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Abstract— In this paper, we propose a variant of Chord system

that is resilient to routing attacks. By routing attacks, we mean
the attacks which detour the looking up messages, aiming to dis-
rupt the performance of data look-up systems by increasing the
path length of queries. Chord routes messages uni-directionally
and has no bi-directional edges. While its performance in the
absence of routing attacks is acceptable, it degrades dramatically
under routing attacks. Following this observation, we introduce
the concept of reverse edges to the Chord system. We named the
new Chord system as RChord. We propose several deterministic
and randomized algorithms to construct reverse edges. We design
a routing algorithm for the new system, which is simple, efficient
and backward compatible with the original system. We then
analyze the performance of the RChord under routing attacks.
We find that its performance is significantly improved in terms
of average path length, even by adding very few reverse edges.

I. I NTRODUCTION

A Peer-to-Peer (P2P) networked system is one in which
several individuals participate in the construction of an in-
dependent network. Such a network might be centralized or
decentralized, meaning such a network might be constructed
with or without a central authority. Such a system performs
application level routing on top of IP routing. Based on the
organization, a P2P network can be classified as structured and
unstructured. Structured P2P systems are those in which nodes
organize themselves in an orderly fashion while unstructured
P2P systems are those in which nodes organize themselves
randomly. Structured P2P systems boast an efficient lookup
mechanism by means of Distributed Hash Tables (DHTs)
while most of the unstructured P2P systems use broadcast
search technique.

The literature on most of the newly developed P2P archi-
tectures places more emphasis on the construction, operation
and maintenance of the P2P systems in the presence of benign
and trustworthy participating nodes. Operation in the presence
of malicious nodes is not considered. This is reasonable if the
participating nodes are within an isolated network. But in the
case of the Internet, it is not. The authenticity of nodes can
be administered by a central authorization authority as recom-
mended by Pastry [1]. However, this would undermine some
of the basic features of P2P systems. There are many situations
in which it is not desirable to constrain the membership of a
P2P system. The system must be able to operate even in the
presence of malicious nodes.

As a first step is systematically studying the performance
of structured P2P system in the presence of malicious nodes,
we choose to study the resilience of Chord. By resilience,

we mean the ability of the system to maintain performance
levels in the presence of compromised nodes (our performance
metric is average path length of queries). Our focus in this
paper is to study the resilience of Chord, which is a popular
structured P2P system [3]. Chord has some salient features
which distinguish it from other well-known P2P systems.
Chord employs a uni-directional routing mechanism. It is
substantially less complicated and handles concurrent node
joins and failures well. Data lookups are efficient and available
data is guaranteed to be found. In fact one of Chord’s better
features is; with high probability it resolves data look-ups with
a path length ofO log(N) nodes for anN node system[3].
In proving this property however, the authors do not consider
the effect of malicious forwarding. Since Chord was designed
for operation in Internet scales, this need not be the case
and the path length will be highly impacted in the presence
of malicious nodes. In this paper, we study and propose an
enhancement of resilience to routing attacks in the current
Chord system by focusing on the average path length taken
by queries and analyze how it is impacted in the presence
of malicious nodes. We study the impact of uni-directional
routing on resilience. Based on our findings, we propose
to improve resilience by introducing the concept of reverse
edges to the Chord system. We name the new Chord system
as RChord. We propose two classes of reverse edge adding
algorithms: one is deterministic which comprises of the Mirror,
Uniform and Local-Remote combination algorithms, and the
other is random which is the Local-Remote combination with
Randomization algorithm. Due to the existence of reverse
edges in the enhanced Chord system, the routing behavior is
different from that of the original Chord system. We design
a routing algorithm for the new system, which is simple,
efficient and backward compatible with the original system.
We then analyze the performance of the new Chord system
under routing attacks. We find its performance is significantly
improved even by adding very few reverse edges. With the
RChord system, we can achieve performance efficiency greater
than 50% under intensive attack conditions. We also find that
different reverse edge construction algorithms have different
impacts on the performance and they vary as the intensity of
attack changes as described later in this paper.

