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Abstract— Rapidly acquiring the shape and pose information
of unknown objects is an essential characteristic of modern
robotic systems in order to perform efficient manipulation
tasks. In this work, we present a framework for 3D geometric
shape recovery and pose estimation from unorganized point
cloud data. We propose a low latency multi-scale voxelization
strategy that rapidly fits superquadrics to single view 3D point
clouds. As a result, we are able to quickly and accurately
estimate the shape and pose parameters of relevant objects
in a scene. We evaluate our approach on two datasets of
common household objects collected using Microsoft’s Kinect
sensor. We also compare our work to the state of the art and
achieve comparable results in less computational time. Our
experimental results demonstrate the efficacy of our approach.

I. INTRODUCTION

For autonomous or semi-autonomous robotic systems to
effectively interact with and manipulate objects in their
surroundings, accurate and robust perception is necessary. In
order to correctly manipulate objects in a scene, accurate
position and orientation information is required. To this
end, object pose estimation and shape recovery have been
well addressed over the years in the computer vision and
robotics literatures. In this paper, we consider the problem
of rapidly estimating the 3D shape and pose characteristics of
unknown objects from single views for robotic manipulation.
Having knowledge of these object properties is of paramount
importance for grasp planning and manipulation maneuvers
across multiple domains including but not limited to assistive
devices, rehabilitation, and industrial automation [1].

The task of determining the pose of unknown objects
from single views was commonly addressed by finding corre-
spondences between 2D image features and model features
from a database of known objects. The next step was to
estimate the model pose that best agreed with that set of
correspondences. This has been the de facto standard for
years. For instance, Collet et al. presented an online method
for recognizing objects and their poses from single views
using a combination of RANSAC and Mean Shift clustering
[2] of keypoints. They extended this work in [3] and [4] to
utilize multiple object views in an effort to achieve scalability
and low latency. Unfortunately, this method relies on 2D
information and an offline modeling stage that learns metric
3D models from multiple object views. Similarly, Sun et al.
outlined an approach to jointly detect objects, estimate their
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pose, and recover their 3D shape information from a single
2D image using a generalized Hough voting-based scheme
[5]. However, this work is also dependent on 2D data and a
training phase. In our work, there is no training involved and
we utilize single view 3D data of unknown objects. Over the
last few years, there has been a great resurgence of works
handling 3D data. For instance, using point cloud data, Ye
et al. estimate human body poses from single 3D views [6].

With compact, low-cost 3D sensors such as the Microsoft
Kinect [7] becoming more available, it is more appropriate
and more accurate to utilize 3D data because it provides
important geometrical information. Knowing the geometry
of an object is important for pose estimation. However, using
3D data brings its challenges. Massive amounts of 3D data
must be processed rapidly in order for robotic systems to be
responsive. Autonomous robotic systems equipped with 3D
sensors can acquire point cloud data at an increasingly high
rate. Executing common tasks such as scene segmentation
and 3D reconstruction on massive amounts of 3D data is
computationally expensive and requires a lot of computa-
tional time, which is unacceptable for real-time or near real-
time robotics [8].

In this paper, we address the issue of finding the shape
and pose information of unknown objects in a rapid manner.
This is done from single view point clouds where only the
front part of the object is visible and assumptions must be
made about the back side in order to correctly manipulate
the object [9]. We attempt to handle this issue by employing
superquadrics, which are compact parametric shapes with tri-
axis symmetry that are appropriate for modeling frequently
encountered objects in domestic settings.

Over the years, different models have been introduced
for 3D shape recovery such as spherical harmonics and
geometric icons, but superquadrics are conceivably the most
appropriate for our tasks [10]. Their compact shape can be
described with a small set of parameters thereby facilitating
the description of a wide variety of different basic shapes
such as spheres, cylinders, and cuboids. Superquadrics have
been used for object approximation [11], [12], object detec-
tion [10], novelty detection [13], object segmentation [14],
[15], [16], and collision detection [17]. Our goal is to quickly
find the superquadric that best fits an unorganized point cloud
representing an object hypothesis. This is a major issue in-
herent with employing superquadrics. Their parameters must
be minimized in a least-squares fashion and this process can
be computationally expensive if point clouds are large. We
address this by proposing a multi-scale voxelization strategy.
With this strategy, we are able to estimate the pose of an



object using superquadrics in a robust and computationally-
efficient manner without sacrificing accuracy. We provide
adequate results to support our claims.

