
Chapter 6 

Contours 

Edges must be linked into a representation for a region boundary. This 
representation is called a contour. The contour can be open or closed. Closed 
contours correspond to region boundaries, and the pixels in the region may 
be found by a filling algorithm. An open contour may be part of a region 
boundary. Gaps can occur in a region boundary because the contrast between 
regions may not be enough to allow the edges along the boundary to be 
found by an edge detector. The edge detection threshold may have been 
set too high, or the contrast along some portion of the boundary may be 
so weak relative to other areas of the image that no single threshold works 
everywhere in the image. Open contours also occur when line fragments are 
linked together-for example, when line fragments are linked along a stroke 
in a drawing or sample of handwriting. 

A contour may be represented as an ordered list of edges or by a curve. 
A curve is a mathematical model for a contour. Examples of curves include 
line segments and cubic splines. There are several criteria for a good contour 
representation: 

Efficiency: The contour should be a simple, compact representation. 

Accuracy: The contour should accurately fit the image features. 

Effectiveness: The contour should be suitable for the operations to be per­
formed in later stages of the application. 

The accuracy of the contour representation is determined by the form 
of curve used to model the contour, by the performance of the curve fit­

186 
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ting algorithm, and by the accuracy of the estimates of edge location. The 
simplest representation of a contour is an ordered list of its edges. This rep­
resentation is as accurate as the location estimates for the edges, but is the 
least compact representation and may not provide an effective representation 
for subsequent image analysis. Fitting the appropriate curve model to the 
edges increases accuracy, since errors in edge location are reduced through 
averaging, and it increases efficiency by providing a more appropriate and 
more compact representation for subsequent operations. For example, a set 
of edges that lie along a line can be represented most efficiently by fitting a 
line to the edges. This representation simplifies later calculations, such as 
determining the orientation or length of the line, and increases the accuracy, 
since the mean squared error between the estimated line and the true line 
will be smaller than the error between the true line and any of the edges. 

The first section in this chapter presents the elementary differential geom­
etry of curves in the plane. The second section gives a collection of techniques 
for calculating contour properties such as length, tangent, and curvature from 
the list of edges, without fitting a curve model to the edges. The remaining 
sections cover curve models and techniques for fitting the models to contours. 

Before proceeding, some terms must be defined. A curve interpolates a 
list of points if the curve passes through the points. Approximation is fitting 
a curve to a list of points with the curve passing close to the points, but 
not necessarily passing exactly through the points. In the following sections, 
we will begin by assuming that the edges provided by an edge detection 
algorithm are exact and will fit curves to the edge points using interpolation 
methods. The edges provided by edge detection applied to real images will 
not be exact. There will be some error in the estimated location of the edge. 
Later sections will present methods for curve approximation. 

Definition 6.1 An edge list is an ordered set of edge points or fragments. 

Definition 6.2 A contour is an edge list or the curve that has been used to 
represent the edge list. 

Definition 6.3 A boundary is the closed contour that surrounds a region. 

In this chapter, the term edges will usually refer to edge points. The edge 
orientation is not used by most curve fitting algorithms. In the few cases 
where the algorithm does use the edge orientation, it will be clear from the 
context that the term edges refers to edge fragments. 
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6.1 Geometry of Curves 

Planar curves can be represented in three different ways: the explicit form 
y = f(x), the implicit form f(x,y) = 0, or the parametric form (x(u),y(u)) 
for some parameter u. The explicit form is rarely used in machine vision 
since a curve in the x-y plane can twist around in such a way that there can 
be more than one point on the curve for a given x. 

The parametric form of a curve uses two functions, x (u) and y (u ), of a 
parameter u to specify the point along the curve from the starting point of 
the curve at PI = (X(UI),y(UI)) to the end point P2 = (X(U2),y(U2)). The 
length of a curve is given by the arc length: 

1:2 

( 
dX) 2 (dY ) 2 
du + du duo (6.1) 

The unit tangent vector is 

p/(U) 
t ( u) = Ip' (u)I ' (6.2) 

where p(u) = (x( u), y(u)). The curvature of the curve is the derivative of 
the tangent: n(u) = p"(u). 

Consider three points along the curve: p(u + .6.), p(u), and p(u - .6.). 
Imagine a circle passing through these three points, which uniquely determine 
the circle. In the limit as .6. --+ 0, this circle is the osculating circle. The 
osculating circle touches the curve at p(u), and the center of the circle lies 
along the line containing the normal to the curve. The curvature is the 
inverse of the radius of the osculating circle. 

6.2 Digital Curves 

In this section, we present a set of algorithms for computing the elements of 
curve geometry, such as contour length, tangent orientation, and curvature, 
from the list of edge points. Slope and curvature are difficult to compute 
precisely in the digital domain, since the angle between neighboring pixels is 
quantized to 45° increments. 

The basic idea is to estimate the tangent orientation using edge points 
that are not adjacent in the edge list. This allows a larger set of possible 
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tangent orientations. Let Pi = (Xi, Yi) be the coordinates of edge i in the 
edge list. The k-slope is the (angle) direction vector between points that are 
k edges apart. The left k-slope is the direction from Pi-k to Pi' and the right 
k-slope is the direction from Pi to Pi+k. The k-curvature is the difference 
between the left and right k-slopes. 

Suppose that there are n edge points (Xl, Yl), ... , (Xn' Yn) in the edge list. 
The length of a digital curve can be approximated by adding the lengths of 
the individual segments between pixels: 

S = L 
n 

V(Xi - Xi-l)2 + (Yi - Yi-l)2. (6.3) 
i=2 

A good approximation is obtained by traversing the edge list and adding 
2 along sides and 3 along diagonals, and dividing the final sum by 2. The 
distance between end points of a contour is 

(6.4) 


6.2.1 Chain Codes 

Chain codes are a notation for recording the list of edge points along a 
contour. The chain code specifies the direction of a contour at each edge in 
the edge list. Directions are quantized into one of eight directions, as shown 
in Figure 6.1. Starting at the first edge in the list and going clockwise around 
the contour, the direction to the next edge is specified using one of the eight 
chain codes. The direction is the chain code for the 8-neighbor of the edge. 
The chain code represents an edge list by the coordinates of the first edge 
and the list of chain codes leading to subsequent edges. A curve and its chain 
code are shown in Figure 6.2. 

The chain code has some attractive properties. Rotation of an object by 
45° can be easily implemented. If an object is rotated by n x 45°, then the 
code for the rotated object is obtained by adding n mod 8 to the original 
code. The derivative of the chain code, also called difference code, obtained 
by using first difference, is a rotation-invariant boundary description. Some 
other characteristics of a region, such as area and corners, may be directly 
computed using the chain code. The limitation of this representation is 
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Figure 6.1: The chain codes for representing the directions between linked 
edge points. 
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Figure 6.2: A curve and its chain code. 
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the limited set of directions used to represent the tangent at a point. This 
limitation can be removed by using one of the curve representations presented 
in the following sections. Once a curve has been fitted to the list of edges, 
any of the geometric quantities presented in Section 6.1 can be computed 
from the mathematical formula for the curve. 

6.2.2 Slope Representation 

The slope representation of a contour, also called the W-s plot, is like a 
continuous version of the chain code. We want to represent a contour using 
arbitrary tangent directions, rather than the limited set of tangent directions 
allowed by the chain code. Suppose that we start at the beginning of the edge 
list and compute the tangent and arc length using the formulas presented for 
digital curves. We may plot the tangent W versus arc length s to obtain a 
representation for the contour in the W-s space. The W-s plot is a represen­
tation of the shape of the contour. For example, a contour that consists of 
line segments and circular arcs will look like a sequence of line segments in 
the W-s plot. Horizontal line segments in the w-s plot correspond to line 
segments in the contour; line segments at other orientations in the w-s plot 
correspond to circular arcs. Portions of the w-s plot that are not straight 
lines correspond to other curve primitives. 

The contour may be split into straight lines and circular arcs by segment­
ing the w-s plot into straight lines. This method has been used by many 
researchers, and there are several versions of this approach for splitting a 
contour into segments. 

One may use the w-s plot as a compact description of the shape of the 
original contour. In Figure 6.3, we show a contour and its w-s plot. For a 
closed contour, the w-s plot is periodic. 