Our paper is organized as follows. In Section2, we briefly
describe Chord and compare it with well known P2P systems
and introduce the impact of malicious nodes. In Section3, we
introduce the system and describe its semantics. In Section4,
we analyze theRChord system and compare its resilience with
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respect to the original Chord system. Section5 provides the
reader with an overview of related work and Section6 gives
concluding remarks.

II. BACKGROUND AND MOTIVATION

In this section, we provide a very brief introduction to Chord
and its routing mechanism for the sake of clarity and ease of
understanding. To compare with other similar systems, we also
give a brief description of other popular structured peer-to-peer
systems. We then proceed to describe our motivation in doing
this study.

A. Chord

Chord [3] uses a single dimensional circular key space and
the node responsible for the key (analogous to data) is the
node whose identifier equals or most closely follows the key
(numerically); that node is called the key’s successor. Each
node in Chord maintains two sets of neighbors. Each node
has a successor list that has nodes that immediately follow it
in the key space. The neighbor list of noden, also called as the
finger table is constructed with nodes which are at distances
in powers of2, i.e., the nodes at distances(n+ 2i�1) mod2m, where1 � i � logN in an N -node system form the
entries of the finger table as shown in Figure 1. Each node
maintains up tom entries in its finger table, wherem is the
number of bits in the node / key identifier space and the node
/ key identifiers are generated using hash functions.
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Fig. 1. A simple Chord network and finger tables of the nodes.

To illustrate the routing semantics of Chord, consider Figure
1. The nodes in the Chord system are ’0’,’ 1’ and ’3’. Let us
consider keys ’1’,’ 2’ and ’6’. Thus from the definition above,
node ’0’ is the successor of key ’6’, node ’1’ is the successor
of key ’1’ and node ’3’ is the successor of key ’2’. We also
show the corresponding finger table for each node. In order
to do a search for a key ’k’, a node ’n’ where the query is
currently located searches its finger table to find the node ’j’
that immediately precedes ’k’ and asks the node ’j’ to do the

search. By repeating this process, node ’n’ ultimately finds
the successor of key ’k’. To illustrate this is in Figure 1 , if
node ’3’ wants to search for key ’1’, then it checks its finger
table to find the closest node that immediately precedes key
’1’. From the interval (Int) column in the finger table, that
node is ’0’. Thus node ’3’ contacts node ’0’. Node ’0’ checks
its finger table and finds that its successor is ’1’ and hence
node ’1’ must contain the required key. This information is
then fed back to node ’3’. Thus routing is done towards and
not past the key.

With the above technique routing technique, with high
probability data look-ups are resolved with a path length ofO log(N) [3]. In the event of failures, the Chord protocol runs
a stabilization algorithm and uses its successor list to recover
from such failures [3]. One special feature in this routing
process that is different from other structured P2P systemsis
that routing is uni-directional in Chord, In the above example,
routing is done in the
lo
k wise direction. It is this feature
which we will be prominently studying in this paper.

B. Other Structured Peer-to-Peer Systems

a) CAN: Sylvia et. al [2] proposed the Content Address-
able Networks as a distributed infrastructure that provides hash
table like functionality on Internet-like scales. It models the
participating peers as zones in ad-dimensional toroidal space.
Each node is associated with a hyper-cubal region of this key
space and its neighbors are the nodes, which are associated
with the adjoining hybercubes. Routing consists of forwarding
to a neighbor that is closer to the key (in the toroidal space).
For ad-dimensional space partitioned intoN equal zones, the
average routing path length isd4N 1d hops and individual nodes
maintain2d neighbors. In CAN systems, multiple paths exist
between two points in the space and so even if one or more
of a node’s neighbors were to crash, a node can automatically
route along the next best available path.

