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Abstract— In this paper, we propose a variant of Chord system we mean the ability of the system to maintain performance
that is resilient to routing attacks. By routing attacks, we mean |evels in the presence of compromised nodes (our perforenanc
the attacks which detour the looking up messages, aiming toist  etic js average path length of queries). Our focus in this
rupt the performance of data look-up systems by increasinghe . o o
path length of queries. Chord routes messages uni-directi@lly paper is to study the resilience of Chord, which IS a popular
and has no bi-directional edges. While its performance in ta Structured P2P system [3]. Chord has some salient features
absence of routing attacks is acceptable, it degrades drartieally ~ which distinguish it from other well-known P2P systems.
under routing attacks. Following this observation, we intoduce Chord employs a uni-directional routing mechanism. It is
the concept of reverse edges to the Chord system. We named theg hstantially less complicated and handles concurrente nod
new Chord system as RChord. We propose several deterministi . . : - .
and randomized algorithms to construct reverse edges. We d&n jons _and failures well. Data lookups are efficient and alzié
a routing algorithm for the new system, which is simple, effient data is guaranteed to be found. In fact one of Chord'’s better
and backward compatible with the original system. We then features is; with high probability it resolves data lookswyith
analyze the performance of the RChprd und_er routing_ attacks g path length o0 log(N) nodes for anN node system[3].
\é\f’ea\‘;'gg ”e‘at gt?] |?§r:fotrhmance . S'%'T'Cﬁ”"y 'Tpro"ed n terdms In proving this property however, the authors do not conside

gep gih, even by adding very Tew reverse €ages e effect of malicious forwarding. Since Chord was desifjne
for operation in Internet scales, this need not be the case
|. INTRODUCTION and the path length will be highly impacted in the presence

A Peer-to-Peer (P2P) networked system is one in whicti malicious nodes. In this paper, we study and propose an
several individuals participate in the construction of an i enhancement of resilience to routing attacks in the current
dependent network. Such a network might be centralized Ghord system by focusing on the average path length taken
decentralized, meaning such a network might be constructeyl queries and analyze how it is impacted in the presence
with or without a central authority. Such a system perforngf malicious nodes. We study the impact of uni-directional
application level routing on top of IP routing. Based on theouting on resilience. Based on our findings, we propose
organization, a P2P network can be classified as structungtd &0 improve resilience by introducing the concept of reverse
unstructured. Structured P2P systems are those in whiaksnoedges to the Chord system. We name the new Chord system
organize themselves in an orderly fashion while unstrecturas RChord. We propose two classes of reverse edge adding
P2P systems are those in which nodes organize themselakgorithms: one is deterministic which comprises of therbfir
randomly. Structured P2P systems boast an efficient lookupiform and Local-Remote combination algorithms, and the
mechanism by means of Distributed Hash Tables (DHTejher is random which is the Local-Remote combination with
while most of the unstructured P2P systems use broadcBsndomization algorithm. Due to the existence of reverse
search technique. edges in the enhanced Chord system, the routing behavior is

The literature on most of the newly developed P2P archiifferent from that of the original Chord system. We design
tectures places more emphasis on the construction, operati routing algorithm for the new system, which is simple,
and maintenance of the P2P systems in the presence of bemfjicient and backward compatible with the original system.
and trustworthy participating nodes. Operation in the @mes We then analyze the performance of the new Chord system
of malicious nodes is not considered. This is reasonableeif tunder routing attacks. We find its performance is signifilgant
participating nodes are within an isolated network. Butha t improved even by adding very few reverse edges. With the
case of the Internet, it is not. The authenticity of nodes c&Chord system, we can achieve performance efficiency greater
be administered by a central authorization authority asmec than 50% under intensive attack conditions. We also find that
mended by Pastry [1]. However, this would undermine sontkfferent reverse edge construction algorithms have wffe
of the basic features of P2P systems. There are many sitgationpacts on the performance and they vary as the intensity of
in which it is not desirable to constrain the membership of atack changes as described later in this paper.