6.2.3 Slope Density Function 

The slope density function is the histogram of the slopes (tangent angles) 
along a contour. This can be a useful descriptor for recognition. Correlating 
the slope density function of a model contour with the slope density function 
for a contour extracted from an image allows the orientation of the object to 
be determined. This also provides a means for object recognition. 
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Figure 6.3: Slope representations of a contour. 

6.3 Curve Fitting 

The rest of this chapter will cover four curve models and the methods for 
fitting the models to edge points. The models include: 

• Line segments 

• Circular arcs 

• Conic sections 

• Cubic splines 

Any fitting algorithm must address two questions: 

1. What method is used to fit the curve to the edges? 

2. How is the closeness of the fit measured? 

Sections 6.4 through 6.7 will cover techniques for fitting curve models to 
edges with the assumption that the edge locations are sufficiently accurate 
that selected edge points can be used to determine the fit. Section 6.8 will 

present successively more powerful methods that can handle errors in the 

edge locations. 
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Let di be the distance of edge point i from a line. There are several 
measures of the goodness of fit of a curve to the candidate edge points. All 
of them depend on the error between the fitted curve and the candidate 
points forming the curve. Some commonly used methods follow. 

Maximum absolute error measures how much the points deviate from 
the curve in the worst case: 

MAE = max Idil (6.5) 
t 

Mean squared error gives an overall measure of the deviation of the curve 
from the edge points: 

1 n 

MSE= - 2:d7 (6.6) 
n i=l 

Normalized maximum error is the ratio of the maximum absolute error 
to the length of the curve: 

(6.7) 


N umber of sign changes in the error is a good indicator of the appropri­
ateness of the curve as a model for the edges in the contour. 

Ratio of curve length to end point distance is a good measure of the 
complexity of the curve. 

The normalized maximum error provides a unitless measure of error in­
dependent of the length of the curve. In other words, a given amount of 
deviation from a curve may be equally significant, in some applications, as 
twice as much deviation from a curve that is twice as long. If the curve 
model is a line segment, then it is not necessary to compute the arc length; 
the distance D between the end points can be used: 

(6.8) 


Sign changes are a very useful indication of goodness of fit. Fit a list of 
edge points with a straight line and examine the number of sign changes. One 
sign change indicates that the list of edges may be modeled by a line segment, 
two sign changes indicate that the edges should be modeled by a quadratic 
curve, three sign changes indicate a cubic curve, and so on. Numerous sign 
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changes indicate that a small increase in the complexity of the curve will 
not improve the fit significantly. A good fit has a random pattern to the 
sign changes. Runs of errors of the same sign indicate a systematic error in 
fitting; possibly due to the wrong curve model. 

In the following sections, we will use simple curve fitting methods to il­
lustrate the use of the polyline, circular arc, conic section, and cubic spline 
models. Section 6.S will present more powerful curve fitting methods, using 
polylines as the primary example; but, in principle, any of the models pre­
sented in the following sections could be used with any of the curve fitting 
methods presented in Section 6.S. 

The choice of curve fitting model must be guided by the application. The 
use of straight line segments (polylines) is appropriate if the scene consists 
of straight lines and is the starting point for fitting other models. Circular 
arcs are a useful representation for estimating curvature, since the curve is 
segmented into sections with piecewise constant curvature. Conic sections 
provide a convenient way to represent sequences of line segments and circular 
arcs, as well as elliptic and hyperbolic arcs, and explicitly represent inflection 
points. Cubic splines are good for modeling smooth curves and do not force 
estimates of tangent vectors and curvature to be piecewise constant. 

6.4 Polyline Representation 

A polyline is a sequence of line segments joined end to end. The polyline 
representation for a contour fits the edge list with a sequence of line segments. 
The polyline interpolates a selected subset of the edge points in the edge list. 
The ends of each line segment are edge points in the original edge list. Each 
line segment models the run of contiguous edges between its end points. 
The points where line segments are joined are called vertices. Note that 
polylines are two-dimensional curves in the image plane, as are all of the 
curves discussed in this chapter, and the vertices are points in the image 
plane. 

The polyline algorithm takes as input an ordered list of edge points 
{(Xl, YI), (X2' Y2), ... , (Xn' Yn)}. The edge point coordinates may be com­
puted to subpixel resolution (see Section 5.7). Since line segments are fit 

between two edge DO~llt~ M1Mt~~ MV~~UMQ, ~1'lly thg Dnmdin~tgQ of thQ 
edges that are selected as vertices need to be computed precisely. 
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Figure 6.4: Diagram showing the perpendicular distance of a point from a 
line segment. The value l' is computed by plugging the coordinates (Xi, Yi) 
of the point into the equation for the line segment. 

The formula for a line segment that approximates a list of edge points 
and joins the first and last edge points (Xl, YI) and (Xk' Yk) can be derived 
by noting that the slope of the line between the end points is the same as 
the slope of the line between the first point and an arbitrary point along the 
line: 

Y ­
X ­

YI 
Xl 

Yk - YI 
Xk - Xl 

(6.9) 

Multiplying out and rearranging terms gives the implicit form for a line 
segment, parameterized by the coordinates of the end points: 

(6.10) 

The distance of any point (Xi, Yi) from the line is d = r / D, where r is 
computed by plugging the coordinates of the point into the equation for the 
line segment, 

(6.11) 

and D is the distance between the end points. (Refer to Figure 6.4.) The sign 
of r can be used to compute the number of sign changes C. The normalized 
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distance is d/ D. The normalized maximum absolute error is 

(6.12) 

where di is the distance between the line and the position of the ith edge 
in the edge list. The normalized maximum error is frequently used as the 
measure for the goodness of fit of a line segment to a set of edges. All of 
these formulas assume that the perpendicular projection of a point onto a 
line is within the line segment; that is, both on the line and between the end 
points of the line segment. This is the case for the situations throughout this 
chapter, but in other cases the formulas may need to be modified to compute 
the distance of the point from the nearest end point of the line segment. 

There are two approaches to fitting polylines: top-down splitting and 
bottom-up merging. 

6.4.1 Polyline Splitting 

The top-down splitting algorithm recursively adds vertices, starting with an 
initial curve. Consider the curve shown in Figure 6.5. The initial curve is the 
line segment between the first and last edge points, labeled A and B. The 
point in the edge list that is farthest from the straight line is found. If the 
normalized maximum error is above a threshold, then a vertex is inserted at 
the edge point farthest from the line segment, labeled as point C in Figure 6.5. 
The splitting algorithm is recursively applied to the two new line segments 
and the edge list. The edge list is partitioned into two lists corresponding 
to the two line segments. The edge points in the list that are farthest from 
each segment are found, and new vertices are introduced if the points are 
too far from the line segments. The polyline splitting algorithm terminates 
when the normalized maximum error, for all edge points along the polyline, 
is below the threshold. This recursive procedure is very efficient. Segment 
splitting is also called recursive subdivision. 

6.4.2 Segment Merging 

In uO(IDOm IDor~inil vUiD umm~ ~IV ~~~y~ ~9 lin~ seoments as the edOe list 

is traversed. New segments are started when the edge points deviate too 
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Figure 6.5: Splitting method for polylines. 

far from the line segment. The merge approach is also called the bottom-up 
approach to polyline fitting. 

There are several measures that can be used to determine if an edge 
point is too far from the line segment that is being formed. One method is 
to use sequential least-squares, which performs a least-squares fit of the line 
segment to the edge points and updates the parameters of the line segment 
incrementally as each new edge point is processed. The fitting algorithm 
calculates the squared residual between the line segment and the edge points. 
When the error exceeds a threshold, a vertex is introduced and a new segment 
is started from the end point of the last segment. 

The tolerance band algorithm uses a different method for determining 
the placement of vertices. Two line segments that are parallel to the line 
segment approximating the edge points at a distance E from the center line 
segment are computed. (See Figure 6.6.) The value of E represents the 
absolute amount of deviation from the fitted line that is tolerated. Edges 
are added to the current line segment as long as the new edges are inside the 
tolerance band. The parameters of the line segment may be recomputed as 
new edges are added to the segment. The approximating line segment does 
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Figure 6.6: Tolerance band for fitting line segments. 

not have to remain parallel to the sides of the tolerance band. The vertex 
at the end of the segment is the starting point for the next segment. This 
approach usually results in too many segments. Corner locations and angles 
are not accurately estimated since a vertex is not created until the algorithm 
has processed edges up to the boundary of the tolerance band. 