b) Pastry: In Pastry [1], nodes are responsible for keys
that are the closest numerically (with the keyspace considered
as a circle similar to Chord). The neighbors consist of aLeafSet L, which is the set ofL closest nodes (half larger,
half smaller). Correct, not necessarily efficient, routingwill be
achieved with this leaf set. To achieve more efficient routing,
Pastry has another set of neighbors spread in the key space.
Routing consists of forwarding the query to the neighboring
node that has the longest shared prefix with key (and in the
case of ties, to the node with identifier numerically closestto
the key). In Pastry, in the event of node failures, it uses the
repairment algorithm discussed in [1].

c) Tapestry : Tapestry [4] is an overlay location and
routing infrastructure that provides location independent rout-
ing of messages directly to the closest copy of an object or
service using only point-to-point links and without centralized
resources. The nodes maintain the routing table called asneighbormaps. It’s routing along the nodes follow the longest
prefix routing similar to the one in the CIDR IP address
allocation architecture. The Tapestry location mechanismis
almost similar to the Plaxton location scheme [5] but has more
semantic flexibility.
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C. Our Motivation

Our motivation to study the resilience of the Chord system is
due to a combination of the simplicity and clarity in its design
coupled with its vulnerability to attacks. Chord offers a lot of
desirable features with minimal complexity. Chord is more
robust to partial node failures and node join / leave processis
simpler. Also Chord requires minimal maintenance overhead
in such cases. The system’s performance gracefully degrades
in situations where there is a lack of sufficient informationfor
routing. However, in the presence of malicious nodes Chord
becomes quite fragile. Our focus in this paper is the resilience
of the Chord system to attacks aiming to increase the average
path length of queries which is a fundamental performance
metric. The average path length is the average number of hops
taken by a query to locate a desired key in the P2P system.

A malicious node can cause the malfunctioning of a P2P
system in many ways. It is very sophisticated to completely
characterize all the effects of a malicious node. However one
of the most critical effects of a malicious node is increasing
the path length of queries. There are many types of attacks
that can increase the path length taken by queries like incorrect
routing, not adhering to the protocol rules, co-ordinated attacks
by nodes that could make the query toggle back and forth and
make the path length theoretically infinite. In this paper, we
analyze a simple, albeit very effective attack model, wherea
malicious node forwards the query to a node that is farthest
from the destination than itself. Among the possible attack
models, this model is one that can potentially do maximum
damage to the system. Throughout this paper this will be the
type of attack performed by a malicious node. This attack
model can also be applied to study resilience of CAN, Pastry
and other such P2P systems. Although our focus in this paper
is on the average path length under our proposed attack model,
we are in the process of designing more complicated attack
models that test Chord’s and other structured P2P system’s
resilience to metrics apart from just the average path length.

In Figure 2 we compare the average path lengths of Chord,
CAN and Pastry under our attack model. The system size,
(number of nodes) is set asN = 1024 andN = 16384. HerePr on theX-axis is the probability that a node in the Chord
system performs such an attack. Thus, when a node receives
a query to forward; with probabilityPr it will behave as a
malicious node and will forward the query to a node farthest
from the intended destination than itself. Here, we assume
all nodes have samePr, although in reality, this is not the
case (Pr is different for different nodes). However we argue
that the performance of such a system is highly representative,
since the structured P2P systems we study are symmetric, and
since we focus on the average performance. The Protocols are
simulated in recursive fashion similar to what is describedin
the original Chord algorithm in [3].

From Figure 2, we can clearly see the impact of direction
in the routing of Chord and its resilience. For CAN, the
dimension is set as10 and14 respectively for the two system
sizes analyzed. It can be seen that even though Chord performs
well under normal conditions, its performance degrades dra-
matically in both cases under hostile conditions. Thus Chord
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Fig. 2. Impact of Direction: Performance evaluation under super malicious
routing.

is more susceptible to hostile attacks as compared to CAN and
Pastry. This is primarily because of the uni-directional routing
mechanism in Chord. CAN and Pastry support bi-directional
routing. Hence even if a query overshoots the destination, a
benign node will be able to correctly route it by backtracking
to the destination in the case of CAN and Pastry, but it is not
possible in Chord.

