practical vision applications. The fiveproper-
ties are summarized below. Further explanation of the properties is provided
later in this section.

1. In two dimensions, Gaussian functions are rotationally symmetric. This
means that the amount of smoothing performed by the filter will be
the same in all directions. In general, the edges in an image will not
be oriented in some particular direction that is known in advance; con-
sequently, there is no reason a priori to smooth more in one direction

.... "

75 99 36 -
-"- '- -',

75 99 36

38 49 10 38 9 rm
19 \9g,l'12

"-

19 98 22 "

.... ,-

'\"' "\1\
...... '".....
.... ,- \ \ '"

f\
\ 38

\

4.5. GAUSSIAN SMOOTHING

l
A

.,---
j.

" . II' --. :..
..

..
.."

125

Figure 4.10: The results of a 3 x 3, 5 x 5, and 7 x 7 median filter on the noisy
images from Figure 4.5.

126 CHAPTER 4. IMAGE FILTERING

o
10

10

0.6

0.4

0.2

Figure 4.11: The two-dimensional Gaussian function with zero mean.

than in another. The property of rotational symmetry implies that a
Gaussian smoothing filter will not bias subsequent edge detection in
any particular direction.

2. The Gaussian function has a single lobe. This means that a Gaussian
filter smooths by replacing each image pixel with a weighted average
of the neighboring pixels such that the weight given to a neighbor
decreases monotonically with distance from the central pixel. This
property is important since an edge is a local feature in an image, and
a smoothing operation that gives more significance to pixels farther
away will distort the features.

3. The Fourier transform of a Gaussian has a single lobe in the frequency
spectrum. This property is a straightforward corollary of the fact that
the Fourier transform of a Gaussian is itself a Gaussian, as will be shown
below. Images are often corrupted by undesirable high-frequency sig-
nals (noise and fine texture). The desirable image features, such as
edges, will have components at both low and high frequencies. The
single lobe in the Fourier transform of a Gaussian means that the
smoothed image will not be corrupted by contributions from unwanted
high-frequency signals, while most of the desirable signals will be re-
tained.

4.5. GAUSSIAN SMOOTHING 127

4. The width, and hence the degree of smoothing, of a Gaussian filter is
parameterized by (j, and the relationship between (j and the degree of
smoothing is very simple. A larger (j implies a wider Gaussian filter
and greater smoothing. Engineers can adjust the degree of smoothing
to achieve a compromise between excessive blur of the desired image
features (too much smoothing) and excessive undesired variation in the
smoothed image due to noise and fine texture (too little smoothing).

5. Large Gaussian filters can be implemented very efficiently because
Gaussian functions are separable. Two-dimensional Gaussian convolu-
tion can be performed by convolving the image with a one-dimensional
Gaussian and then convolving the result with the same one-dimensional
filter oriented orthogonal to the Gaussian used in the first stage. Thus,
the amount of computation required for a 2-D Gaussian filter grows lin-
early in the width of the filter mask instead of growing quadratically.

4.5.1 Rotational Symmetry

The rotational symmetry of the Gaussian function can be shown by con-
verting the function from rectangular to polar coordinates. Remember the
two-dimensional Gaussian function

(4.13)

Since the radius in polar coordinates is given by r2 = i2+ j2, it is easy to see
that the Gaussian function in polar coordinates,

(4.14)

does not depend on the angle () and consequently is rotationally symmetric.
It is also possible to construct rotationally nonsymmetric Gaussian functions
if they are required for an application where it is known in advance that
more smoothing must be done in some specified direction. Formulas for ro-
tationally nonsymmetric Gaussian functions are provided by Wozencraft and
Jacobs [257, pp. 148-171], where they are used in the probabilistic analysis
of communications channels.

128 CHAPTER 4. IMAGE FILTERING

4.5.2 Fourier Thansform Property

The Gaussian function has the interesting property that its Fourier transform
is also a Gaussian function. Since the Fourier transform of a Gaussian is a real
function, the Fourier transform is its own magnitude. The Fourier transform
of a Gaussian is computed by

F{g(x)} = 1: g(x) e-jwx dx

1
00 .,2 .

- e-2,;7 e-JWXdx
-00

1
00 ",2

-00 e-2,;7 (cos wx + j sin wx) dx

1
00 .,2

1
00 .,2

-00 e-2,;7 coswxdx + j -00 e-2,;7 sinwxdx.

