Chapter 7

Texture

7.1 Introduction

Texture plays an important role in many machine vision tasks such as surface
inspection, scene classification, and surface orientation and shape determi-
nation. For example, surface texture features are used in the inspection of
semiconductor wafers, gray-level distribution features of homogeneous tex-
tured regions are used in the classification of aerial imagery, and variations in
texture patterns due to perspective projection are used to determine three-
dimensional shapes of objects.

Texture is characterized by the spatial distribution of gray levels in a
neighborhood. Thus, texture cannot be defined for a point. The resolution
at which an image is observed determines the scale at which the texture is
perceived. For example, in observing an image of a tiled floor from a large
distance we observe the texture formed by the placement of tiles, but the
patterns within the tiles are not perceived. When the same scene is observed
from a closer distance, so that only a few tiles are within the field of view, we
begin to perceive the texture formed by the placement of detailed patterns
composing each tile. For our purposes, we can define texture as repeating
patterns of local variations in image intensity which are too fine to be distin-
guished as separate objects at the observed resolution. Thus, a connected set
of pixels satisfying a given gray-level property which occur repeatedly in an
image region constitutes a textured region. A simple example is a repeated
pattern of dots on a white background. Text printed on white paper such as
this page also constitutes texture. Here, each gray-level primitive is formed
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by the connected set of pixels representing each character. The process of
placing the characters on lines and placing lines in turn as elements of the
page results in an ordered texture. There are three primary issues in texture
analysis: texture classification, texture segmentation, and shape recovery
from texture.

In texture classification, the problem is identifying the given textured re-
gion from a given set of texture classes. For example, a particular region in
an aerial image may belong to agricultural land, forest region, or an urban
area. Each of these regions has unique texture characteristics. The texture
analysis algorithms extract distinguishing features from each region to facil-
itate classification of such patterns. Implicit in this is the assumption that
the boundaries between regions have already been determined. Statistical
methods are extensively used in texture classification. Properties such as
gray-level co-occurrence, contrast, entropy, and homogeneity are computed
from image gray levels to facilitate classification. These are discussed in
Section 7.2. The statistical methods are particularly useful when the texture
primitives are small, resulting in microtextures. On the other hand, when the
size of the texture primitive is large, it becomes necessary to first determine
the shape and properties of the basic primitive and then determine the rules
which govern the placement of these primitives, forming macrotertures. Such
structural methods are briefly discussed in Section 7.3. As an alternative to
the bottom-up analysis of image pixels to determine texture properties for
classification, model-based methods to synthesize texture have been studied.
In these methods a model for texture is first assumed and its parameters are
then estimated from the image region such that an image synthesized using
the model closely resembles the input image region. The parameters are then
useful as discriminating features to classify the region. These are discussed
in Section 7.4.

As opposed to texture classification, in which the class label of a single
homogenous region is determined using properties computed from the re-
gion, texture segmentation is concerned with automatically determining the
boundaries between various textured regions in an image. Although quanti-
tative texture measures, once determined, are useful in segmentation, most
of the statistical methods for determining the texture features do not pro-
vide accurate measures unless the computations are limited to a single tex-
ture region. Both region-based methods and boundary-based methods have
been attempted to segment textured images. These methods are analogous
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to those used for object-background separation methods discussed in earlier
chapters. Texture segmentation is still an active area of research, and numer-
ous methods, each designed for a particular application, have been proposed
in the literature. However, there are no general methods which are useful
in a wide variety of situations. Thus, we do not cover texture segmentation
methods in this book.

Image plane variations in the texture properties, such as density, size,
and orientation of texture primitives, are the cues exploited by shape-from-
texture algorithms. For example, the texture gradient, defined as the mag-
nitude and direction of maximum change in the primitive size of the texture
elements, determines the orientation of the surface. Quantifying the changes
in the shape of texture elements (e.g., circles appearing as ellipses) is also
useful to determine surface orientation. These are discussed in Section 7.5.

7.2 Statistical Methods of Texture Analysis

Since texture is a spatial property, a simple one-dimensional histogram is
not useful in characterizing texture (for example, an image in which pixels
alternate from black to white in a checkerboard fashion will have the same
histogram as an image in which the top half is black and the bottom half
is white). In order to capture the spatial dependence of gray-level values
which contribute to the perception of texture, a two-dimensional dependence
matrix known as a gray-level co-occurrence matrix is extensively used in
texture analysis. Another measure that has been used extensively is the
autocorrelation function. These are discussed briefly in this section.