6.4.3 Split and Merge 

The top-down method of recursive subdivision and the bottom-up method 
of merging can be combined as the split and merge algorithm. Splitting 
and merging methods are only partially successful when used by themselves, 
but the accuracy of line segment approximations to a list of edges can be 
improved by interleaving merge and split operations. Figure 6.7 shows an 
example where a split followed by a merge can repair a badly placed vertex. 

The basic idea is to interleave split and merge passes. After recursive 
subdivision, allow adjacent segments to be replaced by a single segment be­
tween the first and last end points if the new segment fits the edges with 
less normalized error. Note that it is necessary to use normalized error since 
multiple line segments will always fit a list of edges with less error than for 
a single line segment. After segment merging, the new segment may be split 
at a different point. Alternate applications of split and merge continue until 

n~ ~~[ID~nm [m IDm[~rr mb~lll. 
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Figure 6.7: A bad corner estimate produced by a bottom-up edge merge that 
missed the true corner location can be repaired by split and merge passes 
that split the first segment at a point closer to the true corner and then 
merge the two segments into a single line segment. 

6.4.4 Hop-Along Algorithm 

The hop-along algorithm approximates a contour by a sequence of line seg­
ments, like the split and merge method described above, but works on short 
sublists of edges. The algorithm starts at one end of a list of edge points, 
grabs some fixed number of edges, and fits a line segment between the first 
and last edge points. If the fit is bad, the algorithm does a split at the point 
of maximum error and repeats with the segment closest to the beginning of 
the run. In other words, the algorithm falls back until it finds a good line 
segment approximation to some initial sequence of edges. The algorithm 
makes the current segment the previous segment, and continues with the re­
maining edge points. The algorithm also checks to see if the current segment 
can be merged with the previous segment. The algorithm is like a split and 
merge algorithm, but it does not start with the entire list of edges and does 
not waste time doing lots of splits. The algorithm hops along, working on 
modest-sized runs of edges. The algorithm is given as Algorithm 6.1. 
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Algorithm 6.1 Hop-Along Algorithm for Polyline Fitting 

1. 	 Start with the first k edges from the list. 

2. 	 Fit a line segment between the first and last edges in the sublist. 

3. 	 If the normalized maximum error is too large, shorten the sublist to the 
point of maximum error. Return to step 2. 

4. 	 If the line fit succeeds, compare the orientation of the current line seg­
ment with that of the previous line segment. If the lines have similar 
orientations, replace the two line segments with a single line segment. 

5. 	 Make the current line segment the previous line segment and advance 
the window of edges so that there are k edges in the sublist. Return to 
step 2. 

The algorithm hops along, advancing the window of edges by a constant 
k. If the fit of a line segment to the edges is not good enough, the algorithm 
falls back to the point of maximum error. Since the algorithm considers only 
a short run of edges, it is more efficient than pure recursive subdivision or 
the split and merge algorithm, which would start with the entire list of edges 
and waste a lot of time splitting the edge list into manageable pieces. 

6.5 Circular Arcs 

After a list of edges is approximated by line segments, subsequences of the line 
segments can be replaced by circular arcs if desired. Replacing line segments 
by circular arcs involves fitting circular arcs through the end points of two or 
more line segments. In other words, circular arc fitting is done on the vertices 
in the polyline. Representing the contour as a sequence of line segments 
and circular arcs breaks the contour into sections with piecewise constant 
curvature. Many image analysis algorithms use curvature information. 

Just as we derived the implicit formula for the line segment between two 
points, we need to derive the implicit formula for a circle through three 
points. The implicit equation for a circle with radius r and center (xo, Yo) is 

(6.13) 
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Consider three points PI = (Xl, YI), P2 = (X2' Y2), and P3 = (X3, Y3). Trans­
form the origin of the coordinate system to point Pl' In the new coodinate 
system, 

X' 

Y' Y ­ YI 

(6.14) 

(6.15) 

and the equation for the circle is 

(6.16) 


Substitute the coordinates in the x'-y' space for the points PI, P2, and P3 in 
the implicit equation for a circle: 

o 
o 
o 

(6.17) 

(6.18) 

(6.19) 

This yields three nonlinear equations for the three unknowns x~, y~, and r. 
Subtract the first equation from the second and third equations: 

(6.20) 

(6.21) 

This yields two linear equations in the two unknowns x~ and y~, which are 
the coordinates of the center of the circle in the x'-Y' space. Add (Xl, YI) 
to (X~, yb) to get the center of the circle in the original coordinate system. 
Compute the radius of the circle from r2 = X~2 + y~2. 

To calculate the error in fitting a circular arc, define the distance of point 
Q from the circle as the distance of Q from the circle along a line passing 
through the center of the circle. Let the radius of the circle be r. Compute 
the distance q with coordinates (Xi, Yi) from point Q to the center (xo, Yo) of 
the circle: 

q = V(Xi - XO)2 + (Yi - YO)2 (6.22) 

The distance from point Q to the circular arc is 

d=q-r (6.23) 



202 	 CHAPTER 6. CONTOURS 

Now that we have a formula for fitting a circular arc to three points, we 
need a method for evaluating the goodness of fit so we can determine whether 
or not the circular arc is a better approximation to the edges than the line 
segments. If the ratio of the length of the contour to the distance between the 
first and last end points is more than a threshold, then it may be possible to 
replace the line segments with a circular arc. The circular arc is fit between 
the first and last end points and one other point. There are several methods 
for fitting a circular arc to a sequence of polylines, depending on how the 
middle point is chosen: 

1. 	 Use the polyline vertex that is farthest from the line joining the first 
and last end points. 

2. 	 Use the edge point that is farthest from the line joining the first and 
last end points. 

3. 	 Use the polyline vertex that is in the middle of the sequence of vertices 
between the first and last end points. 

4. 	 Use the edge point that is in the middle of the list of edges between 
the first and last end points. 

Calculate the signed distance between all edge points and the circular arc. 
Compute the maximum absolute error and the number of sign changes. If 
the normalized maximum error is below a threshold and the number of sign 
changes is large, then accept the circular arc; otherwise, retain the polyline 
approximation. The algorithm for replacing line segments with circular arcs 
is outlined in Algorithm 6.2. 

Algorithm 6.2 Replacing Line Segments with Circular Arcs 

1. 	 Initialize the window of vertices to the three end points of the first two 
line segments in the polyline. 

2. 	 Compute the ratio of the length of the part of the contour corresponding 
to the two line segments to the distance between the end points. If the 
ratio is small, then leave the first line segment unchanged, advance the 

winnow oJ VLfti[(! ~~ OIT( VU[(L, ana r[Dm~ ~Mu U~UDI 
3. 	 Fit a circle through the three vertices. 
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4. 	 Calculate the normalized maximum error and number of sign changes. 

5. 	 If the normalized maximum error is too large or the number of sign 
changes is too small, then leave the first line segment unchanged, ad­
vance the window of vertices, and return to step 2. 

6. 	 If the circle fit succeeds, then try to include the next line segment in 
the circular arc. Repeat this step until no more line segments can be 
subsumed by this circular arc. 

7. 	 Advance the window to the next three polyline vertices after the end of 
the circular arc and return to step 2. 

After running Algorithm 6.2 over the polyline, the contour will be rep­
resented by a sequence of line segments and circular arcs. It may be incon­
venient to have two different curve primitives in the representation. In the 
next section, we will present conic sections, which allow line segments, cir­
cular arcs, and other primitives to coexist in the same representation. Conic 
sections also provide smooth transitions between sections, if desired, as well 
as the explicit representation of corners. 

6.6 Conic Sections 

This section describes how to approximate lists of edge points with conic 
sections. As with circular arcs, the method assumes that the edge points are 
first approximated by a polyline and replaces subsequences of line segments 
by conics. 

The implicit (algebraic) form of a conic is 

f(x, y) = ax2 + 2hxy + by2 + 2ex + 2gy + c = o. (6.24) 

There are three types of conic sections: hyperbolas, parabolas, and ellipses. 
Circles are a special case of ellipses. Geometrically, conic sections are defined 
by intersecting a cone with a plane as shown in Figure 6.S. 

Conic sections can be fit between three vertices in the polyline approxi­
mation to a contour. The locations where conic sections are joined are called 
knots. Conic splines are a sequence of conic sections that are joined end to 
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Figure 6.8: Conic sections are defined by intersecting a cone with a plane. 

end, with equal tangents at the knots to provide a smooth transition be­
tween adjacent sections of the curve. Let the polyline vertices be Vi. The 
conic approximation is shown in Figure 6.9. 