(4.15)

(4.16)

(4.17)

(4.18)

The Gaussian is a symmetric function and the sine function is antisymmetric,
so the integrand in the second integral is antisymmetric. Therefore, the
integral must be zero, and the Fourier transform simplifies to:

1
00 .,2

F{g(x)} = -00 e-2,;7 coswxdx

w2 1
y'2;(7e-~, v2 = "2.(7

(4.19)

(4.20)

The spatial frequency parameter is w, and the spread of the Gaussian in the
frequency domain is controlled by v, which is the reciprocal of the spread
parameter (7 in the spatial domain. This means that a narrower Gaussian
function in the spatial domain has a wider spectrum, and a wider Gaus-
sian function in the spatial domain has a narrower spectrum. This prop-
erty relates to the noise suppression ability of a Gaussian filter. A narrow-
spatial-domain Gaussian does less smoothing, and in the frequency domain
its spectrum has more bandwidth and passes more of the high-frequency
noise and texture. As the width of a Gaussian in the spatial domain is in-
creased, the amount of smoothing that the Gaussian performs is increased,
and in the frequency domain the Gaussian becomes narrower and passes less
high-frequency noise and texture. This simple relationship between spatial-
domain Gaussian width and frequency-domain spectral width enhances the
ease of use of the Gaussian filter in practical design situations. The Fourier

4.5. GAUSSIAN SMOOTHING 129

transform duality of Gaussian functions also explains why the single-lobe
property in the spatial domain carries over into the frequency domain.

4.5.3 Gaussian Separability

The separability of Gaussian filters is easy to demonstrate:
m n

g[i,j]*J[i,j] = LL9[k,1]J[i-k,j-l]
k=11=1

m n (k2+t)- L L e- 2<7 J[i - k, j - 1]
k=11=1

m k2

{

n 12

}
Le-~ Le-~J[i-k,j-l] .
k=l 1=1

(4.21)

(4.22)

(4.23)

The summation in brackets is the convolution of the input image J[i, j] with a
vertical one-dimensional Gaussian function. The result of this summation is a
two-dimensional image, blurred in the vertical dimension, that is then used as
the input to a second convolution with a horizontal one-dimensional Gaussian
that blurs the image in the horizontal dimension (see Figure 4.12). Since
convolution is associative and commutative, the order of the convolutions
can be reversed so that the horizontal convolution is performed first and the
vertical convolution is performed on the result of the horizontal convolution.

This method can be implemented using the composition of two horizontal
convolutions and a single horizontal convolution mask. The input J[i,j] is
first convolved with a horizontal Gaussian, and the result is placed in a
temporary array in its transposed position. The temporary array is then
used as input to the same convolution code so that the vertical convolution
is performed by horizontal convolution. The output data from the second
convolution is again transposed as the convolution is performed so that the
data is restored to its proper (original) orientation. Results of this separable
convolution are shown in Figure 4.13.

4.5.4 Cascading Gaussians

A related property of Gaussian filters is that the convolution of a Gaussian
with itself yields a scaled Gaussian with larger (j. This is easily shown for

130 CHAPTER 4. IMAGE FILTERING

Figure 4.12: An example of the separability of Gaussian convolution. Left:
Convolution with the vertical mask. Right: Convolution with the horizontal
mask. Note that the origin of each mask is shaded.

the one-dimensional case:

x
~---t~+2

(4.24)

The product of the convolution of two Gaussian functions with spread (7is a
Gaussian function with spread V2(7scaled by the area of the Gaussian filter.
The result holds in two dimensions as well. This means that if an image has
been filtered with a Gaussian at a certain spread (7and if the same image must
be filtered with a larger Gaussian with spread V2(7,then instead of filtering the
image with the larger Gaussian, the previous result can just be refiltered with
the same Gaussian filter of spread (7used to obtain the desired filtered image.
This implies a significant reduction in computation in situations where multi-
ple smoothed versions of images must be computed. Similar savings can be ob-
tained when cascading Gaussian filters with different values of (7.

/

"'"
-

'"

,
I I

1\

4.5. GAUSSIAN SMOOTHING

_",.,_oeo__

131

.
I .
L~

-, .

L__
(b)

-
(d)

--~

::10__...
(c) --

Figure 4.13: The results of separable Gaussian convolution using a single
horizontal convolution mask. (a) Original noisy image. (b) Results of con-
volution with horizontal Gaussian mask. (c) The transposition of (b). (d)
The convolution of (c) with the horizontal mask. (e) The transposition of
(d). This is the final smoothed image.