Gray-Level Co-occurrence Matrix

The gray-level co-occurrence matrix P[i, j] is defined by first specifying a
displacement vector d = (dz, dy) and counting all pairs of pixels separated
by d having gray levels 7 and j. For example, consider the simple 5 x 5 image
having gray levels 0, 1, and 2 as shown in Figure 7.1(a). Since there are
only three gray levels, PJi, j] is a 3 X 3 matrix. Let the position operator be
specified as (1,1), which has the interpretation: one pixel to the right and
one pixel below. In a 5 x 5 image there are 16 pairs of pixels which satisfy
this spatial separation. We now count all pairs of pixels in which the first
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Figure 7.1: (a) A 5 x 5 image with three gray levels 0, 1, and 2. (b) The
gray-level co-occurrence matrix for d = (1, 1).

pixel has a value of ¢ and its matching pair displaced from the first pixel by d
has a value of j, and we enter this count in the ith row and jth column of the
matrix P[i, j|. For example, there are three pairs of pixels having values [2, 1]
which are separated by the specified distance, and hence the entry P[2, 1] has
a value of 3. The complete matrix P, j] is shown in Figure 7.1(b).

Note that P[i,j] is not symmetric since the number of pairs of pixels
having gray levels [z, j] does not necessarily equal the number of pixel pairs
having gray levels [j,i]. The elements of P[i,j] are normalized by dividing
each entry by the total number of pixel pairs. In our example, each entry is
divided by 16. This normalized Pz, j] is then treated as a probability mass
function since the entries now add up to 1.

It is easy to illustrate that the gray-level co-occurrence matrix captures
the spatial distribution of gray levels with the following simple example.
Consider the 8 x 8 binary image of a checkerboard shown in Figure 7.2(a),
where each square corresponds to a single pixel. Since there are only two
gray levels, P[i, j] is a 2 x 2 matrix. If we define d = (1, 1) as before, we get
the normalized P[i, j] shown in Figure 7.2(b). Notice that the only pairs that
occur are [1,1] and [0, 0] because of the well-defined structure of pixels; the
off-diagonal elements are zero. Similarly, if the vector d is defined as (1,0),
the only entries will be those corresponding to [0,1] and [1,0], as shown in
Figure 7.2(c), and the diagonal elements are zero.

In the above example, if the black pixels are randomly distributed through-
out the image with no fixed structure, the gray-level co-occurrence matrix
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Figure 7.2: (a) An 8 x8 checkerboard image. (b) The gray-level co-occurrence
matrix for d = (1,1). (c¢) The gray-level co-occurrence matrix for d = (1,0).

will not have any preferred set of gray-level pairs. In such a case the matrix
is expected to be uniformly populated. Thus, a feature which measures the
randomness of gray-level distribution is the entropy, defined as

Entropy = — Z Z Pli, j]log PJi, j]. (7.1)

g Uiy

Note that the entropy is highest when all entries in P[z, j] are equal; such
a matrix corresponds to an image in which there are no preferred gray-level
pairs for the specified distance vector d. The features of energy, contrast,
and homogeneity are also defined using the gray-level co-occurrence matrix
as given below:

Energy = ZZPQ[i, j] (7.2)
Contrast = ZZ(% — §)?Pli, j] (7.3)
Pli, j]

Homogeneity = Y ) (7.4)
s,

L4

The choice of the displacement vector d is an important parameter in the defi-
nition of the gray-level co-occurrence matrix. Occasionally, the co-occurrence
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matrix is computed for several values of d and the one which maximizes a sta-
tistical measure computed from P[i, 5] is used. The gray-level co-occurrence
matrix approach is particularly suitable for describing microtextures. It is
not suitable for textures comprising large area primitives since it does not
capture shape properties. Gray-level co-occurrence matrices have been used
extensively in remote sensing applications for land-use classification.

Autocorrelation

The autocorrelation function p[k, [] for an N x N image is defined as follows:

i S Y S fli, 5] flitk, 4]
P[k,l] = 1 N N 5T )
N2 Zz’:l Zj:l f [193]

For images comprising repetitive texture patterns the autocorrelation
function exhibits periodic behavior with a period equal to the spacing be-
tween adjacent texture primitives. When the texture is coarse, the auto-
correlation function drops off slowly, whereas for fine textures it drops off
rapidly. The autocorrelation function is used as a measure of periodicity of
texture as well as a measure of the scale of the texture primitives.

0< k1< N-1. (7.5)

7.3 Structural Analysis of Ordered Texture

When the texture primitive is large enough to be individually segmented and
described, then structural methods which describe the primitives and their
placement rules are useful. For example, consider a simple texture formed
by the repeated placement of homogeneous gray-level discs in a regular grid
pattern as shown in Figure 7.3(a). Such a texture can be described by first
segmenting the discs using a simple method such as connected component la-
beling, described earlier, and then determining the regular structure formed
by the centroids of these connected components. For more general binary im-
ages the primitives can be first extracted using morphological methods and
then their placement rules determined. Such morphological methods are par-
ticularly useful when the image is corrupted by noise or other nonrepeating
random patterns which would be difficult to separate in a simple connected
component method. For example, when the image shown in Figure 7.3(a) is
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Figure 7.3: (a) A simple texture formed by repeated placement of discs on a
regular grid. (b) Texture in (a) corrupted by random streaks of lines.

corrupted by noise resulting in random streaks of lines as shown in Figure
7.3(b), morphological techniques (see Chapter 2) can be used to locate all
discs.