P2P system. The system must be able to operate even in th®ur paper is organized as follows. In Sect@ynwe briefly
presence of malicious nodes. describe Chord and compare it with well known P2P systems

As a first step is systematically studying the performanead introduce the impact of malicious nodes. In Seclipwe
of structured P2P system in the presence of malicious nodiesroduce the system and describe its semantics. In Settion
we choose to study the resilience of Chord. By resilienceie analyze th&Chord system and compare its resilience with



respect to the original Chord system. Sectioprovides the search. By repeating this process, nodeé ultimately finds
reader with an overview of related work and Sectibgives the successor of key’. To illustrate this is in Figure 1, if

concluding remarks. node 3’ wants to search for keyl’, then it checks its finger
table to find the closest node that immediately precedes key
II. BACKGROUND AND MOTIVATION 1. From the interval (Int) column in the finger table, that

node is 0'. Thus node 3’ contacts node(’. Node '0’ checks

and its routing mechanism for the sake of clarity and ease bt finger table and finds that its successor isand hence.
understanding. To compare with other similar systems, we af'°d€ I’ must contain the required key. This information is
give a brief description of other popular structured peepeer then fed back to node3’. Thus routing is done towards and

systems. We then proceed to describe our motivation in doifigt Past the key. _ _ _ —
this study. ith the above technique routing technique, with high

probability data look-ups are resolved with a path length of

O log(N) [3]. In the event of failures, the Chord protocol runs

A. Chord a stabilization algorithm and uses its successor list tovec
Chord [3] uses a single dimensional circular key space afidm such failures [3]. One special feature in this routing

the node responsible for the key (analogous to data) is thecess that is different from other structured P2P sysisms

node whose identifier equals or most closely follows the kepat routing is uni-directional in Chord, In the above exémp

(numerically); that node is called the key’s successor.hEagouting is done in theilock wise direction. It is this feature

node in Chord maintains two sets of neighbors. Each nodgich we will be prominently studying in this paper.

has a successor list that has nodes that immediately fotlow i

in the key space. The neighbor list of nadealso called as the

finger table is constructed with nodes which are at distandgs Other Structured Peer-to-Peer Systems

in powers of2, i.e, the nodes at distancés + 2:~!) mod a) CAN: Sylvia et. al [2] proposed the Content Address-

2m, wherel < i < log N in an N-node system form the able Networks as a distributed infrastructure that provitgesh

entries of the finger table as shown in Figure 1. Each notible like functionality on Internet-like scales. It moslehe

maintains up tan entries in its finger table, whene is the participating peers as zones irlalimensional toroidal space.

number of bits in the node / key identifier space and the noBtach node is associated with a hyper-cubal region of this key

/ key identifiers are generated using hash functions. space and its neighbors are the nodes, which are associated

with the adjoining hybercubes. Routing consists of foniragd

to a neighbor that is closer to the key (in the toroidal space)

In this section, we provide a very brief introduction to Cthor

Fingertable o ode B8)S For ad-dimensional space partitioned in? equal zones, the
Nodes placed ina Chord ser| it [suce EI average routing path length $V = hops and individual nodes
- 1l 1 maintain2d neighbors. In CAN systems, multiple paths exist
070 = between two points in the space and so even if one or more
O/’ 7 0 2|43 of a node’s neighbors were to crash, a node can automatically
g 1 4 [40f 0 route along the next best available path.
/ b . b) Pastry: In Pastry [1], nodes are responsible for keys
: that are the closest numerically (with the keyspace consile
\ g ) Finger table of node 8€)S| | Finger table ofnode ¥€)S| ~ as a circle similar to Chord). The neighbors consist of a
0. 0 sl s sl s LeafSet L, which is the set ofl. closest nodes (half larger,
04 3. s leal o ) Toal 3 half smaller). Correct, not necessarily efficient, routmtj be
achieved with this leaf set. To achieve more efficient raytin
51BN 0 3|33 3 Pastry has another set of neighbors spread in the key space.
713l o 50500 0 Routing consists of forwarding the query to the neighboring
node that has the longest shared prefix with key (and in the

case of ties, to the node with identifier numerically clogest
the key). In Pastry, in the event of node failures, it uses the
repairment algorithm discussed in [1].
c) Tapestry : Tapestry [4] is an overlay location and

To illustrate the routing semantics of Chord, consider Fégurouting infrastructure that provides location indeperident-
1. The nodes in the Chord system af&''1’ and '3’. Let us ing of messages directly to the closest copy of an object or
consider keysT’, 2" and '6’. Thus from the definition above, service using only point-to-point links and without celfized
node U’ is the successor of key6’, node "1’ is the successor resources. The nodes maintain the routing table called as
of key "1’ and node 3’ is the successor of key2’. We also neighbormaps. It's routing along the nodes follow the longest
show the corresponding finger table for each node. In ordaefix routing similar to the one in the CIDR IP address
to do a search for a key’, a node n’ where the query is allocation architecture. The Tapestry location mechanism
currently located searches its finger table to find the ngte ‘almost similar to the Plaxton location scheme [5] but hasamor
that immediately precedeg”and asks the nodej” to do the semantic flexibility.