132 CHAPTER 4. IMAGE FILTERING

4.5.5 Designing Gaussian Filters

An excellent approximation to a Gaussian is provided by the coefficientsof
the binomial expansion:

(1+ xt = (~)+ (7)x + (;)X2 +... + (~)Xn.
(4.25)

In other words, use row n of Pascal's triangle as a one-dimensional, n-point
approximation to a Gaussian filter. For example, the five-point approxima-
tion is:

corresponding to the fifth row of Pascal's triangle. This mask is used to
smooth an image in the horizontal direction. Remember from Section 4.5.3
that a two-dimensional Gaussian filter can be implemented as the successive
convolutions of two one-dimensional Gaussians, one in the horizontal direc-
tion and the other in the vertical direction. Also remember that this can be
implemented using only the single one-dimensional mask by transposing the
image between convolutions and after the final convolution. The results of
Gaussian filtering using this approximation are shown in Figure 4.14.

This technique works well for filter sizes up to around n = 10. For
larger filters, the coefficients in the binomial expansion are too large for most
computers; however, arbitrarily large Gaussian filters can be implemented
by repeatedly applying a smaller Gaussian filter. The (j of the binomial
approximation to a Gaussian filter can be computed by using least-squares
to fit a Gaussian function to the binomial coefficients.

Another approach in designing Gaussian filters is to compute the mask
weights directly from the discrete Gaussian distribution [146]:

(4.26)

where c is a normalizing constant. By rewriting this as

g[i, j] _ (i2+~2)-=e 2"
c (4.27)

4.5. GAUSSIAN SMOOTHING

""":::-. '"::"~""""=y,,""""'.c<iI,
, 1

MlW, ~' ~

f
J

133

,

.
i

l . r
(c)

Figure 4.14: The approximation of a Gaussian filter using the fifth row of
Pascal's triangle. (a) Original noisy image. (b) Result after smoothing in the
horizontal direction. (c) Final result after smoothing in the vertical direction.

and choosing a value for (72,we can evaluate it over an n x n window to
obtain a kernel, or mask, for which the value at [0,0] equals 1. For example,
choosing (72= 2 and n = 7, the above expression yields the array:

[i,j]
-3
-2
-1
o
1
2
3

-3 -2 -1
.011 .039 .082
.039 .135 .287
.082 .287 .606
.105 .368 .779
.082 .287 .606
.039 .135 .287
.011 .039 .082

o
.105
.368
.779
1.000
.779
.368
.105

1
.082
.287
.606
.779
.606
.287
.082

2
.039
.135
.287
.368
.287
.135
.039

3
.011
.039
.082
.105
.082
.039
.011

However, we desire the filter weights to be integer values for ease in compu-
tations. Therefore, we take the value at one of the corners in the array, and
choose k such that this value becomes 1. Using the above example, we get

9[3,3] _~ = 91.
9[3,3] = e-(322:t> = 0.011 ~ k = 0.011 - 0.011k

134 CHAPTER 4. IMAGE FILTERING

Now, by multiplying the rest of the weights by k, we obtain

This is the resulting convolution mask for the Gaussian filter (also shown in
Figure 4.15). However, the weights of the mask do not sum to 1. Therefore,
when performing the convolution, the output pixel values must be normalized
by the sum of the mask weights to ensure that regions of uniform intensity
are not affected. From the above example,

3 3

L L g[i,j] = 1115.
i=-3 j=-3

Therefore,
1

h[i, j] = 1115Uti, j] * g[i,jD

where the weights of g[i, j] are all integer values. The results of Gaussian
smoothing using the above mask are given in Figure 4.16. Other common
Gaussian filter masks are given in Figure 4.17.

4.5.6 Discrete Gaussian Filters

The samples of a Gaussian filter, or the coefficients obtained from the bi-
nomial expansion, form a discrete Gaussian filter. When discrete Gaussian
filters are convolved, the result is a larger discrete Gaussian filter. If an
image is smoothed with an n x n discrete Gaussian filter, and this inter-
mediate result is smoothed by an m x m discrete Gaussian filter, then the
result is exactly the same as if the original image had been smoothed by an
(n + m - 1) x (n + m - 1) discrete Gaussian filter. In other words, convolving
row n in Pascal's triangle with row m yields row n+m-1 in Pascal's triangle.

[i,j] -3 -2 -1 0 1 2 3
-3 1 4 7 10 7 4 1
-2 4 12 26 33 26 12 4
-1 7 26 55 71 55 26 7
0 10 33 71 91 71 33 10
1 7 26 55 71 55 26 7
2 4 12 26 33 26 12 4
3 1 4 7 10 7 4 1

4.5. GAUSSIAN SMOOTHING 135

100

3

Row index
Column

index

Figure 4.15: A 3-D plot of the 7 x 7 Gaussian mask.

~~J'
I ~

~
!

~~

....

t
I

(a) (b)

Figure 4.16: The results of smoothing using the 7 x 7 Gaussian mask. (a)
Original image corrupted by Gaussian noise. (b) Smoothed image.