Each conic section in a conic spline is defined by two end points, two 
tangents, and one additional point. The knots Ki can be located between 
the vertices of the polyline: 

(6.25) 

where Vi is between 0 and 1. The tangents are defined by the triangle with 
vertices Vi, Vi+! , and Vi+2. The additional point is 

(6.26) 


as shown in Figure 6.10. 
There are several special cases of the conic section that can be handled 

in a uniform way by this representation. If Vi+l = 0, then the ith section of 
the conic spline is the line segment from Ki to Vi+l. If Vi = 1 and Vi+l = 0, 
then K i , Ki+ 1, and Vi+! collapse to the same point and there is a corner in 
the sequence of conic sections. These special properties allow line segments 
and corners to be represented explicitly in a conic spline, without resorting 
to different yrimitives or special flags. 

The algorithm presented here for computing conic splines uses the guided 
form of a conic section, which represents a conic section using three lines that 
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V-I 

Figure 6.9: Conic sections are approximations defined between three points. 

"i+2 

Figure 6.10: A conic section is defined by the two end points and tangents ob­
tained from three vertices of the polyline approximation, plus one additional 
point. 
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B 

Figure 6.11: The guided form for a conic. 

bound the conic. (See Figure 6.11.) The equation of a line is 

(6.27) 


Let the first and last vertices in a polyline be A and B, and let point C be 
an intermediate vertex in the polyline. The first and last vertices are joined 
by the chord AB. The guided form of conic is the family of conics with end 
points at A and B and tangents AC and BC defined by the equation 

(6.28) 

where 
ao + alx + a2Y = 0 (6.29) 

is the line containing the line segment AC, 

(6.30) 

is the line containing the line segment BC, and 

(6.31) 

is the line containing the chord AB. The family of conic sections is parame­

terized by p. 
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The algorithm for fitting a conic section to a list of edge points starts 
with a polyline and classifies the vertices as corners, soft vertices, or knots. 
Soft vertices have angles near 1800 

, and the adjacent line segments are nearly 
collinear and may be replaced with a conic section. A sequence of soft vertices 
corresponds to a sequence of line segments with gradually changing orien­
tation that most likely were fitted to edge points sampled along a smooth 
curve. Corners have vertex angles above 1800 +Tl or below 1800 

- T1 , where 
Tl is a threshold, and are unlikely to be part of the conic. Knots are placed 
along a line segment that has soft vertices at either end that are angled in 
opposite directions. A conic section cannot have an inflection, so two conic 
sections must be joined at the knot. The placement of the knot along the 
line segment is determined by the relative angles of the soft vertices at the 
ends of the line segment. Let the angles of the two soft vertices Vi and Vi+! 
be Ai and Ai+l' respectively. If Ai = Ai+l' then the knot is placed halfway 
between the vertices, which means that v = 1/2 in Equation 6.25. If the an­
gles are not the same, then the knot location should be biased away from the 
vertex with the larger angle, since the conic may not bend away from the line 
segment fast enough to follow the corner. The value for v in Equation 6.25 
can be set using the formula 

(6.32) 


Each sequence of line segments joined by soft vertices is replaced by a 
guided conic through the first and last vertices (or knots). The tangents are 
defined by the orientation of the first and last line segments. The tangents 
and end points determine four of the five degrees of freedom for the conic. 
The conic is fully specified by having it pass through the soft vertex in the 
middle of the sequence. 

6.7 Spline Curves 

The term spline refers to a function represented using piecewise polynomials. 
Splines occur in many applications. In data analysis, splines are used to fit 
a set of data points when no function model is available [245]. In computer 
graphics and computer-aided design, splines are used to represent free-form 
curves. In machine vision, splines provide a general-purpose representation 
for curves when no simpler model is adequate. 
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A spline can be made from any class of functions joined end to end. 
The most common form of spline is the cubic spline, which is a sequence of 
piecewise cubic polynomials. The curve representations presented in previous 
sections, such as sequences of line segments, circular arcs, and conic sections, 
are other examples of splines. Cubic splines allow more complex curves 
to be represented using fewer spline segments. Cubic splines are widely 
used in computer drawing programs for free-form curves and for representing 
character outlines in fonts. Since cubic splines are so widely used, it may be 
necessary for a machine vision program to fit this curve model to an edge list. 
Since interactive graphics interfaces for manipulating cubic spline curves are 
well known, a contour represented as a cubic spline can be modified manually 
by the user if necessary. This is a very important consideration, since the 
results of fitting a curve to edges may never be perfect. 

One point to make clear is the difference between geometric and para­
metric equivalence. Two curves are geometrically equivalent if they trace 
the same set of points. In other words, the two curves are geometrically 
equivalent if they correspond to the same shape (or set of points) in space. 
Two curves are parametrically equivalent if their equations are identical. In 
other words, two curves are parametrically equivalent if their representation 
uses the same formula with the same parameters. Parametric equivalence is 
stronger than geometric equivalence. 

Two curves can be geometrically equivalent but have different parametric 
representations. This is an important concept for fitting curves in machine 
vision. A machine vision system might produce a representation based on 
cubic splines that is very close (geometrically) to the true representation of 
an object boundary, but the representation may not be at all similar in a 
parametric sense. In applications such as object recognition or comparing 
the image of an industrial part with its model, it is not possible to compare 
the parametric forms of the cubic spline curves. The comparison must be 
based on geometric equivalence. 

Cubic splines have enough degrees of freedom to allow the orientation of 
edge fragments to be used in the approximation. Recall that most edge de­
tection algorithms can provide estimates of edge orientation (gradient angle) 
as well the position of the edge. Only the positions of edges were used in the 
algorithms for fitting line segments, circular arcs, and conic sections. With 

cubic splines, we can inb:ocluce an example 01 how to use the mientation 
information produced by an edge detector. 
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The equation for a cubic curve in the plane is 

(6.33) 

where the coefficients ao, aI, a2, and a3 are two-element vectors (points in the 
image plane) and the parameter u covers the interval [0, 1]. The cubic curve 
begins at point p(O) = (x(O), y(O)) and ends at point p(l) = (x(l), y(l)). The 
cubic spline is a sequence of cubic curves PI (u), P2 (u), ... , Pn (u), defined over 
successive intervals [0,1], [1,2]' ... , [n - 1, n] and joined at the end points so 
that Pi (i) = PHI (i). Each of the cubic curves in the spline is called a spline 
segment, and the edge points where the segments are joined are called knots. 

As with the curve fitting algorithms presented in previous sections, the 
sequence of edge points is partitioned into subsequences and a spline segment 
is fit to each subsequence. Each cubic curve segment in the spline requires 
eight parameters. The positions of the first and last edge points in the 
subsequence provide four constraints. First-order continuity (equal tangent 
vectors) at the knots provides two more constraints. The orientation of the 
edges at the knots provides only one additional constraint on each segment, 
since the edge is shared by adjacent segments. Second-order continuity (equal 
curvature) at the knots would provide two more constraints, but then there 
would be too many equations for the eight parameters of each cubic spline 
segment. 

It is important for the spline segments to be joined smoothly at the knots, 
and this is achieved in computer graphics by requiring second-order conti­
nuity. Requiring second-order continuity would overconstrain each spline 
segment, since the segments are already constrained to pass through selected 
edges with the orientation (tangent angle) constrained by the orientation of 
the edge; but one additional constraint can be provided by minimizing the 
magnitude of the second-order discontinuity at the knot. In other words, 
minimize the difference in curvature at the knots. 

For the entire cubic spline curve, minimize the sum of the squared mag­
nitude of the difference in the second derivative at the n - 1 knots: 

n-l 

X
2 

= L (~p), (6.34) 
i=l 

where the difference in the second derivatives of two spline segments at their 
common knot is 
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Pi-l(l) - pJO) (6.35) 

2 (ti- 1 + 4ti + ti+l + 3(Pi-l - Pi)) . (6.36) 

The variable ti is the tangent vector at knot i. The tangent vector has an 
orientation ti given by the edge orientation (gradient angle) and a signed 
magnitude "Yi which is unknown: 

(6.37) 

In other words, the orientation of an edge at the knot is modeled as a unit 
tangent vector, but the cubic spline requires a tangent with sign and magni­
tude to indicate from which direction the curve should pass through the knot 
and at what speed. The algorithm solves a system of linear equations for the 
n unknowns "Yi which provide the missing information for constructing the 
cubic spline segments between the knots. 