For gray-scale images we can define a predicate which is satisfied by all
pixels within each blob corresponding to a primitive. A commonly used
predicate is the gray-level homogeneity predicate. The image is initially
processed using a Laplacian of Gaussian filter (see Chapter 5). Primitive
regions are then identified by grouping all those pixels which are not on or
near edge pixels. For homogeneous blobs properties such as size, elongation,
and orientation are useful features. Measures based on co-occurrence of these
primitives obtained by analyzing their spatial relationship are then used to
characterize the texture.

7.4 Model-Based Methods for Texture
Analysis

An approach to characterize texture is to determine an analytical model of
the textured image being analyzed. Such models have a set of parameters.



7.5. SHAPE FROM TEXTURE 241

The values of these parameters determine the properties of the texture, which
may be synthesized by applying the model. The challenge in texture analysis
is to estimate these model parameters so that the synthesized texture is
visually similar to the texture being analyzed.

Markov random fields (MRFs) have been studied extensively as a model
for texture. In the discrete Gauss-Markov random field model, the gray level
at any pixel is modeled as a linear combination of gray levels of its neighbors
plus an additive noise term as given by the following equation:

L

Here the summation is carried out over a specified set of pixels which are
neighbors to the pixel [z, j]. The parameters of this model are the weights
hlk,l]. These parameters are computed from the given texture image using
least-squares method. These estimated parameters are then compared with
those of the known texture classes to determine the class of the particular
texture being analyzed.

When patterns forming texture have the property of self-similarity at
different scales, fractal-based models may be used. A set is said to have the
property of self-similarity if it can be decomposed as a nonoverlapping union
of N copies of itself scaled down by a factor r. Such a texture is characterized
by its fractal dimension D, given by the equation

B (7.7)
log(;)
The fractal dimension is a useful feature for texture characterization. Esti-
mation of D from an image is rather difficult because natural textures do not
strictly follow the deterministic repetitive model of fractals assumed above,
but have statistical variations.

7.5 Shape from Texture

Variations in the size, shape, and density of texture primitives provide clues
for estimation of surface shape and orientation. These are exploited in shape-
from-texture methods to recover 3-D information from 2-D images. As an il-
lustration, consider the regular ordered texture shown in Figure 7.3(a) slanted
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at an angle a such that the top of the surface is farther away from the camera
than the bottom; for simplicity, let us assume that all points along a given
horizontal line are at the same depth from camera (i.e., there is no tilt). This
is illustrated in Figure 7.4(a). The corresponding image captured is shown
in Figure 7.5. Note that the discs now appear as ellipses, which is a clue
that the surface is not parallel to the image plane. The sizes of these ellipses
decrease as a function of y' in the image plane. In other words, there are
more ellipses for a unit area in the image plane near the top of the image
compared with the center, resulting in a density gradient. Furthermore, the
aspect ratio (ratio of minor to major diameters of an ellipse) does not remain
constant, resulting in an aspect ratio gradient [36]. To show this, we first
derive an expression for the major and minor diameters of the ellipse as a
function of the slant angle and the position of the ellipse in the image plane.

Let the diameter of the disc be d. Consider the disc at the image center.
The major diameter of the ellipse in the image plane corresponding to this
disc is given by the perspective projection equation

d
Bn gt U = e (7.8)

where z is the distance of the disc from the camera center and f is the focal
length of the camera. The minor diameter of this ellipse is affected not only
by the perspective projection but also by the foreshortening effect due to the
slant angle . This is given by the equation

oinor(0,0) = L coser. (7.9)
Thus, the aspect ratio of the ellipse at the center of the image plane is equal
to cosa. All ellipses along the same horizontal line in the image plane will
have the same aspect ratio.

Now consider an ellipse with its center at (0,%’) in the image plane. The
disc corresponding to this ellipse is at an angle with respect to the optical
axis as shown in Figure 7.4(b) and (c), where tan8 = y'/f. The major di-
ameter of the ellipse is now given by Equation 7.8 with a slight modification.
Since the disc is now located at a distance S away from the camera center,
z must be replaced with S. From Figure 7.4(b) and (c):
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Figure 7.4: (a) The three-dimensional representation of the camera system
with slanted texture plane. (b) The y—z view of (a). Note that the z axis is
going into the paper. (c) The z—z vew of (a). Note that the y axis is coming
out of the paper.
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Figure 7.5: The image captured from the camera system in Figure 7.4.