136 CHAPTER 4. IMAGE FILTERING

7 x 7 Gaussian mask

15 x 15 Gaussian mask

Figure 4.17: Other commonly used Gaussian masks [146].

112 2 2 1 1
122 4 221
224 8 422
2 4 8 16 8 4 2
224 8 422
1 2 2 4 221
1 1 2 2 2 1 1

2 2 3 4 5 5 6 6 6 5 5 4 3 2 2
2 3 4 5 7 7 8 8 8 7 7 5 4 3 2
3 4 6 7 9 10 10 11 10 10 9 7 6 4 3
4 5 7 9 10 12 13 13 13 12 10 9 7 5 4
5 7 9 11 13 14 15 16 15 14 13 11 9 7 5
5 7 10 12 14 16 17 18 17 16 14 12 10 7 5
6 8 10 13 15 17 19 19 19 17 15 13 10 8 6
6 8 11 13 16 18 19 20 19 18 16 13 11 8 6
6 8 10 13 15 17 19 19 19 17 15 13 10 8 6
5 7 10 12 14 16 17 18 17 16 14 12 10 7 5
5 7 9 11 13 14 15 16 15 14 13 11 9 7 5
4 5 7 9 10 12 13 13 13 12 10 9 7 5 4
3 4 6 7 9 10 10 11 10 10 9 7 6 4 3
2 3 4 5 7 7 8 8 8 7 7 5 4 3 2
2 2 3 4 5 5 6 6 6 5 5 4 3 2 2

FURTHER READING 137

FUrther Reading

Rosenfeld and Kak [205]provide a brief discussion of histogram modification.
Books by Pratt [195] and Gonzalez and Woods [90] on image processing
include material on histogram methods, median filters, and linear filters.

There is a discussion of linear systems theory, both continuous and dis-
crete, and linear systems for image processing in the book by Horn [109].
Digital signal processing on two dimensions is covered by Oppenheim and
Shafer [190]and by Rabiner and Gold [199]. The relationship between dig-
ital filters and numerical methods is discussed by Hamming [96]. More de-
tailed explanations of this property and its use are provided by Crowley and
Stern [65]and Burt [52].

Exercises

4.1 A mean filter is a linear filter, but a median filter is not. Why?

4.2 Compare the characteristics of median and mean filters and identify
the situations where you will use them.

4.3 Gaussian filtering is usually a preferred averaging method. Why?

4.4 What is the separability property of Gaussian filtering? Why would
you want a filtering scheme to be separable?

4.5 In many applications, an image is smoothed by applying Gaussian fil-
ters of several sizes. Why would one want to smooth an image using
different parameters of the Gaussian?

4.6 What is the cascading property of Gaussian filters? How is it useful in
machine vision?

4.7 An image contains a thin vertical line one pixel thick. It has a gray
level of 50 and lies on a background of salt and pepper noise having
gray values of 0 and 100, where

Probability(gray level = 0) = 0.4
Probability(gray level = 100)= 0.6.

138 CHAPrnR4. IMAGEF~TERmG

Figure 4.18: Synthetic image for Exercise 4.9.

The gray levels of the background pixels are independent of one an-
other. A horizontal 1 x 3 operator given by

is applied to this image. Find the probability distribution of the values
of the output when the operator is centered at a pixel:

a. on the line.

b. adjacent to the line.

4.8 An 8 x 8 image j[i, j] has gray levels given by the following equation:

j[i,j] = Ii - jl; i,j = 0,1,2,3,4,5,6,7.

Find the output im~ge obtained by applying a 3 x 3 median filter on
the image j[i, j]; note that the border pixels remain unchanged.

4.9 Consider the 16x 16 image shown in Figure 4.18. The numbers indicate
the gray level of that "ring" in the image. For example, the outer ring
(border) has a gray value of 0, the next ring has a gray levell, and so
on.

0
1
2

3
4

5
6

7

COMPUTER PROJECTS 139

a. A 3 x 3 median filter operates on this image. Calculate the values
of the central 4 x 4 pixels in the output image.

b. Sketch the histogram of an image obtained by adding (pixel by
pixel) the original image and its contrast-reversed image. Note
that a contrast-reversed image is one in which the gray value 1 of
each pixel is replaced by (max l) - l.

Computer Projects

4.1 Implement the contrast stretching by histogram modification method.
Make the range of histogram values [a,b]and [ZI,Zk]as variables. Take
a poor contrast image and do experiments to see the effect of contrast
enhancement by histogram modification. Implement several different
contrast enhancement methods and comment on their performance.

4.2 Implement the Gaussian smoothing filter. Apply this filter to an image
by selecting several (at least five) different values of (J. See the amount
of smoothing. How would you select the correct (Jvalue for an image?