We believe that Chord’s resilience can be greatly improved
by incorporating bi-directional routing. In the followingsec-
tion, we propose to enhance Chord to make it support bi-
directional routing by systematically adding reverse edges and
then analyze the performance of theRChord system.

III. E NHANCING CHORD WITH REVERSEEDGES

A. Overview

The concept of unidirectional routing in Chord can be mis-
used during a routing attack. An alternative to unidirectional
routing would be to have routing take place both in the forward
(like a normal Chord node) as well as in the reverse direction
depending upon the proximity to the destination. Thereby, even
if the request overshoots (crosses) the destination due to some
attack, the receptor node can always return the request to the
correct node in the reverse direction thus minimizing the path
length of the query from that point and thereby making the
system more resilient to such attacks. To do that, we face the
following two issues:� How to add the reverse edges to the routing table?� How to do routing with reverse edges?

In the following two subsections, we will address these two
issues in detail.
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B. Adding Reverse Edges

One simple approach in adding reverse edges is to include
the nodes which are themirror nodes for the nodes present in
the routing table of a normal Chord node. Obviously, more
reverse edges will lead to better performance, however, it
would introduce more overhead and redundancy among the
edges. We believe that significant performance improvement
can be achieved only by adding a few reverse edges. In this
paper, we focus on adding a constant number of reverse edges
and propose several approaches to add them. We broadly
classify them as deterministic and randomized algorithms.

1) A Deterministic Algorithm to Add Reverse Edges: With
this approach, the nodes that the reverse edges point to are
determined by some system parameters, for example, the
system size. The way the current Chord system adds edges is
deterministic. That is, each node has a fixed set of neighbors
located at predetermined distances relative to the node. This
enables simpler routing procedure and little overhead of com-
putation. Based on this fact, we design several deterministic
approaches to add reverse edges to Chord. Before we proceed
with our discussion of the algorithm, we will define the
notation of reverse neighbors to simplify our description:A
node is said to be the reverse neighbor of node i if the reverse
edge from node i points to that node.

a) The Mirror Algorithm (M): : A simple algorithm
to add reverse edges is a straight extension of the Chord’s
algorithm. With this algorithm, the reverse edges of a given
node are mirrors of the fingers (the clock-wise edges in
the original Chord system) of that node in the system. This
algorithm is formally described in Figure 3. The inputs to
the algorithm are the system size,N (number of peers in the
system) and the number of reverse edgesR 1. The algorithm
determines the reverse neighbors for a given node as follows:
for nodei, its reverse neighborsrk are(i�2k) mod 2m, wherek = 0; : : : ; R � 1 andm = logN . We call this algorithm as
the Mirror (M) algorithm. Figure 4(i) illustrates this simple
algorithm. In this figure, the system sizeN is 256 and the
number of reverse edgesR is 7 2. Hence in such a system,
any nodei, has the nodes(i� 1) modN , (i� 2) modN :::::
, (i � 64) modN as its reverse neighbors. For the sake of
clarity, the nodes very close to the nodei are not shown in
the figure.

b) The Uniform Algorithm (U): The Mirror algorithm
can be easily extended. Note that in Chord (assume the system
size isN ), for one nodei, nodes with id(i+2k) mod 2m (k =0; 1; 2; : : : ; logN�1) are selected as nodei’s finger neighbors.
In other words, each node haslogN finger neighbors, which
are distributeduniformly in the space oflog scale. The benefit
of this approach is that the average path length isO logN
[3]. In our situation, the number of reverse edges is a constant
number, sayR. We can divide uniformly the space oflog intoR sections, rather than intologN sections. The algorithm is

1Note that all other algorithms in Figure 3 have the same inputs. To avoid
redundancy, we will not describe these parameters when describing the other
algorithms.