Fig. 1. A simple Chord network and finger tables of the nodes.
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Our motivation to study the resilience of the Chord system is
due to a combination of the simplicity and clarity in its agsi
coupled with its vulnerability to attacks. Chord offers & &d
desirable features with minimal complexity. Chord is more
robust to partial node failures and node join / leave progess
simpler. Also Chord requires minimal maintenance overhead »
in such cases. The system'’s performance gracefully degrade — .
in situations where there is a lack of sufficient information
routing. However, in the presence of malicious nodes Chord 0 ot 0z 03
becomes quite fragile. Our focus in this paper is the resike
of the Chord system to attacks aiming to increase the average
path length of queries which is a fundamental performance
metric. The average path length is the average number of hops
taken by a query to locate a desired key in the P2P system.

A malicious node can cause the malfunctioning of a P2P
system in many ways. It is very sophisticated to completely
characterize all the effects of a malicious node. However on
of the most critical effects of a malicious node is incregsin |
the path length of queries. There are many types of attacks , —— ]
that can increase the path length taken by queries likeliecbr 0 e 03
routing, not adhering to the protocol rules, co-ordinatiacks a N — 1024 b N = 16K
by nodes that could make the query toggle back and forth and S ) o
make the path length theoretically infinite. In this papee, W'r:olgtu?g Impact of Direction: Performance evaluation undgres malicious
analyze a simple, albeit very effective attack model, where
malicious node forwards the query to a node that is farthest

from the destination than itself. Among the possible attag more susceptible to hostile attacks as compared to CAN and

models, this model is one that can potentially do maximupastry. This is primarily because of the uni-directionaititog

damage to the system. Throughout this paper this will be thgechanism in Chord. CAN and Pastry support bi-directional

type of attack performed by a malicious node. This attagluting. Hence even if a query overshoots the destination, a

model can also be applied to study resilience of CAN, Pastggnign node will be able to correctly route it by backtragkin

and other such P2P systems. Although our focus in this paggfthe destination in the case of CAN and Pastry, but it is not

is on the average path length under our proposed attack mo@@ksible in Chord.

we are in the process of designing more complicated attackye believe that Chord’s resilience can be greatly improved

models that test Chord’s and other structured P2P SyStem&Sincorporating bi-directional routing_ In the fo||owingac_

resilience to metrics apart from just the average path tengttion, we propose to enhance Chord to make it support bi-
In Figure 2 we compare the average path lengths of Chodirectional routing by systematically adding reverse adayed

CAN and Pastry under our attack model. The system sizlen analyze the performance of tREhord system.

(number of nodes) is set & = 1024 and N = 16384. Here

P, on the X -axis is the prObab”lty that a node in the Chord 111. ENHANCING CHORD WITH REVERSEEDGES

system performs such an attack. Thus, when a node receixesOquiaN

a query to forward; with probability?,. it will behave as a "~

malicious node and will forward the query to a node farthest The concept of unidirectional routing in Chord can be mis-

from the intended destination than itself. Here, we assurHged during a routing attack. An alternative to unidireuio

all nodes have sam&,, although in reality, this is not the routing would be to have routing take place both in the fodvar

case £, is different for different nodes). However we arguélike a normal Chord node) as well as in the reverse direction

that the performance of such a system is highly represeatatidepending upon the proximity to the destination. Therebgne

since the structured P2P systems we study are symmetric, §r{fie request overshoots (crosses) the destination duente s

since we focus on the average performance. The Protocols @t@ck, the receptor node can always return the requeseto th

simulated in recursive fashion similar to what is descrilred correct node in the reverse direction thus minimizing thth pa

the original Chord algorithm in [3]. length of the query from that point and thereby making the
From Figure 2, we can clearly see the impact of directioWStem more _reS|I|ent to such attacks. To do that, we face the

in the routing of Chord and its resilience. For CAN, thd°llowing two issues:

dimension is set a$0 and 14 respectively for the two system e« How to add the reverse edges to the routing table?

sizes analyzed. It can be seen that even though Chord performe How to do routing with reverse edges?

well under normal conditions, its performance degrades dra In the following two subsections, we will address these two

matically in both cases under hostile conditions. Thus @hoissues in detalil.

