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     Abstract 
 

   More and more applications in the Internet are requiring an intelligent service infrastructure to 

provide customized services. In this paper, we present an infrastructure, which can transparently 

and effectively provide customized active-services to end users and dynamically adapt to 

changing customized policies in large distributed heterogeneous environments. The 

infrastructure consists of two components: the policy agent and middleware box. Particularly, 

our technologies include: 1) Generic active-service based infrastructure, where the policy agent 

can integrate policies requested by applications, and middleware boxes can transparently execute 

services and 2) Distributed policy processing in the middleware box. We study two policy 

partitioning schemes to achieve conflict-free policies for distributed policy processing and 

guarantee the correctness of the policy execution. We conduct extensive performance evaluations 

on different schemes proposed. Our experimental results demonstrate that our policy partitioning 

schemes can effectively generate partition-capable and conflict-free policy sets. The evaluation 

results also show that distributed policy processing can achieve over 70 percent increase in 

performance/price ratio with proper assignment of the policy distribution degree compared to a 

purely centralized approach. 
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I. Introduction 
 

   In this paper, we present a distributed policy processing infrastructure which can effectively 

deploy customized services. We also address the effectiveness of policy processing issues in this 

infrastructure. Our proposed distributed policy processing schemes can effectively support large 

number of policies requested by increasing number of applications and services. 

   With the number of new applications and end users increasing, services to be supported in the 

Internet are increasing. For example, services like VPN (virtual private network), NAT (network 

address translator), access control, layer 4/6 routing, and content delivery services are becoming 

basic services, and newer services keep coming up in the Internet. At the same time, customized 

policies requested by services are becoming more complex. For example, some services such as 

content delivery require checking some customized information in the packet payload [1] [2]. 

Services like dynamic VPN service, dynamic-coalition service require the service to be deployed 

for a limited time and are either automatically torn down or canceled by the user. These services 

require the system to be endowed with the capability to dynamically modify the network’s 

application supported profile and provide on-demand services. Some emerging services such as 

active worm defenses have become very important due to several such attacks in the recent past. 

Coupled with their ability to propagate fast, worms have caused significant economic losses [3].  

   Motivated by above observations, we need a network infrastructure provide the ‘active service’, 

which means that we have to efficiently integrate existing services transparently, quickly deliver 

new services, and intelligently adapt to changing network environments. By leveraging the 

existing active network results (breaking with tradition by allowing the network to perform 

customized computation on the user data [4] [5]), we study an active-service based infrastructure 

in this work. In our proposed infrastructure, two components are involved: the service policy 

agent and middleware boxes. The service policy agent, as the service request interface can 

effectively integrate the application policies and distribute the corresponding policies to the 

middleware boxes. The middleware boxes deployed in some functional network locations 

construct an overlay network and cooperate in a distributed fashion to upwardly provide services 

required by applications and downwardly adapt to heterogeneous networks. In this infrastructure, 

service creation is very simple from the user’s perspective. The user/ application service creators 

only need to submit their service requirements to the service policy agent. The service 

requirements can also be changed during run-time by the end users. The service can be 

automatically created/ updated by the cooperation of service policy agent and middleware boxes, 

i.e., the service policy agent translates and integrates the new service policies and/ or updates 
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service policies and distributes it in an understandable format to corresponding middleware 

boxes. The middleware boxes execute the policies to achieve customized service execution 

dynamically during system run-time. The middleware box is the basic functional entity in the 

infrastructure for policy execution. It plays an important role in the efficiency of policy 

processing to support increasing number of services with complex policy requirements.  In this 

paper, we conduct an extensive study on policy processing in the middleware box.  Specifically, 

the contributions of our paper are:  

• We propose a generic active-service based infrastructure. We integrate the policies 

requested by applications and middleware solutions to transparently execute services in 

heterogeneous networks. The middleware are equipped with policies that are generated by 

the policy agent, which translates various application service requirements.  

• We propose distributed policy processing schemes in the middleware box. By distributed 

policy processing, we mean that the line cards of middleware boxes can deploy a portion 

of policy rules and make the policy matching and processing efficient. We study two 

policy partitioning schemes to achieve conflict-free policies in the case of distributed 

policy processing and guarantee the correctness of the policy execution. We then discuss 

enhancements to our approach using available statistical information of policy rules to 

increase the effectiveness of the policy partition. 