2Note that, all other figures in Figure 4 have the same size of system
and the same number of reverse edge numbers. We will not describe these
parameters in the other examples.

formally described in Figure 3 and is as follows: for one
nodei, its reverse neighborsrk are (i � 2k) mod 2m, wherek = b (p+1)mR+1 
 , p = 0; : : : ; R � 1. We call this algorithm as
the Uniform (U) algorithm for the reason explained above.
Figure 4(ii) illustrates this algorithm. For nodei, its two
reverse neighbors are (i� 4) modN and (i� 32) mod N .

c) The Local-Remote Combination Algorithm (L-R)::
The final approach we propose in the deterministic section
is the local-remote combination algorithm. This algorithm
attempts to follow the idea of cooperation between local
edges (L)and remote edges (R). From the observations made
in the above section, it is intuitive to see that this kind of
cooperation can improve the performance considerably. We
add some edges close to the current node, while add others at
a remote distance. They are chosen alternatively. For example,
if 3 reverse edges are introduced, the combination would
be 2 local ones and1 remote one. If four reverse edges
were introduced, then it would be2 local ones and2 remote
ones. Figure 3 gives a formal description of this algorithm:
for node i, its reverse neighborsrk are (i � 2k) mod 2m,
wherek = (m � 1 � bp2
)(p mod 2) + bp2
(1 � r mod 2) ,p = 0; : : : ; R � 1 and r = 0; : : : ; R � 1. In Figure 4(iii),
we illustrate the simplest case of two reverse edges with one
closer to the node and one farther from the node (in the reverse
direction). To nodei, its local reverse neighbor isi� 1, and
its remote reverse neighbor isi� 2(logN�1).
Input: the system sizeN (m = logN ), the number of

reverse edges R, the current node idi
Output: the reverse neighborsrk (k = 0; : : : ; R� 1)

Mirror Algorithm:rk = (i� 2k) mod 2m, wherek = 0; : : : ; R� 1.
Uniform Algorithmrk = (i� 2k) mod 2m, wherek = b (p+1)mR+1 
 ,p = 0; : : : ; R� 1.
Local-Remote Combination Algorithmrk = (i� 2k) mod 2m, wherek = (m� 1� bp2
)(p mod 2) + bp2
(1� p mod 2),p = 0; : : : ; R� 1.
Local-Remote Random Algorithmrk = (i� 2k) mod 2m, whenk is even and less than R,

and the probability of a nodej to berk (wherek is odd
and less thanR) is as follows:Prob(j) = (i� j) mod 2m=Pn=2�1q=1 q mod 2m:

Fig. 3. Algorithms for Adding Reverse Edges for the Chord System

In the next section, we will extend the local-remote combi-
nation algorithm by introducing the concept of randomization
in adding remote edges.

2) A Randomized Algorithm to Add Reverse Edges: In this
section, we will present an approach to add some reverse edges
to nodes which are randomly selected. The basic motivations
are as follows: (1) Randomly selected reverse edges will
make it difficult even for a highly destructive attack to cause
extensive damage. (2) An efficient way to add edges can get
more performance benefits.
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Fig. 4. Reverse Edge Adding Algorithms

a) The Local-remote combination algorithm with ran-
domization (L-R-Random):: With this algorithm, the local
reverse neighbors are still selected following the same way
as algorithmL-R, however, the remote reverse neighbors are
selected in random fashion. Specifically, the probability of
one node to be selected as the remote reverse neighbor is
proportional to the distance between the current node and
that node. With this algorithm, the node which is far away
from the current node has higher probability to be chosen
as a remote node. In this sense, the algorithm is similar to
the above deterministic local-remote combination algorithm.
However, some nodes which are closer to the current node
also have some probability to be selected and so we expect
the performance to be different from the deterministic one.
The formal description of the algorithm is given in Figure 3.
We call this algorithm asL-R-Random algorithm. Figure 4(iv)
illustrates this random algorithm. For nodei, its local edge will
point to (i� 1), while its remote edge may point any nodej
from nodei to node(i � 2logN ), following the probability:Prob(j) = (i� j) mod 2m=Pn=2�1q=1 q mod 2m.