This algorithm does not have any additional parameters or thresholds, 
but, as with the algorithms for fitting polylines, circular arcs, and conics 
presented in previous sections, the knots must be chosen from the edge list. 
The knot locations can be determined by using any of the polyline algorithms 
described above to compute a polyline approximation to the contour. The 
polyline vertices can be used as the knot locations. The number and place­
ment of knots can be adjusted to improve the fit of the cubic spline to the 
entire set of edge points. 

The cubic spline fitting algorithm is very efficient, since the solution only 
requires solving a small system of linear equations for the tangent signs and 
magnitudes. There are many interactive graphics interfaces that allow the 
user to easily adjust the cubic spline curve, if necessary. 

6.8 Curve Approximation 

The curve fitting methods described in previous sections interpolated the 
curve through a subset of the edges. Higher accuracy can be obtained by 
computing an approximation that is not forced to pass through particular 

OO[~[ 
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This section presents methods for approximating a curve. There are sev­
eral ways to approximate curves, depending on the reliability with which 
edge points can be grouped into contours. If it is certain that all of the 
edge points linked into a contour actually belong to the contour, then total 
least-squares regression can be used to fit a curve to the edge points. If some 
grouping errors are present, then robust regression methods can be used for 
computing the curve approximation. Finally, if the grouping of edges into 
contours is very unreliable, or if the edges are so scattered that grouping 
cannot be easily done using the edge linking or following methods discussed 
previously, then cluster analysis techniques must be used to perform group­
ing and curve fitting simultaneously. An excellent example of an algorithm 
for grouping and fitting scattered edge points is the Hough transform. All of 
these methods will be presented in the following sections. 

The methods for fitting line segments, circular arcs, conic sections, and 
cubic splines to edge points presented in Sections 6.4 through 6.7 are trivial 
regression problems that fit curve segments between end points. These algo­
rithms assume that the edge locations can be accurately computed, possibly 
using subpixel methods. Edge points in between the end points were not used 
in the regression. The accuracy of the curve approximation is determined by 
the accuracy of the location of the edge points chosen as the segment end 
points. The methods presented in this section will use all of the edge points 
to calculate the best approximation of the curve to the edge points. 

The general curve fitting problem is a regression problem with the curve 
modeled by the implicit equation 

(6.38) 

with p parameters. The curve estimation problem is to fit the curve model 
to a set of edge points {(Xl, YI), (X2' Y2), ... , (Xn' Yn)}. 

In the noise-free case, one can use p observations to formulate p equations 
for the p unknown curve parameters. Unfortunately, in most applications this 
direct approach is not suitable due to noise. Real applications usually require 
the best estimate of the parameter values using all of the information in the 
edge list. 

The next section will cover least-squares regression as it is used for curve 
fitting in machine vision. Least-squares methods are appropriate when the 
errors are normally distributed. Section 6.8.3 will present robust methods 
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for curve fitting that are useful when some of the edge points have been 
incorrectly linked into the contour. These incorrectly assigned points are 
called outliers. 

6.8.1 Total Regression 

Classical linear regression minimizes the difference between a data point and 
the model in only one dimension, the dimension of the dependent variable. 
For example, a functional model of the form 

(6.39) 

relating the dependent variable y to the independent variable x, with the 
p model parameters al through ap , assumes that there are no errors in the 
independent variable x. In machine vision, errors in the x and y coordinates 
of location are equally likely and the curve model may be a vertical line, for 
instance, which cannot be represented in functional form. In machine vision, 
lines and other curve models are fitted to edges using total regression, which 
minimizes the sum of the squares of the perpendicular distances of the data 
points from the regression model. The advantage of this technique is that it 
compensates for errors in both the x and y directions. Total regression has 
actually already been presented in Chapter 2 where it was used to derive the 
equations for determining the orientation of a blob, although the term total 
regression was not used at the time. 

To avoid problems when the line is vertical, represent the equation for a 
line by using polar coordinates: 

x cos () + y sin () - p = O. (6.40) 

Minimize the sum of the squared perpendicular distances of points (Xi, Yi) 
from the line: 

(6.41) 

The solution to the total regression problem is 

p = xcos () + Ysin () (6.42) 
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with 

1 n 

- LXi 	 (6.43) 
n i=l 

1 n 
fj - LYi' (6.44) 

n i=l 

The orientation of the total regression line is e, given by 

a 
tan2e = b' 	 (6.45) 

with 
n 

a 2 LX~Y~ 	 (6.46) 
i=l 

n n 

b LX?- LY? 	 (6.47) 
i=l i=l 

and 

xi	I 
= Xi - X- (6.48) 

I - (6.49)Yi = Yi - y. 

Total regression uses a least-squares error norm that is optimal if the 
errors are from a normal distribution, but is not suitable if there are outliers 
present in the data. In the case of fitting a curve model to edge data, outliers 
would occur if the edge linking procedure incorporated one or more edges 
from other contours into the edge list for a contour. Outliers can occur even 
if the edge linking procedure performs flawlessly. For example, consider a 
list of edges from two adjacent sides of a rectangle. The corner must be 
identified in order to segment the edges into the two sides before fitting a 
line to the edges. If the corner point is not identified correctly, some edges 
may be assigned to the wrong side, and these edges are outliers. 

In general, errors in classification introduce errors into the regression 
problem that are not normally distributed. In such a case, the errors may 
be modeled by a mixture distribution that combines a Gaussian distribution 
for modeling the normal errors with a broad-tailed distribution for modeling 
the outliers due to imperfect classification. 
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6.8.2 Estimating Corners 

The best method for estimating corners is to use one of the methods for fitting 
a line to edge points and then compute the intersection of the lines. This 
method compensates for the error introduced by edge detection operators 
that round off the corners and is more accurate than using a corner detector 
which only uses local information. 

Given the implicit equations for two lines, 

alx + b1y + Cl 

a2 x + b2y + C2 

o 
0, 

(6.50) 

(6.51) 

the location of the intersection is 

(6.52) 

(6.53) 

If a1b2 - a2bl is close to zero, then the lines are nearly parallel and cannot 
be intersected. 

A good method for detecting corners is to try to fit pairs of lines over suc­
cessive sublists of 2n + m edge points along the contour. The parameter n is 
the number of edge points required for an accurate line fit, and the parameter 
m is the number of edge points to skip between the sides of the corner. The 
gap skips over the edge points in the rounded part of the corner. A corner is 
detected by testing the magnitude of a1b2 - a2bl against a threshold. 

6.8.3 Robust Regression 

If the errors are not from a normal distribution, then least-squares is not 
the best fitting criterion. Figure 6.12 shows an example of the problems 
encountered by least-squares regression when the data set contains outliers. 
Even a single outlier is enough to pull the regression line far away from its 
correct location. Robust regression methods try various subsets of the data 
points and choose the subset that provides the best fit. 

~LpLJ ~ftAI!~ m~~ I~ m~~J~ mm[ij ID[[~ 11m m~~m~m~ IDflm 
clear. Imagine that you want to find the center of mass of a set of points 
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• 

Least-squares regression 

Least-median-squares 

Figure 6.12: Illustration of the difference between fitting a curve using least­
squares regression and fitting a curve using robust methods to a data set that 
contains outliers. 

Figure 6.13: A physical analogy that illustrates the sensitivity of least-squares 
methods to outliers. Even a single outlier renders a least-squares solution 
useless. 
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in the plane. Attach springs with equal spring constants to the fixed points 
and to a small object that can move freely. The object will be pulled to 
the average of the locations of the points. The springs implement a least­
squares norm through the spring equation for potential energy. This physical 
analogy corresponds to the derivation of the calculation of an average from 
the criterion that the sum of the squares of the residuals, the differences 
between each point and the average, should be minimized. Now suppose 
that one of the points can be moved. Call this point a leverage point. It is 
possible to force the location of the average to be shifted to any arbitrary 
point by pulling the leverage point far enough away. This illustrates the 
extreme sensitivity of estimators based on least-squares criteria to outliers. 
Even a single outlier can ruin an estimate. Ideally, one would like to break 
the spring connected to an outlier so that the estimate remains unharmed. 
Changing the spring constants so that points that are far away exert little 
influence on the estimate corresponds to the implementation of robust estima­
tors based on influence functions. Breaking the springs attached to outliers 
corresponds to resampling schemes where a consistent subset of samples is 
determined. Resampling plans repeatedly draw random subsets and choose 
the subset that yields the best estimate. Examples of resampling algorithms 
include random sample consensus, least-median-squares regression, and other 
computer-intensive methods in regression. 