• We conduct extensive performance evaluations on different infrastructures and schemes. 

The evaluation results show that our distributed policy processing can achieve over 70 

percent increase in performance/price ratio with proper assignment of the policy 

distribution degree, compared with a centralized approach. The experimental results also 

demonstrate that in order to make the policy both partition-capable and conflict-free, 

newer policies have to be generated, which can be effectively reduced by using policy 

compression schemes. 

   The rest of paper is organized as follows: In Section II, we discuss necessary background and 

related work in this area. In Section III, we present an active-service based infrastructure with two 

important components: service policy agent and middleware box. In Section IV, we present the 

distributed policy processing in the middleware box and describe policy partition-capable 

algorithms. In Section V, the simulation and evaluation results are presented. The summary of 

this paper and future work are given in Section VI. 

II. Background and Related Work   
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   In this section, we discuss background and existing work related to providing ‘active service’. 

These include work on active networks, policy processing/ packet classification, and policy-based 

routing. 

   Traditional data networks passively transport bits from one end system to another. Due to the 

Internet end-to-end design philosophy, the network just conducts the packet forwarding and its 

role in the network is limited [4]. Active networks actually allow the user to inject customized 

programs or deploy policies into the network during run-time, where the routers or switches in the 

network will perform customized computations on the messages passing through them. For 

example, a user in the active network could send a “smart packet” to each router and arrange for 

the program to be executed when their packets are processed [5]. The fundamental benefit of the 

active network is to provide a powerful way for the user or application to drive the customization 

of network infrastructure and allow new services (active services) to be deployed at a faster pace 

than possible in traditional network infrastructures. Much work has been done in active network 

research area. SPIN [6] and SwitchWare [7] are such examples. Most of current work on the 

active networks focuses on designing a platform within the single node to execute the code-

embedded packet [8] [9]. Some work also studied issues in providing active services by designing 

application-specific support services such as, video conference transcoding proxy [10], content-

aware gateway [11], NAT [12], customized many to one communication [13], customized 

multicast communication [14] etc. In this paper we mainly focus on efficiently integrating 

services, transparently providing services and intelligently adapting to changing network 

environments for applications in a distributed fashion.  

   Depending on the service requirement, policy execution can have impacts on the network 

packet, as the service policies are normally executed in the network core device – Routers and 

Switches. The policy execution needs to match the run-time packet with the deployed policies. 

This policy match problem can be generalized by the packet classification problem defined as 

follows: A policy table has N rules – Rj : <C i => A i >, where 1 ≤ j ≤ N and Rj contains two parts: 

1) Condition Ci: Ci[1], C i[2], C i[3],… Ci[D],  a D-tuple, where D is the policy dimension; 2) 

Action set Aj with j actions from the system action set with M actions (1 ≤ j ≤ M). For an 

incoming packet P with the header considered as a t-tuple (P1,P2, ….,Pt), where 1 ≤ t ≤ D, the 

packet classification problem is to find the m rules Rm (1 ≤ m ≤ N) matching among N rules with 

D-tuple, such that Pt matches Cm[t], ∀ 1 ≤ t ≤ D. We call these Rm rules as the ‘best’ matching set 

for the incoming packet P. For example, R = <(1010*, *, TCP, 1024-1080, *), DENY> is policy 

rule with condition C1=(1010*, *, TCP, 1024-1080) and action with DENY. Then, the packet 
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with header (10101….1111, 1110..000, TCP, 1050, 3) matches the Condition C1, and is therefore 

dropped. The packet with header (111111…000, 1111..001, UDP, 1024) does not match the 

condition C1 and is therefore forwarded. Computational Geometry theory has been shown that in 

its fully generality, packet classification requires either O(logND-1) time and linear space or logN 

time and O(ND) space, where N is the number of rules and D is the number of header fields used 

for matching. Specifically, the IP routing lookup is one of the simplest examples of the above 

problem, where D is 1 and the action is always forwarding. Much work has been done on 

effective IP routing lookup schemes such as binary tries, LC tries and controlled prefix expansion 

[15]. Due to service requirement such as network traffic management, firewalls, VPN, high 

dimensional packet classification/ policy processing has been studied with interest and 

approaches like [16] can effectively work at two-dimensional packet classifications. Bit 

Parallelism and RFC (Recursive Flow Classification) [17] and Cisco Turbo ACL [18] introduce 

new packet classification schemes which only work well in average cases. Work in [19] translates 

the high dimension packet classification problem to low dimension assuming that the utilized 

space in some dimensions are small; TCAM (Ternary Content-Addressable Memory) [20] 

provides hardware-based algorithms to support parallel matching for different fields, which 

currently are only suitable for small policy tables. Generally, most of the solutions are service 

specific or have some limitations and are not suitable for policy processing in our infrastructure. 