This paper is organized as follows. In Section II, we
present a short introduction to superquadrics, followed by
the description of our multi-scale voxelization approach for
superquadric fitting in Section III. Section IV shows our
experimental results and evaluations and Section V gives our
conclusion.

II. SUPERQUADRICS

Superquadrics are a family of parametric shapes that
include superellipsoids, supertoroids, and superhyperboloids
with one and two parts. They are appealing for robotic
applications by nature of their definition. In this work, we
focus on the superellipsoid which is useful for a volumetric
part-based description. Given the parameters that define a
superquadric, the shape and pose information can be easily
extracted as well as volumes and moments of inertia. They
are compact in shape and have a closed surface. Moreover,
superquadrics exhibit tri-axis symmetry, which is a charac-
teristic well approximated by many household objects [9].

Superquadrics can be defined in an object centered coor-
dinate system with five variables and in a general coordinate
system by eleven independent variables. The implicit form
of the superquadric equation used for optimization in this
work is given by

F (xw, yw, zw) =[(
nxxw + nyyw + nzzw − pxnx − pyny − pznz

a1

) 2
ε2

+

(
oxxw + oyyw + ozzw − pxox − pyoy − pzoz

a2

) 2
ε2

] ε2
ε1

+

(
axxw + ayyw + azzw − pxax − pyay − pzaz

a3

) 2
ε1

(1)

where the variables (a1, a2, a3) are the scaling di-
mensions along the x, y, and z axes of the su-
perquadric, (ε1, ε2) are the factors which determine the
superquadric’s shape ranging from from 0.1 to 1, and
(nx, ny, nz, ox, oy, oz, ax, ay, az, px, py, pz) are the twelve
parameters of the homogeneous transformation matrix that
is a result of a rotation and translation of the world coor-
dinate frame. Equation 1 is commonly referred to as the
inside-outside function F . For a given point in the world
coordinate system x, F (x) = 1 if the point is on the
superquadric surface, F (x) < 1 if the point is inside the
superquadric, and F (x) > 1 if the point is outside the
superquadric. Therefore, the eleven variables that define a
superquadric in general position and orientation are Λ =
{a1, a2, a3, ε1, ε2, φ, θ, ψ, px, py, pz}. To handle global su-
perquadric deformations, the tapering parameters kx and ky
are used but we do not exploit this feature in this work.

The Levenberg-Marquardt algorithm [18] is used to re-
cover the parameter set Λ that best fits a given set of points

xk in a least-squares minimization. The following expression
must be minimized:

min
k

n∑
k=0

(
√
a1a2a3(F ε1(xk; Λ)− 1))2 (2)

where the multiplier
√
a1a2a3 enforces the recovery of the

smallest superquadric and the exponent ε1 promotes faster
convergence as it makes the error metric independent of the
shape factor [11]. An important aspect to this minimization
is the initial parameter set used. A good initialization is
crucial to the success of the superquadric fitting process.
Therefore, we use the initial pose given via the eigenvalue
decomposition of the point cloud. The initial shape used is
an ellipsoid and the superquadric scale factors are based on
the dimensions of the cloud itself.

III. MULTI-SCALE VOXELIZATION FOR SUPERQUADRIC
FITTING

Autonomous robotic systems equipped with 3D sensors
can acquire point cloud data at an increasingly high rate.
Performing common tasks such as scene segmentation and
3D reconstruction on massive amounts of 3D data is com-
putationally expensive and requires a lot of computational
time for processing, which is unacceptable for real-time or
near real-time robotics. For a responsive robotic system,
the latency of frequently executed tasks should be low.
For example, as the number of points in a point cloud
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Fig. 1. The computational time required for superquadric fitting using
regular sampling grids. Every ith data point is chosen, such as every 5
points or every 20 points and so on.

increase, the computational time required for processing
greatly increases. For a system requiring user interaction,
this is unacceptable.

We address this issue by introducing an automatic coarse-
to-fine voxelization scheme for superquadric fitting. Fitting
superquadrics to point cloud data is a computationally ex-
pensive task and the bottle neck of this process is the
iterative Levenberg-Marquardt [18] algorithm minimizing
eleven parameters. This is a time consuming algorithm that
is heavily dependent on the number of points to be fitted.
Simple sampling grids can be used to alleviate this issue,
whereby every ith point is chosen, but this may not be
sufficiently effective for reducing latency, as shown in Figure
1. Our proposed scheme significantly reduces the size of
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Fig. 2. Execution times for Superquadric fitting in milliseconds for different
voxel sizes. The voxel sizes range from 3.0cm. to 0.5 cm. The larger the
voxel size, the lower the computational time.