The spring analogy also extends to linear regression with the same con­
clusions: even a single outlier will distort the regression estimate. A linear, 
multivariate model of order n is represented by the equation 

A A A 

Yi = OlXil + 02 X i2 + ... + OnXin (6.54) 

for the ith data point, where Oi are the estimates of the model parameters Oi' 

The residual for each data point (the deviation of the data point from the 
estimated model) is ri = Yi - Yi' In least-squares regression, the estimates of 
the model parameters are given by minimizing the sum of the squares of the 
residuals: 

n 

. """ 2 (6.55)m]n ~ r i . 
B i=l 

As demonstrated by the spring analogy described above, the model parame­
ters can be arbitrary if only one of the data points is an outlier. 

Often, the noise and outliers can be modeled as a mixture JistrllutLn: a 
linear combination of a normal distribution to model the noise and a broad­
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tailed distribution to account for outliers. In this case, it makes sense to 
formulate an estimator with a norm that resembles a least-squares norm for 
small errors but is insensitive to large errors so that outliers are ignored. This 
is called the influence function approach. 

The breakdown point is the smallest percentage of data points that can 
be incorrect to an arbitrary degree and not cause the estimation algorithm 
to produce an arbitrarily wrong estimate [207]. Let Z be a set of n data 
points. Suppose that the set Z/ is a version of set Z with m points replaced 
with arbitrary values. Let a regression estimator be denoted by {) = T(Z). 
The bias in an estimate due to outliers is given by 

Bias = sup II T(Z') - T(Z) II . (6.56) 
Z' 

The idea behind the breakdown point is to consider what happens to the bias 
as the number of outliers m as a percentage of the number of data points 
n is increased. Since the data points can be replaced with arbitrary values, 
for some ratio of m to n the bias can potentially be unbounded. This is the 
breakdown point. Below the breakdown point, the regression estimator may 
be able to totally reject outliers, or the outliers may have only some small 
effect on the estimate. Beyond the breakdown point, the outliers can drive 
the estimator to produce an arbitrary answer in the sense that the answer 
will depend on the outliers and not on the legitimate data. In other words, 
the result provided by the estimator is unpredictable. The breakdown point 
is defined as 

E~ = min {: : Bias(m; T, Z) is infinite} . (6.57) 

For least-squares regression, E~ = lin, and in the limit as the number of data 
points becomes large, E~ = O. In other words, least-squares regression has 
no immunity to outliers; a single outlier can completely ruin the result. 

Least-median-squares regression is a very simple technique to implement 
and has proven to be very powerful in solving regression problems when there 
is a large percentage of outliers. Least-median-squares regression can tolerate 
up to 50 percent outliers in a data set. What this means is that up to half of 
the data points in a data set can be arbitrary without significantly affecting 
the regression result. 

In least-median-squares regression, the estimates of the model parameters 
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Algorithm 6.3 Least-Median-Squares Regression 
Assume that there are n data points and p parameters in the linear model. 

1. Choose p points at random from the set of n data points. 

2. Compute the fit of the model to the p points. 

3. Compute the median of the square of the residuals. 

The fitting procedure is repeated until a fit is found with sufficiently small me­
dian of squared residuals or up to some predetermined number of resampling 
steps. 

are given by minimizing the median of the squares of the residuals: 

. d 2m]nme r i . (6.58) 
() t 

The least-median-squares algorithm is described in Algorithm 6.3. 
The median has a 50 percent breakdown point, and this property carries 

over to least-median-squares regression [207J. In other words, even if as many 
as half of the data points are outliers, the regression estimate is not seriously 
affected. If more than 50 percent of the data points are outliers, then least­
median-squares regression may not work well, and more powerful techniques, 
such as the Hough transform, must be used. 

6.8.4 Hough 'fransform 

The last few years have seen increasing use of parameter estimation tech­
niques that use a voting mechanism. One of the most popular voting meth­
ods is the Hough transform. In the Hough transform, each point on a curve 
votes for several combinations of parameters; the parameters that win a ma­
jority of votes are declared the winners. Let us consider this approach for 
fitting a straight line to data. Consider the equation of a straight line: 

y = mx+c. (6.59) 

In the above equation, x and yare observed values, and m and c represent 

t.he parameters. ,I1Jues Jt parameters are Jen, lL JJLllp 
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y c 

oo x m 

Figure 6.14: Image-to-parameter space mapping of a point in the Hough 
transform. 

between the coordinates of the point is clearly specified. Let us rewrite the 
above equation as 

c= -xm+y. (6.60) 

Now, in the above equation, let us assume that m and c are variables of 
interest, and x and yare constants. The equation above represents a straight 
line in the m-c space. The slope and intercept of this line are determined 
by x and y. A point (x, y) corresponds to a straight line in m-c space. This 
mapping is shown in Figure 6.14. It should be mentioned here that the shape 
of the curve in the parameter space depends on the original function used to 
represent the curve. In practice, the polar form of the line 

p = x cos e+ y sin e (6.61) 

is used rather than the explicit form to avoid problems with lines that are 
nearly vertical. Edge points (x, y) are mapped into the (p, e) parameter 
space. 

In the case of a straight line, as represented above, if there are n points 
lying on this straight line, then these points will correspond to a family of 
straight lines in the parameter space, as shown in Figure 6.14. All these lines 
will pass through the point (m, c) in the parameter space. This point gives 
the parameters of the original straight line. 
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Algorithm 6.4 Hough Transform Algorithm 

1. 	 Quantize the parameter space appropriately. 

2. 	 Assume that each cell in the parameter space is an accumulator. Ini­
tialize all cells to zero. 

3. 	 For each point (x, y) in the image space, increment by 1 each of the 
accumulators that satisfy the equation. 

4. 	 Maxima in the accumulator array correspond to the parameters of model 
instances. 

If we are interested in finding the straight line that best fits n points in 
an image, then we can use the above mapping from the image space to the 
parameter space. In this approach, called the Hough transform, we repre­
sent the parameter space as an array of accumulators, representing discrete 
parameter values. Each point in the image votes for several parameters, ac­
cording to the transformation equation. To find parameters that characterize 
the line, we should detect peaks in the parameter space. This general idea is 
highlighted in Algorithm 6.4. 

The Hough transform does not require prior grouping or linking of the 
edge points, and the edge points that lie along the curve of interest may 
constitute a small fraction of the edges in the image. In particular, the 
number of edges that actually lie along the curve could be less than half of 
the number of edges in the scene, which would rule out most robust regression 
methods. The assumption behind the Hough transform is that in the presence 
of large amounts of noise, the best that can be done is to find the point in the 
parameter space that satisfies the maximum number of edges in the image. 
If the peak in the parameter space covers more than one accumulator, then 
the centroid of the region that contains the peak provides an estimate of the 
parameters. 

If there are several curves in the image that are matched by the model, 
then there will be several peaks in the parameter space. It is possible to detect 
each peak, remove the edges associated with the curve instance corresponding 
to the peak, and continue to detect the remaining curves, until the peaks are 

not s~gn~~c20nt. UOW~\T~ll tt C2.n be dtillcult to deteIm~ne whelher a peak ~s 
significant. 
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Another problem with the Hough transform is that the size of the discrete 
parameter space increases very quickly as the number of parameters increases. 
For a circular arc, the parameter space has three dimensions; for other curves 
the dimensionality may be even higher. Since the number of accumulators 
increases exponentially with the dimension of the space, the Hough transform 
may be computationally very inefficient for complex models. Several methods 
have been suggested to improve the performance of the Hough transform. 
One method uses gradient information for boundaries to reduce work in the 
parameter space. Suppose that the curve model is a circle. This model 
has three parameters: two parameters for the center of the circle and one 
parameter for the radius of the circle. If the gradient angle for edges is 
available, then this provides a constraint that reduces the number of degrees 
of freedom and hence the required size of the parameter space. The direction 
of the vector from the center of the circle to each edge is determined by 
the gradient angle, leaving the value of the radius as the only unknown 
parameter. There are other methods that may be used to reduce the size of 
the parameter space. 

The details of using the gradient angle to reduce the size of the parameter 
space are explained for circle fitting. The algorithm is detailed in Algorithm 
6.5. The implicit equation for a circle is 

(6.62) 


The parametric equations for a circle in polar coordinates are 

x 

y 

a + rcose 

b + r sine. 