Our distributed policy processing is more generic and can effectively provide different service 

requirements.  

   Due to requirements on QoS (quality of service), policy-based routing defines a router/switch as 

one, configured to use different criteria than just a distance metric to decide which peer to 

forward a packet to. Policy routing is defined to configure a router to inspect and modify the 

attributes of routes to provide a flexible mechanism to route IP traffic to a destination with QoS 

requirement. Especially, the policy-based routing is one type of ‘active service’ for QoS, which is 

actively reconfiguring the packet path to satisfy the QoS requirement. In [21], the policy routing 

problem is initially defined with three models: policy-based distribution of routing information, 

policy-based packet filtering/ forwarding, and policy-based dynamic allocation of network 

resources. Several products have implemented this feature [22] [23]. Most of policy-based routing 

schemes only focus on the IP layer to provide QoS. Our approach targets policies in different 

layers. Thus, our approach extends work on policy-based routing and provides a generic platform 

to support requirements of different services.  

 
III. Active-Service based Infrastructure 
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   In this section, we present the active-service based infrastructure. We first give an overview of 

the proposed infrastructure and then introduce its basic components and its service workflow.  

   
A. Overview  
 
    Service deployment is the fundamental aspect of the promise of next-generation network 

applications. With unprecedented demand to create and deploy new revenue-generating and cost 

saving services quickly, the next-generation networks are compelled to provide scalable service 

deployment infrastructures to enable the service creation. Active networks break with tradition by 

allowing the network to perform customized computations on the user data. For example, a user 

on top of an active network could send a customized compression program to a node in the 

network and request that the node execute the program when processing its packets. However, 

allowing the user to directly configure the network brings several management and security 

concerns to the network. We leverage the existing active network results and present an active 

service based infrastructure, which can be used to efficiently integrate services, transparently 

provide services, and intelligently adapt to changing network environments for applications.  

            

 

                 
 
                                                                            
 
 

       Figure 1: Host/Network Middleware 
 
 
 
 
    
 
 
 

 
 
                      Figure 2: Policy Agent-based System 

 

   In this infrastructure, there are two important components: network service policy agent and 

middleware-box. In simple terms, the network server policy agent becomes the interface between 

the user/ application and network itself. It can effectively integrate the user/ application 

requirements and translate them to a format understood by the programmable network devices, 

i.e., middleware boxes. The middleware boxes execute the customized policies to achieve the 
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service deployment in the network. The middleware boxes can be deployed in some functional 

locations (host, network edge or network core) as a middleware in the network. They construct an 

overlay in the network data plane and cooperate in a distributed fashion to upwardly provide and 

activate services required by applications and downwardly adapt to heterogeneous networks as 

shown in Figure 1.  

 

B. Components  
 

1) Policy Agent 
 

The main functionality of the service policy agent is policy translation and global consolidation 

in the system. The functional components of the service policy agent are shown in Figure 2. All 

users/ applications provide their customized service requirements such as, VPN traffic 

requirement matrix, firewall access control list, intrusion detection requests etc to the service 

policy agent. The service policy agent can now translate the high-level application requirements 

into the defined policy format for the middleware box. With secured policy communication 

protocols, the middleware box can obtain and execute the policies for customized services. 

According to application/ service requirements and the network information, the service policy 

agent includes the following functionalities:  

    The correction check of application/service policy requirements: It includes two separate tasks. 

The first one is the syntax check, which checks the syntax of the application policies. The other 

one is the consistency check, which checks for any conflicts between different policies [24].  

   Static resource optimization: This task has the objective of maximally satisfying the service 

requirements with the constraints of system resources. For example, VPN users may have 

multiple aggregation bandwidth requirements from one network to another; our service policy 

agent can find optimal routes to globally satisfy the application requirements with the limited 

network bandwidth constraints by using previous results [25] [26].  