While introducing the reverse edges, either in the determin-
istic or in the random approaches, theRChord follows the
same protocol as Chord in discovering and maintaining those
reverse edges. For discovering the reverse edges, the location
of the remote edges is determined by the algorithm used. For
maintaining reverse edges, when a node leaves the system,
the immediate successor in the reverse direction, takes up the
responsibility of that node, just as the normal Chord does inthe
deterministic case and in the random case, the node chooses
the replacement using the algorithm discussed above.

C. Routing

We need to extend Chord’s routing algorithm to consider
the reverse edges. Chord’s routing algorithm is greedy. Upon
receiving a request, a peer will pick a node among its
neighbors which is closest to the destination in the clock-wise
direction. The algorithm is simple and robust. Our extended
algorithm should also have these merits. Also it is important
that our algorithm is backward-compatible with the original
Chord. That is, if there is no reverse edge, our new algorithm
should be equivalent to the original one.

A simple extension is picking the neighbor among the for-
ward and reverse neighbors which is closest to the destination
in any one of the two directions. For example, in Figure 5, an
enhanced Chord system with256 nodes using2 reverse edges
is present. We set the source and the destination to be70 and0 respectively. Assume the L-R algorithm be used in adding
reverse edges. According to the above simple algorithm, node70’s remote reverse neighbor, i.e. node6 will be selected
because it is the closest to destination0 among all node70’s forward and reverse neighbors. While the algorithm is
simple, also compatible with the original algorithm, it is not
efficient. The basic reason for that is the asymmetry between
the clock-wise edges and the reverse edges. We can use the
same example in Figure 5 to illustrate the inefficiency of such
an extension. In this example, we find that for node70, even
though its reverse neighbor node6 is closer to the destination
than its forward neighbor node198, routing through node6
will take more hops (7 hops) to reach the destination than
through node198 (6 hops).

Forward Neighbor

Node i

64

128

192

198

Reverse Neighbor

0

70

Source 69

6

Fig. 5. Erroneous Routing

From the above example, we conclude that our extension
should consider the asymmetry between the forward edges
and the reverse edges. We need to do some estimation on the
routing capabilities of forward edges and reverse edges. Also
the forward and reverse edges may work together to achieve
good performance. Our routing algorithm should consider
this kind of scenario. However the cooperation between the
two types of edges will be very comprehensive. Considering
all the possible cooperation schemes will lead the algorithm
to be complicated, and hence not robust in dynamic P2P
systems. Care must be taken to make a good balance between
complexity and efficiency. With the above consideration in
mind, we design the routing algorithm in Figure 6 for the
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enhanced Chord system. The algorithm can work for the
system with all different reverse edge adding algorithms.

Inputs : current nodei, destinationj
Outputs :NextHop: the next hop for routing andHopNum: the number of hops taken from nodei

to nodej via Next Hop
1. Find the forward neighbors closest to the destination in the

forward and reverse direction,Ff andFr
2. Find the reverse neighbors closest to the destination in the

reverse and forward direction, sayRr andRf
3. Compute the number of hops taken by each of the four

candidatesHff = uni forward routing(Ff );Hrf = uni reverserouting(Fr);Hfr = uni forward routing(Rf );Hrr = uni reverserouting(Rr);HopNum = min(Hff , Hrf ,Hfr, Hrr ) + 1;NextHop = nodewith min hops(Ff , Hff , Fr,Hrf ,Rf , Hfr, Rr, Hrr);
returnNextHop andHopNum

Fig. 6. The routing algorithm for the enhanced Chord system

In this algorithm, functionsuni forward routing() anduni reverse routing() are used to estimate the average num-
ber of hops from one node to another node assuming only one-
direction edges be used in the routing. The pseudo codes of
two uni-direction routing functions are presented in Appendix
A.