S—z
e Stané (7.10)
S(1 —tanf tana) = z (7.11)

z

0= 1 —tanf tana’ (7.12)

Therefore, .
Grsgoel B, 9] = a—-'i(l — tané tana). (7.13)

s

The derivation of duyinor(0,y’) is a bit more involved. First, from Figure
7.4(b),

z

S

. 1 —tan6; tanc (7.14)
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and
Z

"~ 1—tané, tana’

Sa (7.15)

Now if we assume that the diameter of the disk d is very small so that it
subtends a small angle at the camera center, we can approximate

6, =0, ~8. (7.16)
Therefore,
~ - 7.18
~ 1—tanf tana’ (.38)
Now from Figure 7.4(b) we know that
AC = dcosa. (7.19)
However, we need to find the distance AB.
Noting that
Sl s Sg = dsin o, (72‘0)
we find
BC = dsinatané. (7.21)
Therefore,
AB = d(cosa — sina tan0) (7.22)
= dcosa(l —tana tan#). (7.23)
Now, by the perspective projection,
vl ¥ dcosa(l —tana tan
f l1-tanf tana
Therefore, the minor diameter of the ellipse at (0,y’) is given by
n8f 2
Bntne (0,3 ) = = cosa (1 —tanf tana) (7.25)

Thus, the aspect ratio given by cos (1 —tan 6 tan «) decreases as 8 increases,
resulting in an aspect ratio gradient.
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Variations in the image plane features such as size, shape, density, and
aspect ratio of texture primitives can be exploited to recover the surface
orientation (and ultimately the 3-D surface shape) of scene objects. To do
this, however, we must have accurate methods to delineate each primitive in
the image plane. For simple binary primitives such as the disc used in our
illustration, fairly accurate segmentation of individual image plane primitives
for measurement is possible. However, for more complex gray-level textures
corrupted by noise, it is difficult to accurately estimate the image plane
features.

7.6 Further Reading

There is a wealth of literature describing methods for texture modeling, syn-
thesis, analysis, and segmentation. More details and references to many of
the topics covered in this chapter may be found in [103, 239, 200]. Har-
alick, Shanmugam, and Dinstein [100] and Conners and Harlow [61] have
used gray-level co-occurrence matrices to analyze textures in satellite im-
ages. Pentland [194] describes textures using fractals. Cross and Jain [64]
describe a Markov random field model for texture. Methods for estimat-
ing the model parameters may be found in [138]. The shape-from-texture
methods described in this chapter can be seen in more detail in [36]. Other
approaches are given in [13, 252, 135]. Rao [200] includes a taxonomy for
texture description and identification.

Exercises

7.1 What is texture? How is it defined for images?

7.2 How can you classify texture? Give some major classes and the char-
acteristics that are used to define each class.

7.3 How are the following used in texture recognition:

e Fractals
e Co-occurrence matrices

e Fourier transforms
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Figure 7.6: Diagram illustrating a textured plane with an arbitrary slant and
tilt with respect to the camera axes.

7.4

7.5

7.6

.

7.8

e Markov random fields

Discuss their application and mention the types of texture where the
above are most suitable.

How can images be segmented using texture features? Give an ap-
proach for image segmentation using texture.

How can the shape of a surface be determined by using its texture
characteristics? Give details of an algorithm to determine shape from
texture.

Mention three applications of a machine vision system where texture
plays a prominent role.

For Figure 7.1(a), find the gray-level co-occurrence matrix for d =
(0,2),(2,0),(2,2). Repeat for Figure 7.2(a).

Derive the expressions for dmajor and dminor When the plane containing
the texture pattern is tilted in addition to slant (i.e., oriented in any
arbitrary direction as long as it is visible to the camera) as shown in
Figure 7.6.
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Computer Projects

7.1

7.2

7.3

7.4

7.5

7.6

T7T

Take an image of a textured plane (no tilt, only slant) and measure the
major and minor diameters to verify their expressions.

Similar to above, now with unknown slant angle. Estimate o from the
measured values of dmajor and dpiner-

Same as above, now with both slant and tilt unknown.

Develop a fractal-based algorithm to discriminate among textures of
different kind. Implement this algorithm and test its performance on
several images. Relate the performance of this algorithm to judgments
by humans about the similarity and ordering of texture.

Implement a texture recognition algorithm based on co-occurrence ma-
trices. Apply it to several texture images to study its discrimination
power.

Implement a texture segmentation algorithm. Test it on several images
containing several regions of different types of texture.

Take a picture of a brick wall from the side so that the wall is at about
45 degrees from the optical axis of the camera. Develop a shape-from-
texture algorithm and apply it to recover the structure of the surface.