Policy optimization: Here, middle-level policy code for each middleware box will be generated 

and redundant functions among services are deleted. Therefore, the execution policy can be 

optimized to a certain degree. As our infrastructure supports dynamic service creation, policies 

for executing services can be changed at system run-time.  

    Policy generation and distribution: According to the network information and service 

requirement, the service policy agent can find the service logic and locations to deploy policies. 

Then, it will distribute the policy to corresponding middleware boxes. 

 
2) Middleware box 
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   Middleware normally refers to the software layer between the operating systems – including the 

basic communication protocols and the distributed applications that interact via the network [27]. 

Our middleware box can be software/ hardware inserted between physical networks and 

applications that transparently and efficiently maps application requirements to what the network 

provides, similar to the functionality of operating systems. In this sense, we term our 

programmable device as the middleware box. The middleware box is the basic unit to integrate 

and execute policies in the infrastructure. Figure 3 shows the component architecture of the single 

middleware box with following modules: 

   Signaling Module (SM): This module provides the communication mechanism between the 

middleware box, service policy agent, and other network entities to exchange the network 

information and policy rules. 

   Policy Parse Module (PPM): This module provides the basic parser functionality to support the 

policy configuration of the middleware box which is similar to the Cisco IOS command parser in 

router/ switch platforms. This module takes the output from the service policy agent. 

   Policy Integration Module (PIM): This module takes the input from different modules, i.e., run-

time system data, policy parameters and effectively integrates policies. This module also takes the 

responsibility for the policy partition, which will be described in a later section. The output of this 

module will be downloaded to the policy rule table in the data subsystem.  

    Traffic Processing Module (TPM): This module is related to the data subsystem, which is 

responsible for processing the on-going traffic according to policy rules. The status variables 

maintain some run-time system information from the traffic processing module and provide this 

information to policy integration module.                                                             

                           

Signaling
Module

Traffic Processing Module

Data Flow

Policy
Integration Module

Policy Parse Module
(configuration Command)

Control Subsystem

Data Subsystem

Status
Variables

 
                                                                  Figure 3: Middleware Box Architecture 

   
C. Workflow 
    
   Creating new services in distributed networks require a unique approach. In this section, we 

introduce the service creation procedure and demonstrate some service examples which can be 
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deployed in our infrastructure. The service is defined as network capability or capability made 

available to end users and applications. In order to deliver a service, the service logic must be 

created, distributed to the network and executed by the network equipments. The detail workflow 

is given below. 

   Service creation: The service logic is actually created. The user/ application service creator can 

submit its requirement, which can be processed by service policy agent. Based on the system 

information, the service policy agent translates, analyzes and generates the corresponding policy 

rules for corresponding middleware boxes. 

   Service logic distribution: The translated policies are distributed to the place where it is needed 

to be applied. We assume the service policy agent is domain-based device and only controls 

middleware boxes in its own domain. The following generic communication protocols between 

the service policy agent and middleware-box can be applied: 1) Secured topology auto-discovery: 

When the middleware boxes and service policy agent are deployed in the network, the service 

policy agent broadcasts advertisement messages encrypted by its private key to advertise itself as 

the policy controller with limited TTL value. Only middleware boxes located within a certain 

network area can receive the advertisement message. When the middleware box receives this 

message, it will decrypt the message with its configured agent’s public key to authenticate the 

identity of the agent. If the authentication procedure is successful, the middleware box will 

forward the advertisement to its neighbors. Finally, the middleware boxes and service policy 

agents will build a self-organized virtual overlay network to provide services. 2) Secured policy 

download: After the middleware box finds its service policy agent, it will send a request to the 

service policy agent and get the corresponding policies. Care must be taken about the integrity 

verification during downloading of the policies. 3) Run-time control protocol: During the system 

run-time, the service policy agent updates new service requests to the middleware box according 

to the new service requirements or the policy changes for the existing services. 4) Inter-domain 

policy agent protocol: When networks become large, hierarchical domain-based approaches will 

make our system scalable. In order to coordinate the policy execution in multiple domain 

environments, domain policy agents in different domains are grouped as an inter-domain 

controlling system to coordinate the policy execution globally. 