The routing algorithm returns two values: one is the next
hop that nodei should route the query to; another is the
number of hops that the query needs to route from nodei
node to destinationj. We define the latter as theenhanced-
Chord-distance from nodei to nodej. Let’s take the example
in Figure 5 to illustrate this algorithm. We still set the source
and the destination to be70 and0. To node70, its Ff is node198, and itsRr is node6. It has noFr and Rf . Hff =5,
andHrr = 6, henceNextHop is node198, andHopNum
is 6. With this algorithm, node198 rather than node6 will
be selected to be the next hop for node70 to node0. The
enhanced-Chord-distance of node70 to node0 is 6.

Note that this routing algorithm has the following features:
(1) It is compatible to the original Chord routing algorithmin
the sense that: If there is no reverse edge, there will be noFr,Rr andRf . Hence, there is only one candidate nodeFf which
can be selected as the next hop, which we know is the node
that is selected by the original Chord routing algorithm. (2)
It considers the cooperation between the forward and reverse
edges. With this algorithm, four neighborsFf , Fr, Rr andRf
are considered to be the next hop. If nodeFr is finally selected,
the query first is routed toFr in the forward direction, and may
be routed close to the destination along the reverse direction.
The case is similar to nodeRf if it is selected. However,
this algorithm limits to one simple scenario: each routing has
only one chance to change its direction; (3) The difference
in the routing capacity of the forward and reverse edges are

considered by calling the function ofuni forward routing()
anduni reverse routing() during routing decision.

IV. A NALYSIS OF THE RCHORD SYSTEM

In this section we will analyze the impact of introducing
reverse edges to the Chord system. Particularly we will analyze
the impact of the different reverse edge adding algorithms,
i.e. Mirror (M), Uniform (U), Local-Remote combination (L-
R) and Local-Remote combination with Randomization (L-
R-Random) on the Chord system and draw some important
conclusions which would act as guidelines in designing a
robust Chord system.

Figure 7 (i-iv) shows the comparison in performance (the
average path length) for different system sizes under varying
intensity of attacks (differentPr). The reverse edge size is
fixed at 2 for all the cases. From these figures, we can make
the following observations:� Compared with the original Chord system, the resilience

of the RChord system has improved significantly, partic-
ularly for the the U, L-R and L-R-Random algorithms.
This becomes more prominent as the intensity of attack
(Pr) increases. For example, in the case of system with
1024 nodes, whenPr = 0, the performance efficiency of
U, L-R and L-R-Random algorithms are11%, 12% and13% respectively. But when the intensity of attack is0:3,
the performance efficiencies are increasing drastically to44%, 53% and43% respectively, ie., almost three times
the ideal condition. It is easy to believe that the effect of
having a constant number of reverse edges will decrease
with the increase in system size. However our results
show that there is no such significant decrease in the
degree of performance. This can be explained based on
the fact that, as the system size increases, the reverse
nodes though constant in number are at different positions
relative to the node having the reverse edges to those
nodes. The position of the reverse edges also influences
the performance of the algorithms.� Comparing the performance of systems using different
algorithms, we find that the overall performance of the
Mirror algorithm is poor, and ones for other three algo-
rithms vary depending on the different value ofPr:

– whenPr < 0:1, the performance of the system with
different algorithms are similar to each other.

– when 0:1 < Pr <= 0:3, the performance of
the system using U is better than one using L-R-
Random, which outperforms one using L-R. This
observation can be explained by the fact that with
the Uniform algorithm, the whole system is well cov-
ered by the edges (including the reverse edges and
the forward edges). Under mild attack conditions,
the regular routing mechanism still functions. The
coverage of system by the edges will help achieve
good performance.

– whenPr > 0:3, the performance of the system using
L-R is better than one using L-R-Random, which
outperforms one using U. It can be explained by the
fact that whenPr is very large, the chance to use
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the regular routing to reach the destination is very
small. The query is misdirected among the nodes
in the system due to the super routing attack. With
the L-R algorithm, the remote reverse edge is very
useful to redirect the query to the node closer to the
destination, and the local reverse edge can be a good
supplement to the remote reverse edge to send the
query to the destination.