Average Path Length
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B. Adding Reverse Edges formally described in Figure 3 and is as follows: for one

. . . k 9
One simple approach in adding reverse edges is to mdd&%dez(,pﬁ)rrneverse neighbors, are ¢ — 2%) mod 2™, where

the nodes which are theirror nodes for the nodes present in ¥ = [*F5r] »p=0,...,R—1. We call this algorithm as
the routing table of a normal Chord node. Obviously, mofig€ Uniform (U) algorithm for the reason explained above.
reverse edges will lead to better performance, however,Figure 4(ii) illustrates this algorithm. For nodg its two
would introduce more overhead and redundancy among f¥€rse r;}aghl:gs are £ 4) mg_dN_ and |€ _.3? mod N.
edges. We believe that significant performance improvement C? The Local-Remote Com |na_t|on Algorit m (LR) .
can be achieved only by adding a few reverse edges. In t ?ge final approach we Propose In t_he deter_mlmstlc_sectlon
paper, we focus on adding a constant number of reverse ed olhe local-remote combl_natlon algorlthm._Thls algorithm
mpts to follow the idea of cooperation between local

and propose several approaches to add them. We bro q q he ob . q
classify them as deterministic and randomized algorithms. edges (L)and remote edges (R). From the observations made

1) A Deterministic Algorithm to Add Reverse Edges: With in the above section, it is intuitive to see that this kind of
this approach, the nodes that the reverse edges point to Gggperation can improve the performance co_nS|derany. we
determined by some system parameters, for example fdd some edges close to the current node, while add others at

system size. The way the current Chord system adds edge f mote d|standce. They a_ret CI’;OSQI’('; a[[tﬁrnatlvetl)y. F?r ebeampld
deterministic. That is, each node has a fixed set of neighbgrs reverse edges are Introduced, the combination wou

located at predetermined distances relative to the nodis. T €2 !o::al donec:js ;ndl _tremotlg gg Ie ’ Ifl four rev;rse ec:ges
enables simpler routing procedure and little overhead af-co VEre Introduced, then it wou ocal ones and- remote

putation. Based on this fact, we design several detern’u‘nis?nes' Figure 3 gives a formal description of this algorithm:

;o i - ok m
approaches to add reverse edges to Chord. Before we procé? dqozei’ Its re\iersepnelghbogsg are g 12 ) moddg '
with our discussion of the algorithm, we will define theVherek = (m —1—[5])(p mod2) + [5](1 —r mod2) ,

notation of reverse neighbors to simplify our descriptién: p= 0,....R—1 _and r=0,...,Rk—1. InFigure 4("!)’
node is said to be the reverse neighbor of node i if the reverse we illustrate the simplest case of two reverse edges with one

edge from node i points to that node closer to the node and one farther from the node (in the revers
a) The Mirror Algorithm (M): : A simple algorithm direction). To node, its local reverse neighbor is— 1, and

to add reverse edges is a straight extension of the Chor'éssremOte reverse neighbor is- 2% V1.
algorithm. With this algorithm, the reverse edges of a given )
node are mirrors of the fingers (the clock-wise edges |APUt  the system siz&/ (m = log N), the number of
the original Chord system) of that node in the system. This €Verse edges R, the current node id

algorithm is formally described in Figure 3. The inputs t&UtPUL  the reverse neighborg (k = 0,.... kR — 1)
the algorithm are the system siz¥, (number of peers in the | i

system) and the number of reverse edgek The algorithm MITTor A]gon;hm:

determines the reverse neighbors for a given node as fallows™* = (¢ —27) mod2™, wherek =0,.... R — 1.

for nodei, its reverse neighborg are(i—2*) mod 2, where Jniform Algorithm .
k=0,....R—1andm = log N. We call this algorithm as 7 = (i —2") mod2™, wherek = |t |

the Mirror (M) algorithm. Figure 4(i) illustrates this simple »=0,.... R —1.

algorithm. In this figure, the system sizZ€ is 256 and the Local-Remote Combination Algorithm

number of reverse edge® is 7 2. Hence in such a system, 7& = (i —2%) mod2™, wherek = (m —1— |§])

any nodei, has the node§ — 1) mod N, (i —2) mod N ..... (p mod2) + [£](1 — p mod2),