    Service execution: When the policies are received by a middleware box, it will translate them 

to a format that it can locally understand, such as a policy table. With the policy execution of 

middleware box, the network is actually changed to deliver the service. This is typically in the 

middleware box that acts in real-time on packets carried by the network. 
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   According to above workflow, we demonstrate an example taking the case of active worm 

defense services. Active worms, exploiting security or policy flaws in the system can spread 

throughout the Internet in a very short time [3]. As the middleware box is a device that is inserted 

across various locations in the network, it is external to the network. With this strategy, no change 

is needed to the current network and protocols and highly transparent worm defense services can 

be achieved. The defense system consists of the following. 1) The service policy agent 

autonomously translates the defense requirement and selects a number of middleware boxes as 

the worm detection overlay system. The worm detection system can provide the service to detect 

the presence of worm attack in the network by monitoring worm scan traffic. We assume that 

worm detection system can effectively detect the worm by using monitoring methods [28]. 2) The 

service policy agent connects to the corresponding middleware boxes and deploys the worm 

monitoring policies. For example, the middleware boxes monitor the worm scanning traffic, i.e., 

the scanning traffic to unused IP addresses and inactive port (inline with existing work like 

Honeypots and Internet motion sensor [29][30]). When one middleware box detects potential 

worm intrusion events, it will send alert events to the service policy agent. As the service policy 

agent has more network information, i.e., network topology, attack alert events from other 

network middleware boxes, it can make an worm detection and defense decision, i.e., finding the 

location of the worm attacker, allocating system limited defense resource near to the worm 

attacker to perform the worm traffic throttling, letting other middleware boxes in its domain 

cooperate etc. In this sense, the worm detection and prevention can be effectively and quickly 

achieved by the cooperation of network-based middleware. 3) The service policy server deploys 

the worm defense policies to corresponding middleware boxes, like blocking certain active attack 

flows and blocking traffic from certain worm infected networks.    

IV. Policy Processing in Middleware box 
 
   The middleware box is the basic functional entity in the architecture for policy execution. It 

plays the key role in the efficiency of policy processing to support increasing number of services 

with complex policy requirements. In this section, we will first present the distributed policy 

processing model and then study the policy partition problem which makes the distributed policy 

process feasible.  

    
A.  A Distributed Policy Processing Model 
 
1) Processing Models 
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We take the generic architecture of the IP router as the base line design approach for the 

middleware box, which includes the supervisor card, the router backplane and line cards [31] 

[32]. The most important module for the policy processing is PPE (Policy Processing Engine), 

which can be developed by expensive TCAM [22]. The PPE can be located at the supervisor and 

line cards. The PPE maintains the policy rule tables, performs the policy matching and executes 

the corresponding policies for the incoming packets. In the following context, we will use LPPE 

to represent the PPE located at the line card and SPPE to represent the PPE located at the 

supervisor card. We assume that the PPE is the most expensive subsystem in the middleware box 

and it is the key module for the performance of the middleware box.  

Depending on the location of the PPE, we have the following two models: 1) Centralized 

Policy Processing: The PPE is located only at the supervisor card. While this type of architecture 

has been widely deployed in current designs, policy processing cannot be sped up due to 

centralization being a bottleneck. 2) Distributed Policy Processing: Each inbound/ outbound line 

card maintains the LPPE. The policy matching procedure is executed for an incoming packet at 

the LPPE located at the line card locally. If a match cannot be found, the packet will be 

forwarded to the supervisor card, which conducts the policy matching and execution through the 

SPPE. We emphasize here that for a particular policy, the delay in finding a match is less if it is 

found in the LPPE than when it has to go the SPPE.  
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                           Figure 4: Distributed Policy Processing and Queuing Model 
 

The Distributed Policy Processing approach gives us additional flexibility in policy 

distribution among LPPE and SPPE, hence achieving high scalability and efficiency. We describe 

it in detail below.  

    In the distributed policy processing model, portion of policies can be deployed at the LPPE 

locally. One fundamental question is how to select subset of policies to be deployed at the line 

cards. The most intuitively way is just random selection, where each policy has equal chances to 
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be selected. However, an alternate, albeit better approach to use the statistical information of 

policy rules during deployment of policies that can effectively increase the policy matching hit 

rate at LPPE and improve the overall packet policy matching delay. The detailed scheme is 

described in the following.  