Fig. 3. Overview of Point Cloud Downsampling.

point clouds while maintaining their general shape and space
relations. To execute this task, we use voxels which are
volumetric pixels that divide the 3D space into uniform 3D
cells, typically cubes. In each voxel, all the points present
will be approximated or downsampled using their centroid.
By doing this, the surface is represented more accurately.
Voxels are perfectly justifiable as a means of downsampling
data, having been extensively used in the medical imaging
and computer graphics communities (see Figure 2).

By the same token, setting the dimensions of a voxel
beforehand may not be the best solution to this problem.
If the dimensions of the voxel are set too high relative

to the point cloud, certain shape details can be lost. On
the other hand, if the dimensions are too low, the benefits
of downsampling may not be harnessed. To this end, our
scheme performs a multi-scale voxelization of the point
cloud data so that there is a good balance between speed
of computation and accuracy. Figure 3 gives an overview of
this process.

For our scheme, there are four main parameters:
• smax, which represents the maximum voxel size,
• smin, representing the minimum voxel size,
• N , denotes the number of scales, and
• τ , which represents the threshold for error change

respectively.
The input to our scheme is a point cloud representing a
segmented object from a 3D scene. At the first scale σ1,
the cloud is voxelized using a voxel size of smax which
significantly reduces its size. A superquadric fitting at this
scale is performed. Its fitting error e1 is compared to that
of an initial error e0 that is computed using unoptimized
superquadric parameters acquired via the eigenvalue decom-
position of the original point cloud as mentioned in Section
II. If the difference between these error values is less than τ ,
the process stops and the superquadric parameters recovered
at this scale are accepted. Likewise, if this difference is
greater than τ , we proceed down to the next scale initializing
the fit using the acquired superquadric parameters of the
previous scale. At this level, the voxel size si to be used
is determined according to Equation 3.

si = smax − [(i− 1) ∗ δ],

δ =
smax − smin

N
,

i = 1, ..., N

(3)

The same process continues until there is no significant
change in the error, whereby the process stops or it would
proceed until the σN scale is encountered.

n∑
k=0

((F ε1(xk; Λ)− 1))2 (4)

The error metric we use is given by Equation 4 which is
similar to Equation 2 without the constraint for the smallest
superquadric. If the parameters of this scheme are set appro-
priately, this may never be necessary. However, including a
minimum downsampling stage ensures that some degree of
data downsampling is done so that latency is lowered. This
scheme can be employed for much more than superquadric
fitting by replacing the fitting step, the error metric, and the
initialization components.

IV. EXPERIMENTS AND EVALUATION

In this section, we present experiments to demonstrate the
efficacy of our proposed multi-scale voxelization scheme for
fitting superquadrics. The algorithms used in this work were
all developed in C++ and the evaluations were performed on
a PC equipped with a 2.13GHz Intel Core Duo processor and
4.00GB of memory. All of the point cloud data used in this



work were acquired with the Microsoft Kinect sensor[7]. It
is important to note that the 3D point clouds are captured
from a single view and the segmentation is not perfect. This
makes the shape and pose recovery of an object difficult
because of the lack of information. Our algorithm recovers
the superquadric that best fits the data that it is given, and
for the majority of cases it performs well despite noisy or
spurious data. Nonetheless, we first outline the datasets used
in this work, followed by our evaluations.

A. Datasets

We use two datasets to perform our evaluations; our
own dataset comprised of 15 common household objects in
different poses which we refer to as Dataset 1 and Lai’s
RGBD Dataset [19], [20] which consists of RGB and depth
images of 300 common everyday objects taken from multiple
view angles organized into 51 categories which we refer to as
Dataset 2. These objects are primarily cylindrical, spherical,
or box-like in shape thereby rendering the superquadric as the
ideal parametric model for recovering their shapes because of
its tri-axis symmetry characteristic. We provide the principal
axis orientation of the objects in our dataset (Dataset 1 as
the ground truth pose information. We believe that this is a
more appropriate metric for determining pose when objects
are to be handled. For spherical objects where there may be
more than principal axis, we choose the one that is closer to
the z-axis. Examples of images from both datasets are shown
in Figure 4.