(6.63) 

(6.64) 

Solve for the parameters of the circle to obtain the equations: 

a 

b 

x - rcose 

y ­ r sine. 

(6.65) 

(6.66) 

Given the gradient angle e at an edge point (x, y), compute cos e and sin e. 
Note that these quantities may already be available as a by-product of edge 
detection. Eliminate the radius from the pair of equations above to yield 

b = a tan e- x tan e+ y. (6.67) 
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Algorithm 6.5 Circle Fitting Algorithm 

1. 	 Quantize the parameter space for the parameters a and b. 

2. 	 Zero the accumulator array M(a, b). 

3. 	 Compute the gradient magnitude G(x, y) and angle e(x, y). 

4. 	 For each edge point in G(x, y), increment all points in the accumulator 
array M (a, b) along the line 

b = a tan e- x tan e+ y. 	 (6.68) 

5. 	 Local maxima in the accumulator array correspond to centers of circles 
in the image. 

This is the equation for updating the accumulators in the parameter space. 
For each edge point at position (x, y) with edge orientation e, increment the 
accumulators along the line given by Equation 6.67 in the (a, b) parameter 
space. 

If the radius is known, then it is only necessary to increment the accu­
mulator for the point (a, b) given by 

a x - r cose (6.69) 

b y - r sine. (6.70) 

It is not necessary that the curves to be detected by the Hough transform 
be described by a parametric equation. The Hough transform can be gener­
alized into a voting algorithm (see Algorithm 6.6) that implements template 
matching efficiently. 

Algorithm 6.6 encodes the shape of the object boundary in a table for 
efficient access. One point on the object is chosen as the reference point. By 
definition, the location of the reference point in the image is the location of 
the object. For each image gradient point at (x, y) with gradient angle e, the 
possible locations of the reference point are given by 

a x - r(e) cos(o:(e)) (6.71) 
b y - r(e) sin(o:(e)). (6.72) 
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Algorithm 6.6 Generalized Hough Transform 

1. Pick a reference point on the object. 

2. Compute the gradient angles ei along the object boundary. 

3. 	 For each gradient point ei , store the distance ri and angle (Yi from the 
reference point. 

Each possible reference point location is incremented. The location of the 
peak in the parameter space is the estimate for the location of the object. 
It is not easy to generalize this technique to incorporate changes in scale or 
rotation. 

6.9 	 Fourier Descriptors 

Since the position along a closed contour is a periodic function, Fourier series 
may be used to approximate the contour. The resolution of the contour 
approximation is determined by the number of terms in the Fourier series. 

Suppose that the boundary of an object is expressed as a sequence of 
coordinates u(n) = [x(n), y(n)], for n = 0,1,2, ... , N - 1. We can represent 
each coordinate pair as a complex number so that 

u(n) = x(n) + j y(n) 	 (6.73) 

for n = 0,1,2, ... ,N - 1. In other words, the x axis is treated as the real 
axis, and the y axis is treated as the imaginary axis of a series of complex 
numbers. Note that for a closed boundary, this sequence is periodic with 
period N and that now the boundary is represented in one dimension. 

The discrete Fourier transform (DFT) representation of a one-dimensional 
sequence u(n) is defined as 

N-l 
j2

u(n) 	 La(k)e ']ykn, (6.74) 
k=O 

1 N-l 
'" () -j27rkna(k) 	 -~une N O::;k::;N-1. (6.75)

N n=O ' 
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The complex coefficients a (k) are called the Fourier descriptors of the bound­
ary. 

Fourier descriptors are compact representations for closed contours. How­
ever, low-resolution approximations, using only the low-order terms in the 
series, can be used as an even more compact representation. If only the first 
M coefficients are used, which is equivalent to setting a(k) = 0 for k > M -1, 
the following approximation to u(n) is obtained: 

M-l 

u(n) = L a(k)ei2~kn, O::=;n::=;N-l. (6.76) 
k=O 

Although only M terms are used to obtain each component of the boundary 
u( n), n still ranges from 0 to N - 1. In other words, the same number of 
points are in the approximated boundary, but not as many terms are used 
in reconstructing each point. 

Simple geometric transformations of a boundary, such as translation, ro­
tation, and scale, are related to simple operations of the boundary's Fourier 
descriptors (see Exercise 6.18). This makes the use of Fourier descriptors at­
tractive for boundary matching. However, Fourier descriptors do have prob­
lems with occluded shapes. There are other methods for obtaining similar 
descriptors, using other boundary representations. 

Further Reading 

The Hough transform is an efficient method for detecting lines and other 
features from imperfect edges. A discussion of generalized Hough transform 
methods is given in the paper by Ballard [18]. Generalizing the Hough trans­
form to detect arbitrary shapes, Stockman used Hough transform techniques 
for pose clustering in 2-D and 3-D problems in object recognition and localiza­
tion [228]. Asada and Brady [45, 10] present a rigorous approach to contour 
and region descriptors. Work on measuring the deviation from roundness of 
a circle has been reported by Van-Ban and Lee [243]. 

The hop-along algorithm approximates a contour by a sequence of line 
segments but works on short subsequences of edges and is given in [193]. 
Curve fitting using line segments (polylines) and circular arcs is adapted 

lom~JL lW~\. ~leJU 1M KmU ![U! ~mMU~U~ ~mm~ mill[ 

orientation was published by Tehrani, Weymouth, and Schunck (231). 
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Algorithms for fitting a circle to three points have been developed in 
computer graphics [204]. 

A discussion of robust regression using M-estimators is provided in nu­
merical recipes [197, pp. 558-565]. Another robust regression technique is 
least-median-squares regression [207]. The influence function approach was 
pioneered by Huber [115, 97]. For resampling algorithms including random 
sample consensus, see [38, 80]. Least-median squares regression is discussed 
by Rousseeuw and Leroy [207], and another good source for information on 
computer-intensive methods in regression is a review article by Efron [71]. 

The Fourier descriptor technique has been applied to medical imagery by 
Staib and Duncan [227]. 

Exercises 

6.1 	What is a contour? How is it related to a region? What does an open 
contour represent? 

6.2 	List the criterion you will consider in selecting a contour representation. 
Discuss the implications of these factors for object recognition. 

6.3 	What is the difference between interpolation and approximation meth­
ods? Which one is better? 

6.4 	To implement rotation by n x 22.5°, one may use a chain code using 16 
directions. How can you implement such a code? Why is the 8-direction 
chain code almost always used? 

6.5 	The Ds distance with respect to the origin is defined as max(x, y). Us­
ing this measure, find the signature of the contour in Figure 6.15 by 
plotting the Ds distance as a function of pixel number. In addition, find 
the 8-direction chain code and difference code measured in the coun­
terclockwise direction for the following object. Note that the starting 
point is an empty circle as opposed to a solid dot. 

6.6 	What are the criteria for choosing the threshold for normalized max­
imum error? (Hint: Consider the variance in the estimate of edge 
location.) 
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Figure 6.15: Contour for Exercise 6.5. 

6.7 	Consider the method for estimating the location of a corner presented 
in Section 6.8.2. What is the value of a1b2 - a2bl when the lines are 
at right angles? What is the value when the lines meet at an angle e? 
This is the formula to use for setting the threshold for corner detection. 

6.8 	Consider the method for estimating the location of a corner presented 
in Section 6.8.2. Assume that the error in the x and y coordinates of 
the edge locations has a normal distribution with variance (]'2. What is 
the error distribution for the location of the corner? How is the error 
affected by the angle of the corner? 

6.9 	Why is the w-s representation considered a continuous chain code? 
What are its most attractive features? 

6.10 	How can you compare two objects using their w-s representations? 

6.11 	Discuss different error measures that you can use in approximation. 
What is the role of an error measure in an approximation technique? 

6.12 	What is a conic section? How many types of conic sections are possible? 
Are there mathematical conditions that define types of a conic section? 

OllD 	TInn~ iU nuplinu~ lYhuro Unn nbD U~DUllYhJ ~rV DUtlD ~WUHv~ WH~i~-
ered more powerful representations than polylines and conic sections? 
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6.14 	Discuss the difference between geometric equivalence and parametric 
equivalence. 

6.15 	Why is the least-squares measure used in total regression? List its 
advantages and disadvantages. 

6.16 	How does robust regression overcome limitations of the total regres­
sion? Why is robust regression not very popular in approximation? 