, (i —64) mod N as its reverse neighbors. For the sake of p=0,...,R—1.

clarity, the nodes very close to the nodl@re not shown in Local-Remote Random Algorithm

the figure. rr = (i —2%) mod 2™, whenk is even and less than R,
b) The Uniform Algorithm (U): The Mirror algorithm and the probability of a nodg to ber, (wherek is odd

can be easily extended. Note that in Chord (assume the system and less tharR) is as follows:

size isN), for one node, nodes with id(i +2*) mod 2™ (k = Prob(j) = (i — j) mod 2””/22121_1 ¢ mod 2™,

0,1,2,...,log N—1) are selected as nods finger neighbors.

In other words, each node hasg N finger neighbors, which rig 3. Algorithms for Adding Reverse Edges for the Chordt&ys
are distributeduniformly in the space ofog scale. The benefit

of this approach is that the average path lengtilvidog N
[3]. In our situation, the number of reverse edges is a coist
number, sayR. We can divide uniformly the space bfg into
R sections, rather than integ N sections. The algorithm is

In the next section, we will extend the local-remote combi-
eqation algorithm by introducing the concept of randomzati
in adding remote edges.
2) A Randomized Algorithm to Add Reverse Edges: In this
section, we will present an approach to add some reversesedge
INote that all other algorithms in Figure 3 have the same ipln avoid {0 nodes which are randomly selected. The basic motivations
redundancy, we will not describe these parameters whemibiegcthe other are as follows: (1) Randomly selected reverse edges will

algorithms. , o _ make it difficult even for a highly destructive attack to caus
Note that, all other figures in Figure 4 have the same size sfesy

and the same number of reverse edge numbers. We will notidesitrese extensive damage. (2) A'_" efficient way to add edges can get
parameters in the other examples. more performance benefits.



N C. Routing

/ AN /*\ We need to extend Chord’s routing algorithm to consider
the reverse edges. Chord'’s routing algorithm is greedy.nUpo
\ \ receiving a request, a peer will pick a node among its
“ “ ‘ neighbors which is closest to the destination in the clotew

\‘ | direction. The algorithm is simple and robust. Our extended
\ / algorithm should also have these merits. Also it is impdrtan

\\ //
\ / . ' / . that our algorithm is backward-compatible with the origina
\ / - \ / emww  Chord. That is, if there is no reverse edge, our new algorithm
T . I . should be equivalent to the original one.
i.Mirror Routing Approach ii. Uniform Routing A simple extension is picking the neighbor among the for-

ward and reverse neighbors which is closest to the desimati
o in any one of the two directions. For example, in Figure 5, an
enhanced Chord system witi6 nodes usin@ reverse edges
is present. We set the source and the destination ti)tsnd
0 respectively. Assume the L-R algorithm be used in adding
reverse edges. According to the above simple algorithmenod

* * 70’s remote reverse neighbor, i.e. nodewill be selected
\ / because it is the closest to destinatiOnamong all node
\ / s _— 70’s forward and reverse neighbors. While the algorithm is
Y o : o simple, also compatible with the original algorithm, it istn
e o e ) efficient. The basic reason for that is the asymmetry between
iii. Local-Remote Combination Approach iv. Local

the clock-wise edges and the reverse edges. We can use the
same example in Figure 5 to illustrate the inefficiency othsuc

an extension. In this example, we find that for ndde even
though its reverse neighbor nodes closer to the destination
than its forward neighbor nod&8, routing through nod&

a) The Local-remote combination algorithm with ran- will take more hops 7 hops) to reach the destination than