Fig. 4. Examples of objects from our dataset (top row) and the RGBD
Dataset [19] (bottom row).

B. Effect of Changing Voxel Size

In this section, we present quantitative results on Dataset
1 demonstrating the effect of changing the voxel size for
point cloud downsampling on pose estimation accuracy.
We measure this accuracy by calculating the Euclidean
distance between the ground truth location of the centroid
of an object and the centroid position values recovered by
the superquadric (i.e. px, py, pz). We also investigate the
accuracy with regards to principal axis estimation. This is
measured by calculating the angle between the ground truth
principal axis vector and the recovered one. Table I shows the
results of this experiment. The first row shows the average
distance between the recovered object centroid position and
ground truth, the second row shows the median distance, the
third row shows the average angle differences between the
recovered principal axes and ground truth, and the fourth

TABLE I
THE EFFECT OF VOXEL SIZE ON THE RECOVERED POSE ESTIMATES.

3.0cm. 2.5cm. 2.0cm. 1.5cm. 1.0cm. 0.5cm.

Average location
distance

3.35cm. 3.36cm. 3.33cm. 3.36cm. 3.31cm. 3.29cm

Median location
distance

2.2cm. 2.52cm. 2.7cm. 2.5cm. 2.6cm. 2.24

Average angle
difference

31.2◦ 22.9◦ 23.1◦ 23.7◦ 22.5◦ 27.2◦

Median angle
difference

2.1◦ 3.02◦ 3.02◦ 3.80◦ 3.1◦ 3.6◦

shows the median. Notice that the average location distance
is relatively the same across the different scales, which
demonstrates that for these voxel sizes, pose estimation
is not severely affected. This also tells us that for this
dataset, it may not be necessary to use all of the point
cloud information to determine the approximate location of
an object. Conversely, determining the exact principal axis
orientation may require using more data in this case. We
report the median angle difference due to the severe effect
that a miscalculated orientation value can have on the overall
average error. One advantage of our multi-scale voxelization
approach is that it can implicitly determine the appropriate
downsampling scale for 3D data, hence reducing the adverse
effects of having one predetermined value.

C. Pose Estimation Results

In this section, we present the pose estimation results of
our proposed approach in comparison to two other methods:
the classical superquadric fitting approach introduced by
Solina et al. [11], and the approach of Biegelbauer et al.
[10]. In the classical algorithm, the full point cloud is used
for recovering the parameters to the superquadric model.
Therefore, the computational time of this method is directly
proportional to the amount of object points provided. Con-
versely, Biegelbauer and Vincze’s method uses a hierarchical
RANSAC search and a sorted quality-of-fit criteria to find
superquadric models for objects in a scene[10].

TABLE II
POSE ESTIMATION RESULTS OF OUR PROPOSED ALGORITHM,

BIEGELBAUER ET AL. (HS), AND SOLINA ET AL. (Classic) ON Dataset 1.

Proposed Solina Biegelbauer
Median location distance 2.23cm. 2.24cm. 3.85cm.
Median Absolute Deviation (distance) 0.89 0.86 0.461
Median angle difference 2.85◦ 3.23◦ 13.46◦
Median Absolute Deviation (angles) 1.77◦ 2.52◦ 10.52◦

Average time (s) 0.04 2.1 7.9

1) Experiments using Dataset 1: Table II displays the
results of pose estimation on Dataset 1 using all three
algorithms. We include the median pose accuracies as well as
the median absolute deviation because the distribution across
objects is irregular. For instance, if the estimated principal
axis is incorrect, the angle difference from the ground truth
can in some cases be approximately 90◦ producing massive
error. Also, we use the median absolute deviation because
it is a robust statistic that is resilient to data irregularities.



Nonetheless, it can be seen that our algorithm is most similar
in performance to the classical approach even though the
computational time required by our algorithm is significantly
lower as a result of the multi-scale downsampling (see Figure
5). Beigelbauer and Vincze’s approach [10] produced less
accurate but relatively similar results, but at great computa-
tional expense, which may be unacceptable for a responsive
robotics system.

Proposed Solina et al. Biegelbauer et al.
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Fig. 5. Average computational times for the three algorithms tested work
on Dataset 1 - Proposed approach: 40ms, Solina et al.: 2.02s, Biegelbauer
et al.: 7.88s.