6.17 	What are the strengths and weaknesses of Fourier descriptors for ap­
proximating and representing closed contours? 

6.18 	Several geometric transformations of object boundaries are related to 
simple operations on the Fourier descriptors as follows: 

Transformation Boundary 	 Fourier descriptor 

Identity u(n) a(k) 
Translation u(n) = u(n) + Uo a(k) = a(k) + uoo(k) 
Scaling or zooming u(n) = au(n) a(k) = aa(k) 
Starting point u(n) = u(n ­ no) a(k) = 

-j 27rnok
a(k)e N 

Rotation u(n) = u(n)ejeo a(k) = a(k)ejeo 

Reflection u(n) = u*(n)ej2e + 2, a(k) = a*( -k)ej2e + 2,o(k) 

Consider a simple square object with coordinates of boundary points 
A = (0,0), B = (0,1), C = (1,1), and D = (1,0). 

a. 	Find its Fourier descriptors when the starting point is A and the 
boundary is traversed in the order A, B, C, D. 

b. 	Find the descriptors when the object translates such that A is at 
(2,3). 

c. 	Find the descriptors of the translated object if the length of the 
sides of the square is changed to 2. 

d. 	Find the descriptors of the translated and scaled object if the 
starting point is changed to B. 
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6.19 	The Fourier descriptors of a simple square object with coordinates 
of boundary points given by A = (-0.5, -0.5), B = (-0.5,0.5), C = 
(0.5,0.5), D = (0.5, -0.5) are given by 

a(O) a(1) = a(2) = 0 (6.77) 

a(3) -0.5 - j 0.5. (6.78) 

Starting with this data and using the properties of the Fourier descrip­
tors given in the above problem, find the Fourier descriptors for the 
object given by P = (0,1), Q = (-1,2), R = (0,3), S = (1,2). 

6.20 	What is the Hough transform? Is it related to robust regression? How? 

6.21 	Can you extend the Hough transform to detect an arbitrary shape? 
How will you develop a Hough transform that detects an object in its 
rotated and scaled versions? 

6.22 	Find the Hough transform of the lines enclosing an object with vertices 
A = (2,0), B = (2,2), and C = (0,2). Sketch the modified object 
enclosed by lines obtained by replacing (p, e) of the object lines by 
(p2, e+ 90°). Calculate the area of the modified object. 

6.23 	The two-dimensional Hough transform for line detection can be gener­
alized to the 3-D case to detect planes. The Hough domain parameters 
are then specified by the three variables p, e, and cp, where the angles 
are measured as shown in Figure 6.16. Consider a unit cube whose di­
agonal corners, A and G, are located at (1,1,1) and (2,2,2) as shown. 
Find the Hough transform of the plane passing through the vertices 
C,H, and F. 

Computer Projects 

6.1 	Develop an algorithm to find the chain code of a given curve. Can you 
determine corners using chain code? If so, implement this algorithm 
and test it on several images. 

6.2 	Develop a program to start with an image and find the slope-arc-Iength 

plot o~ the iargest o~Ject ~n tLe lmage. ~egment thL ob!ecl tn tls ltnear 
and circular segments. 
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Figure 6.16: Diagram for Exercise 6.23. 

6.3 	Develop an algorithm to accept given points and provide a cubic spline. 
Apply this algorithm to the output of an edge detector. 

6.4 	Develop a Hough transform algorithm to detect straight lines in images. 
Use this to approximate an image by finding all lines that are above a 
fixed size, say 20 points. 

6.5 	Four binary objects are shown in Figure 6.17(a). Scaled versions of 
the same objects are shown in Figure 6.17(b), and scaled and rotated 
versions are shown in Figure 6.17(c). Consider various contour repre­
sentation methods and comment on their suitability for matching scaled 
and scaled-rotated versions of objects with their corresponding original 
images. Implement one of the methods as a computer program. 

6.6 	Create a synthetic image of a rectangle with uniform intensity against a 
uniform background. Compute the edges using any edge detector from 
Chapter 5. Fit polylines to the edges. How close are the vertices to the 
true corner locations? Is the error consistently biased in one direction? 

6.7 	Create a synthetic image of a rectangle with rounded corners, modeled 
as quarter circles. Use edge detection and polyline fitting, and then re­
place runs of polylines with circular arcs using the algorithm presented 
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(a) 

• (b) 

(c) 

Figure 6.17: Binary objects used in Computer Project 6.5. (a) Four reference 
binary objects. (b) Scaled versions of the objects in (a). (c) Scaled and 

rotated versions of the objects in (a). 
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in this chapter for fitting circular arcs. Measure the error in the com­
puted end points of the circles. Are the errors symmetrical, or are the 
corners unevenly distorted so that the rectangle appears skewed? 

6.8 	Experiment with the corner fitting algorithm described in Section 6.8.2. 
Create a synthetic image of a rectangle, adding noise from a normal 
distribution and scattered edges to simulate false positives in edge de­
tection. Plot the error in the corner estimates versus the noise level. 

6.9 	Implement least-median-squares regression for fitting a line to a list of 
edge points. Add false edges to the list to simulate grouping errors. 
Plot the maximum distance of the estimated line from the true line 
versus the number of false edges. 

6.10 	Consider an object that is symmetrical about a vertical axis. Suppose 
that two lists of edge fragments along the left and right sides of the 
object are available. Adapt the algorithm for fitting cubic splines to 
edges to enforce the symmetry constraint. Generalize the algorithm so 
that the axis can be at any orientation. 

6.11 	Suppose that the list of edge points along the contour of an object is 
available and that the object is symmetric about some axis. Process the 
edge list into a sequence of line segments and circular arcs. Develop an 
algorithm for matching line segments and circular arcs to detect that 
the object is symmetric and estimate the axis of symmetry. After the 
axis of symmetry has been determined, this information can be used 
to improve the estimates of the line segments and circular arcs. De­
velop an algorithm for refining the contour representation. Experiment 
with an iterative algorithm that detects the axis of symmetry, uses 
this information to refine the contour representation, and then uses the 
improved contour representation to refine the axis estimate, repeating 
these steps until the axis and contour representations converge. 

6.12 	Consider an image of two rectangles. The task is to measure the gap 
between the two rectangles. The facing sides of the two rectangles are 
parallel, so the width of the gap is constant along its length. Explore 
different algorithms for measuring the gap. 
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a. 	Develop a formula for the average distance between two line seg­
ments that are nearly parallel and approximately of the same 
length. (Hint: Represent each line segment in parametric form 
on the interval [0,1].) 

b. 	Compute the polyline representation for the rectangles. Are the 
line segments that bound the gap skewed due to poor estimates 
of the corner locations? Use the formula from part a to estimate 
the width of the gap. 

c. 	Modify the algorithm to use improved techniques for estimating 
the locations of the corners. Measure the improvement in the 
estimate of the gap width. 

d. 	Implement least-median-squares regression and repeat the mea­
surements of the gap width, comparing the results using least 
median squares regression with the previous techniques. 

e. 	Repeat the experiment using lines estimated with the Hough trans­
form. 

Synthetic noise, including noise from a normal distribution and scat­
tered edges that model false positives in edge detection, can be added 
to the image to test the accuracy of gap measurement at various noise 
levels. Prepare a plot of the error in gap width measurement versus 
the noise level for each of the techniques. 

6.13 	Consider a line of text on a printed page that has been scanned into 
the computer. The task is to fit a line through the baseline of the text. 
The estimated baseline can guide algorithms for character recognition. 
Note that the baseline is not necessarily horizontal since the page may 
not be exactly vertical when scanned. 

a. 	Suppose that edge detection has reduced the line of text to a 
list of edge points. Compare line fitting with least-squares, least­
median-squares, and the Hough transform. 

b. 	Consider multiple lines of text, reduced to multiple edge lists. As­
sume that the baseline separation is constant and that the base-

Ls arc porjJ ijse lLse consLJ. to LJlamore accu­
rate algorithm for determining the baselines. 
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c. 	Suppose that the baselines are parallel, but the baseline separation 
varies between lines. How does this change the algorithm? 

6.14 	Consider a list of edge points that form a circle. The task is to esti­
mate the position and radius of the circle. Use nonlinear regression to 
fit a circle to the edge points, assuming that the radius of the circle 
is known. Modify the algorithm to determine both the position and 
radius. Finally, modify the algorithm to determine both the position 
and radius of the circle, but include a penalty term for variation in the 
estimated radius from a nominal value. 