domization (L-R-Random):: With this algorithm, the local through nodel98 (6 hops).
reverse neighbors are still selected following the same way 0
as algorithmL-R, however, the remote reverse neighbors are
selected in random fashion. Specifically, the probabilify o
one node to be selected as the remote reverse neighbor is
proportional to the distance between the current node and
that node. With this algorithm, the node which is far away
from the current node has higher probability to be chosen
as a remote node. In this sense, the algorithm is similar to 0.
the above deterministic local-remote combination aldomit
However, some nodes which are closer to the current node
also have some probability to be selected and so we expect
the performance to be different from the deterministic one.
The formal description of the algorithm is given in Figure 3.
We call this algorithm ag-R-Random algorithm. Figure 4(iv) Fig. 5. Erroneous Routing
illustrates this random algorithm. For nodéts local edge will
point to ¢ — 1), while its remote edge may point any nogle  From the above example, we conclude that our extension
from nodei to node(i — 2'°¢%), following the probability: should consider the asymmetry between the forward edges
Prob(j) = (i — j) mod 2m/zgfl’1 ¢ mod 2™, and the reverse edges. We need to do some estimation on the
While introducing the reverse edges, either in the determirouting capabilities of forward edges and reverse edgeso Al
istic or in the random approaches, tR€hord follows the the forward and reverse edges may work together to achieve
same protocol as Chord in discovering and maintaining thogeod performance. Our routing algorithm should consider
reverse edges. For discovering the reverse edges, théolocathis kind of scenario. However the cooperation between the
of the remote edges is determined by the algorithm used. Fao types of edges will be very comprehensive. Considering
maintaining reverse edges, when a node leaves the systaththe possible cooperation schemes will lead the algerith
the immediate successor in the reverse direction, takebaip to be complicated, and hence not robust in dynamic P2P
responsibility of that node, just as the normal Chord dodlsén systems. Care must be taken to make a good balance between
deterministic case and in the random case, the node choas@®plexity and efficiency. With the above consideration in
the replacement using the algorithm discussed above. mind, we design the routing algorithm in Figure 6 for the

Deterministic -Remote Random Combination Approach

Fig. 4. Reverse Edge Adding Algorithms

BN
70
3¢ Reverse Neighbor

@ Forward Neighbor
® Nodei



enhanced Chord system. The algorithm can work for tlwnsidered by calling the function efi_forward_routing()
system with all different reverse edge adding algorithms. anduni_reverse_routing() during routing decision.

Inputs : current node, destinationj

Outputs :NextHop: the next hop for routing and
HopNum: the number of hops taken from node
to nodej via Next_Hop

IV. ANALYSIS OF THE RCHORD SYSTEM

In this section we will analyze the impact of introducing
reverse edges to the Chord system. Particularly we willyaeal
the impact of the different reverse edge adding algorithms,

1. Find the forward neighbors closest to the destinatiorhén € Mirror (M), Uniform (U), Local-Remote combination (L-
forward and reverse directioy; and F, R) and Local-Remote combination with Randomization (L-

2. Find the reverse neighbors closest to the destinatiohein {R-Random) on the Chord system and draw some important
reverse and forward direction, sd. and R; conclusions which would act as guidelines in designing a

3. Compute the number of hops taken by each of the four Fobust Chord system. o
candidates Figure 7 (i-iv) shows the comparison in performance (the

Hy; = uniforwardrouting(Fy); average path length) for different system sizes under mgryi
intensity of attacks (differenf?.). The reverse edge size is

H,; = uni_reverserouting(F,); ' :
Hy, = un_i_forward_rou_ting(R PE fﬁ(e(: rﬁt 2.for al!)l the cgses.. From these figures, we can make
H,, = unireverserouting(R,); the following observations:

HopNum = min(Hff, Hrf,HfT, H,, ) +1; .
NextHop = nodewith-min_hopsEy, Hyy, F;,
HTfIRfa Hfra RTi HT’T‘);
return NextHop and HopNum

Fig. 6. The routing algorithm for the enhanced Chord system

In this algorithm, functionsuni_forward-routing() and
uni-reverse_routing() are used to estimate the average num-
ber of hops from one node to another node assuming only one-
direction edges be used in the routing. The pseudo codes of
two uni-direction routing functions are presented in Apgign
A.

The routing algorithm returns two values: one is the next
hop that nodei should route the query to; another is the
number of hops that the query needs to route from node
node to destinatiory. We define the latter as thenhanced-
Chord-distance from nodei to nodej. Let's take the example
in Figure 5 to illustrate this algorithm. We still set the soel
and the destination to b# and0. To node70, its F is node
198, and its R, is node6. It has noF, and Ry. Hyy =5, .
and H,, = 6, henceNextHop is nodel98, and HopNum
is 6. With this algorithm, nodel98 rather than nod& will
be selected to be the next hop for node to nodel. The
enhanced-Chord-distance of node70 to node0 is 6.