TABLE III
POSE ESTIMATION RESULTS OF OUR PROPOSED ALGORITHM AND THE

CLASSIC SUPERQUADRIC FITTING ALGORITHM [11] ON A SUBSET OF

Dataset 2.

Standard Deviation
x y z Time (s)

Ball 1 Proposed 0.29 0.30 0.30 0.09
Solina et al. 0.33 0.34 0.33 0.23

Ball 2 Proposed 0.29 0.31 0.33 0.09
Solina et al. 0.26 0.32 0.32 0.26

Cereal box 2 Proposed 0.33 0.31 0.32 1.1
Solina et al. 0.26 0.25 0.29 4.1

Food can 3 Proposed 0.30 0.28 0.28 0.18
Solina et al. 0.26 0.29 0.29 0.52

Soda can 3 Proposed 0.29 0.30 0.31 0.18
Solina et al. 0.21 0.09 0.22 0.61

2) Experiments using Dataset 2: Due to the similarity
in performance of our approach and the one of Solina
et al. [11], we perform a more detailed analysis of the
pose estimation performance of both algorithms. We con-
ducted pose estimation experiments on a subset of Dataset
2 consisting of over 3500 total image views of 5 different
objects. We show the results in Table III. We proceed with
this experiment from the standpoint that for different views
of the same object, the principal axis orientation should
relatively be the same. The RGBD dataset used in this test
contains multiple views of the same object as it rotates
on a turntable, hence only changing the orientation of the
object around the upright axis. Therefore, an appropriate
test for pose accuracy in this case is to calculate both the
standard deviation σ and median absolute deviation of the
principal axis orientation of multiple views of the same
object. Ideally, these values should be low, indicating that the

pose estimations are less dispersed and mostly like the mean.
Our subset consists of the varying views of a ball, cereal box,
soda can, and food can. These results confirm that we are not
sacrificing accuracy for computational savings. Rather, we
obtain comparable accuracy to the state of the art and achieve
it in considerably less time. We achieved less speedup with
this dataset as compared to Dataset 1 because the object
point clouds were smaller. With larger point clouds, the
computational savings become more noticeable and vice
versa.

D. Shape fitting estimation

In this section, we report the effect of multi-scale down-
sampling on the quality of the recovered superquadric model.
Table IV demonstrates the shape fitting quality of our ap-

TABLE IV
AVERAGE SHAPE FITTING PERFORMANCE

Error No. of Points per Cloud No of Points Processed
Our approach 15.22 15641 110
Solina et al. 14.1 15641 15641

proach in comparison to that of Solina et al. [11]. These
values were calculated for objects of Dataset 1 according to
Equation 4. They are given in terms of the average fitting
error, the average number points per object point cloud, and
the average number of points processed per cloud. As can
be seen, with downsampling the fitting error is remarkably
similar to the value acquired by using the complete object
point cloud. Using this dataset, we discovered that only
approximately 1% of the point cloud is necessary for de-
termining the relative pose of an object.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented an approach for rapidly
acquiring the shape and pose information of unknown objects
from single view point cloud data. Our proposed approach
uses a low latency multi-scale voxelization strategy that
is capable of accurately estimating the shape and pose
parameters of relevant objects in a scene. A reconstructed
3D model of the object is computed by fitting superquadrics
to the data which provides us with the underlying shape
and pose. We obtain results comparable to the state of the
art and do so in significantly less time. We evaluated our
approach on two datasets of common household objects
collected using Microsoft’s Kinect sensor. Our experimental
results demonstrate the efficacy of our approach.

For future work, we intend to use the recovered pose of
relevant objects in a scene in a novel robotic grasping system
for a wheelchair-mounted robotic arm (see Figure 7). This
system is designed to assist the physically challenged in
manipulating objects in their living environments without the
assistance of other human beings. Additionally, we intend to
use non-uniform voxels as well as adjusting our system to
estimate the pose and shape of more complex objects. This
would enable us to more accurately process the wide variety
of shapes present in human environments.



Fig. 6. Visual results of the superquadric fitting. Left column: RGB Image,
Middle column: Noisy segmented point cloud, Right Column: Recovered
superquadric

Fig. 7. The Wheelchair-Mounted Robotic Arm system (WMRA) that would
be used to assist physically-challenged individuals.
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