   In the distributed policy processing model, suppose the middleware box has deployed N number 

of policies, the Policy Distribution Degree defines the percentage of N policies to be deployed at 

the LPPE in the line cards locally. In this paper we let the notations r and PDD to denote the 

Policy distribution Degree interchangeably. When PDD ( ]1,0[∈ ) is 0, the policy processing 

becomes purely centralized. Figure 4 shows the distributed policy processing and its 

corresponding queuing model [33]. As there are rN
NC possible choices, one question is how to find 

the best one. Practical data from real routers show that the routing table at higher speed backbone 

routers contain few entries with prefixes longer than 24-bits. This is verified by a plot of prefix 

length distribution of backbone routing table from real configuration devices. For example, 

99.93% of the prefixes are 24 bits or less [17]. The distributed policy processing can be enhanced 

by making use of this fact. 

   We can assign each policy Ri: <C i, Ai > with a weight Wi in the policy table with N entries. The 

weight Wi can be calculated according to the probability information of the condition Ci or other 

considerations. After sorting the partitioned policy rule table based on the weight Wi assignment, 

we get r*N  number of policies with largest weight assignment and deploy them in the line cards.  

This improves the probability of finding a matching policy in the line card locally improving the 

performance. As the Ci is composed of k-tuple <Ci1,Ci2, …,Cik>, the field Cij in the policy table is 

assigned weight Wij according to the known probability distribution information. As we assume 

that the probability of Cij for all j = 1,…, k are independent, the weight for Ri can be easily 

calculated by ∏ =

k

j ijW
1

. For the policy distribution schemes, we have: 1) Weight assignment 

(WA) is the scheme to assign r*N  number of policies with highest weight as the candidate for 

LPPE. 2) Random Assignment (RA) is the baseline scheme, where each policy is randomly 

selected with equal chance to be the candidate for LPPE. In this scheme, r*N  policies are 

randomly chosen and deployed in the line cards. The WA scheme performs better that the RA 

scheme and it is proved in the following Theorem. 

   Theorem 1: There are N policies {R1, R2, …., RN} in the policy set, λ is the request rate and each 

policy rule Ri has weight assignment Wi, where W1 > W2 > … > Wn and ∑ =
=n

i iW
1

1. With K = 

r*N  policies deployed at the line card, the WA scheme is better than the RA scheme in terms of 

successful policy matching rate at LPPE. 
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    Proof: 1) Calculating the number of successful policy matches in the line card. 

    For the WA scheme, the K policies with the largest weights are deployed in the line card and 

the number of successful matches is given by )(
1∑ =

k

i iWλ .  For the RA scheme, the number is 

given by NK /λ . 

2) Derive that NKW
K

i i /)(
1

λλ ≥∑ =
 

   Assume that NKW
K

i i /)(
1

λλ <∑ =
. Then there must exist a ],1[,1 KiNWi ∈< . On the other 

hand, NKNW
K

i i /)()(
1

−>∑ =
λλ . This means there exists a ],1[,1 NKiNWi +∈> . As Wi is 

sorted, there is a contradiction.         Q.E.D. 

 
2) Performance/Price Analysis 
 
   To make the analysis feasible, we make following assumptions: 1) The incoming packets 

follow Poisson arrival rate λ, which contributes to the packet queuing delay in both LPPE and 

SPPE. 2) The packet transmission delay between LPPE and SPPE is constant. The system has K 

line cards and packet arrivals at each line card are also Poisson with a mean rate of λ / k. 3) 

Packet pre-processing time in the line card and supervisor card are exponentially distributed with 

means of 1/µ1 and 1/µ2. 4) The packet delay in the middleware box include the packet matching 

and execution time for the matched policy, the packet transmission delay between the LPPE and 

SPPE and the queuing delays in the LPPE and SPPE. The packet matching time is determined by 

the policy size and policy complexity defined by the policy dimension. The policy execution time 

is also constant. 5) We assume that the cost (price) of PPE is the main price of the whole system.  

   With the increasing number of policies and dimensions, more memory and CPU resources are 

required for policy matching and processing. The price function is defined as follows [19][20].  

    ),( DNGC = ,             (1)  

where N is the number of policies, D is the dimension of the policy rule. The price is given 

by, ,*),( 2/
0

DNKDNGC ==  where K0 is a constant. 