Note that this routing algorithm has the following features
(1) It is compatible to the original Chord routing algorithm
the sense that: If there is no reverse edge, there will b&,no
R, andR;. Hence, there is only one candidate nddewhich
can be selected as the next hop, which we know is the node
that is selected by the original Chord routing algorithm). (2
It considers the cooperation between the forward and revers
edges. With this algorithm, four neighbaf%, F,., R, and Ry
are considered to be the next hop. If nddes finally selected,
the query first is routed t&. in the forward direction, and may
be routed close to the destination along the reverse directi
The case is similar to nod&; if it is selected. However,
this algorithm limits to one simple scenario: each routiag h
only one chance to change its direction; (3) The difference
in the routing capacity of the forward and reverse edges are

Compared with the original Chord system, the resilience
of the RChord system has improved significantly, partic-
ularly for the the U, L-R and L-R-Random algorithms.
This becomes more prominent as the intensity of attack
(P,) increases. For example, in the case of system with
1024 nodes, whet, = 0, the performance efficiency of

U, L-R and L-R-Random algorithms aid %, 12% and

13% respectively. But when the intensity of attack)is,

the performance efficiencies are increasing drastically to
44%, 53% and 43% respectively, ie., almost three times
the ideal condition. It is easy to believe that the effect of
having a constant number of reverse edges will decrease
with the increase in system size. However our results
show that there is no such significant decrease in the
degree of performance. This can be explained based on
the fact that, as the system size increases, the reverse
nodes though constant in number are at different positions
relative to the node having the reverse edges to those
nodes. The position of the reverse edges also influences
the performance of the algorithms.

Comparing the performance of systems using different
algorithms, we find that the overall performance of the
Mirror algorithm is poor, and ones for other three algo-
rithms vary depending on the different value Bf:

— when P, < 0.1, the performance of the system with
different algorithms are similar to each other.

— when 0.1 < P. <= 0.3, the performance of
the system using U is better than one using L-R-
Random, which outperforms one using L-R. This
observation can be explained by the fact that with
the Uniform algorithm, the whole system is well cov-
ered by the edges (including the reverse edges and
the forward edges). Under mild attack conditions,
the regular routing mechanism still functions. The
coverage of system by the edges will help achieve
good performance.

— whenP, > 0.3, the performance of the system using
L-R is better than one using L-R-Random, which
outperforms one using U. It can be explained by the
fact that whenP, is very large, the chance to use
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In this paper we studied the resilience of the average

path length of Chord to routing attacks. and pointed out th
importance of bi-directional routing.

We then proposed an enhanced Chord system along withl his section provides the pseudo code for the unidirectiona
several reverse edge adding approaches and a routing afgsvard and reverse routing functions. These functions de-
rithm. Our enhanced system is simple and efficient in theeserf§"Mine hops on the assumption that the routing is to take
that it outperforms significantly the original Chord system Place only in that direction. It is relatively easy to do that
terms of the average path length under routing attacks, eJehthe deterministic edges. However it is harder to do so for
with very few reverse edges. Another good feature of offf€ randomized edges. This can also be regarded as one of
system is that is backward compatible with the original @hofmerits of this approach, since it is difficult for the attacke
system. figure out a super attack strategy. For the randomized edges,

There are several directions to extend our study poteyttialfhe algorithm is based on a simple assumption that the node
(1) It will be interesting to theoretically prove the featgr assumes that every other node would have a random reverse

of our reverse edge adding algorithms and hence derive @fge at the same distance as its random reverse edge.
algorithm, that will give optimum performance. (2) We can

e
APPENDIXA: UNI-DIRECTIONAL ROUTING FUNCTIONS
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Fig. 7. Performance Evaluation of the Enhanced Chord Systeser Super
Routing Attack.

Input:  Source node, destination nodg, the system sizéV,
and the number of reverse edgis

Output: the next node and the number of hops need to be
taken from node to nodej

uni _forward_routing()
{
dist = (i — j)modN;
/* compute how many factors of 2 add to dist */
fori =logN —11t00
hopsl = dist/(power(2,1i);
dist = dist — power(2,1) x hops1;
hops = hops + hopsl,
nexti;
return hops;

}

uni _reverse_routing()
{
I* STEPSIZE]] : Array of location of reverse neighbors
determined by the reverse edge adding algorithms*/
dist = (i — j)modN;
fori=1t0R
hops1 = dist/(power(2, STEPSIZE[i]));
dist = dist — power (2, STEPSIZE]i]) * hops1;
hops = hops + hopsl;
nexti;
return hops;

Fig. 8. Unidirection Routing Functions