V. RELATED WORK

There is a lot of current ongoing research work in the area
of improving security features of P2P systems. We will discuss
some of them which are closely related to ours. Emil Sit and
Robert Morris discussed the security considerations for P2P
systems in [12]. They propose a set of design principles which
can make the P2P systems, stronger and more secure against
attacks. The PIPE (P2P Information Preservation and Ex-
change) network [13] designed by B.F.Cooper et. al attempts
to protect data stored in a P2P environment from malicious
nodes using replication mechanisms. Other P2P systems like
LOCKSS [14] and Archival Intermemory [15] also use
replication mechanisms similar to PIPE to prevent the denial
of service attack to a certain extent. Unlike these replication
based systems, PoET [16] provide security by setting access
rights to data available in the P2P system. Certain systems
like CFS [17] uses node ID’s which has a hash of the node’s
IP address in them thereby preventing malicious misdirection.
A clone of Chord known as Achord [18] was proposed to
provide censorship resistance. It’s design was inspired bythe
architecture of Freenet [19] which is an unstructured P2P
system.

All the above work in P2P systems are interesting and try
to provide security in the framework of data replication and
access control mechanisms imposed on the data in the system.
Our focus in this paper is to study the impact of basic system
design features on the resilience. We are able to point out
how malicious nodes can take advantage of otherwise good
semantics of the system and we also show how to significantly
improve performance with minimal changes to the system
design.

VI. F INAL REMARKS

In this paper we studied the resilience of the average
path length of Chord to routing attacks. and pointed out the
importance of bi-directional routing.

We then proposed an enhanced Chord system along with
several reverse edge adding approaches and a routing algo-
rithm. Our enhanced system is simple and efficient in the sense
that it outperforms significantly the original Chord systemin
terms of the average path length under routing attacks, even
with very few reverse edges. Another good feature of our
system is that is backward compatible with the original Chord
system.

There are several directions to extend our study potentially:
(1) It will be interesting to theoretically prove the features
of our reverse edge adding algorithms and hence derive an
algorithm, that will give optimum performance. (2) We can

extend our study to other Peer-to Peer systems, and to other
types of attacks, for example dropping and cooperative routing
attacks. (3) We can include other metrics apart from just the
average path length to study.
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APPENDIX A: UNI-DIRECTIONAL ROUTING FUNCTIONS

This section provides the pseudo code for the unidirectional
forward and reverse routing functions. These functions de-
termine hops on the assumption that the routing is to take
place only in that direction. It is relatively easy to do that
for the deterministic edges. However it is harder to do so for
the randomized edges. This can also be regarded as one of
merits of this approach, since it is difficult for the attacker to
figure out a super attack strategy. For the randomized edges,
the algorithm is based on a simple assumption that the node
assumes that every other node would have a random reverse
edge at the same distance as its random reverse edge.
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(iii) N = 8192 (iv)N = 16384
Fig. 7. Performance Evaluation of the Enhanced Chord Systemunder Super
Routing Attack.

Input: Source nodei, destination nodej, the system sizeN ,
and the number of reverse edgesR

Output: the next node and the number of hops need to be
taken from nodei to nodej

uni forward routing()f dist = (i� j)modN ;
/* compute how many factors of 2 add to dist */
for i = logN � 1 to 0hops1 = dist=(power(2; i);dist = dist� power(2; i) � hops1;hops = hops+ hops1;
next i;
returnhops;g

uni reverse routing()f
/* STEPSIZE[ ℄ : Array of location of reverse neighbors
determined by the reverse edge adding algorithms*/dist = (i� j)modN ;
for i = 1 to Rhops1 = dist=(power(2; STEPSIZE[i℄));dist = dist� power(2; STEPSIZE[i℄) � hops1;hops = hops+ hops1;
next i;
returnhops;g

Fig. 8. Unidirection Routing Functions