    By using the M/M/1 queuing model in Figure 4, the average delay can be expressed as 

         

)
)1(

1
(

)
)1()/)((

()
)/)((

)1(
(

2
2

2
2

1
1

1
1

d
rbru

r

d
rbru

rb
d

kru

rb
d

kru

br
Td

+
−−−

−+

+
−−−

++
−

++
−

−=

λλ

λλλλ                         (2)      

        ),(1 DrNFd =                       (3) 

                  ),(2 DNFd = ,                    (4) 
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where Td is the total delay, d1 and d2 are delays for packet policy matching in LPPE and SPPE 

(note that SPPE has the whole policy table and LPPE has r*N  policies.) respectively; ]1,0[∈r  is 

the Policy distribution Degree, b is an adjustable parameter which defines the probability of 

finding a match in the LPPE, F(x, y) represents the packet delay for policy matching and policy 

execution and is given by K2*y*log(x) (where, x and y represent the policy number and policy 

dimension respectively. We consider the optimal search time for the table with size x is log(x) and 

each policy with y dimensions needs O(y) search time). The three components of equation (2) are 

the processing delay and queue delay for packet processing in LPPE, LPPE/SPPE, and SPPE, 

respectively. 

   From (1), we can calculate the price of system as follows: 

                                  ),(1 DrNKGC =                          (5) 

       ),(2 DNGC =               (6) 

                                           
221 )( CCCP +=              (7), 

where C1 is the price of line cards, C2 is the price of supervisor card, K is the number of line 

cards, G(x,y) is the price function defined in (1) and the P is the comparative price compared to 

the standard price for the centralized architecture. 

   Combined with (2) and (7), the Performance/Price (PP) metric is defined as the achieved 

performance with the price spent and is given by, 

                  
PT

PP
d *
1=                           (8). 

   We note that it is natural that the performance may not increase in the same order as price 

increase for some complex systems. The simple version of PP provides general relationship 

between the price and performance benefit for the analysis purposes in this paper. More complex 

price-benefit estimations can be a part of future work. 

 
B. Policy Partition 
 

1) Problem Definition 
 

    To achieve the distributed policy processing, a portion of policies need to be deployed at the 

LPPE. In order to guarantee the correctness of policy execution for the policy distribution, the 

policies at the LPPE should not have any conflict or overlapping with other policies at both the 

LPPE and SPPE. We define the following problem - Policy Partition-capable Set (PPCS) 

Generation Problem: Given policy set C outputted by algorithm X, each rule in set C is a 2-tuple 

{P i: <Ci, Ai>, n ≥ i ≥ 1}, where Pi is the entity of policy rule, Ci denotes the Condition, and Ai 
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denotes Actions. Mi is the K-dimensional rectangular defined by condition Ci. We say that 

algorithm X solves this problem if 1) Each Mi is a rectangular-related subset in T, where T = M1 

∪…∪Mn. 2) Mi and Mj have no overlap, i.e., Mi ∩ Mj  = 0, whenever i ≠ j.  

   When the policy set S is generated as PPCS, we can partition the policy set S into several 

different smaller sets denoted by S1,…,Sm, where  S1∪…∪Sm = S.  Thus, each Si can be deployed 

separately while guaranteeing the correctness of policy execution. In other words, this policy set 

with PPCS can easily meet the requirements for distributed policy processing mentioned above.   

   The importance of PPCS is demonstrated by following example: Company network X has two 

smaller policy subnets namely S1 and S2, where S1∩S2 = S12. We assume that company has the 

following ACL and IPSEC policies deployed in particular middleware box by the policy agent: 

1. From S1 To X allow only port 100-200 

2. From S2 To X allow port 100-400 

3. From X to S1  deny port 100-500 

4. From X to S2  deny port 100-1000 

5. From S1 to S2 encrypt all ports 

6. From S1 to S2 authenticate all ports 

If policies 2, 3 and 6 are deployed at line card locally in the policy distributed processing, there 

might be the following issues: i) S12 accessing to X with port 300 will be allowed, which has the 

conflict with policy 1. ii) The X accessing to S12 with port 600 will be allowed, which has the 

conflict with the policy 4. iii) Packets from S1 to S2 are only to be authenticated without 

encryption. It actually violates the security of requirement policies, as the policy 5 needs the 

packets from S1 to S2 to be encrypted. So, we can say that if the incoming packet matches with 

several policies, then all of them must be treated together as the ‘best matching policies’ 

according to defined policy requirements. If one policy is in the policy set of LPPE, and the one is 

in policy set of SPPE, the inconsistency may happen. There is no way for the LPPE to know that 

packet has to go to the SPPE if the matching has been found locally. With the increasing number 

of policies for different services, this issue becomes worse. 

   In the next section, we will design the detailed algorithms to achieve the PPCS. 

 
 2) Policy Partition Algorithms 
 

    The basic idea of policy partition algorithm is to check the relationships among policies and 

generate the policies which do not have overlaps and conflicts. In order to partition the policy set, 
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we look at the relationship between policy rules: Pi: <Ci, Ai > and Pj: <Cj, Aj >. We need consider 

both the condition and action tuples for the policies. The detailed description is listed: 

    Condition Relationship: We define several operations to describe the relationships between 

hyper-rectangular regions Mi and Mj constructed by conditions Ci and Cj: 

i)   R1 - Complete disjointed relationship: ;&, ijji MMMMji ∉∉≠∀                                         

ii)  R2  - Strict superset or subset relationship: ;|, ijji MMMMji ∈∈≠∀   

iii) R3  - Equal relationship: ;, ji MMji =≠∀  

iv) R4  - Partial overlapping relationship: .0, ≠∩≠∀ ji MMji  

    Action Relationship: We assume that both action Ai and Aj are single action. We define 

following possible relationships between two actions Ai and Aj.  

i)   R5 - No Order rule: ;ijji oAAoAA =  

ii)  R6 - Order rule: ;jiji oAAoAA ≠  

iii) R7 - Cancellation rule: ;NULLoAA ji =  

iv) R8 - Inclusion rule: ;| jjiiji AoAAAoAA ==  

ο  represents the operation between the two actions. We state that actions operation can be 

applied if they satisfy above rules. 

   In the distributed policy processing environment, policy partition task can happen at the system 

initial time and system run-time. Our algorithms need to handle both situations.  

   Static Partition Set Generation: The procedure for the policy partition with no conflicts needs 

to be conducted during the system initial time. The task is to generate a PPCS policy set by given 

a non-PPCS policy set. The detailed algorithm is described as in Figure 5. The basic idea of this 

algorithm is to conduct the condition verification for relationships with R1-R3, we can apply the 

four rules – R5-R8 to construct the PPCS. For the actions with overlapping relationship – R4, a 

new rule is added to cover the overlapping region and construct the PPCS. In this algorithm, two 

basic functions CheckRelationship and ResolveConflict are used (detailed description is provided 

in Appendix A) to verify the condition relationship to eliminate conflict resolution. Note that our 

algorithms can always transform the policy set into PPCS policy set. However, the number of 

output policies in PPCS may be larger than the one of input policies. 

   The time complexity for functions CheckRelationship and ResolveConflict are both O(D), 

where D is the policy dimension. The worst case time complexity of the function 
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ConstructPartitionCapablePolicySet is O(N(N+C)D/2), where N is the size of policy table and C 

is number of policies which are overlapping. 

   In Algorithm 1 shown in Figure 5, following two partition schemes are considered: 1) BPPS 

(Basic Policy Partition Scheme): It checks only the condition relationship between policies, i.e., 

equal, subset/superset or overlapping. Thus, new policies are generated and all the generated 

policies are disjointed. 2) OPPS (Optimized Policy Partition Scheme): It is easy to see that the 

output policy set by BPPS has some redundant policies, the policy action rules R5-R8 are used to 

compress the policy set and make the number of output policies decrease as much as possible. 

 

         Algorithm 1: ConstructPartitionCapablePolicySet (B, C, Enhance) 

    // Input: B - input policy set with #B policies, Enhance= true means that BPSS algorithm is 

                 //      configured 

                 // Output: C - output policy set with #C policies 

   // Function: go through all the entries in the policy table to check the policy relationship and 

                // resolve conflict. If the new policy is generated and the system is configured with BPSS    

                // optimization mode, the new added policies need perform the same procedure again with 

               //  existing policies 

1.          initiate a new set F = empty 

2.          C + = B[1] 

3.          for i = 2 to #B 

4.                 F = B[i] 

5.                 for j = 1 to #C 

6.                       G = B[j]  

7.                          flag = CheckRelationship (F, G)  

8.                          temp = ResolveConflict(F, flag) 

9.                         if Enhance is true &&  a new policy is generated at ResolveConflict  

10.                                  Based on R5- R8, verify any compression can be done with 

                                           adding new policy to exist policies        

11.                        C += temp 

12.        End 

 

          Figure 5: Algorithm for the Policy Partition to remove conflicts 

    To better understand algorithm 1 with BPPS and OPPS schemes, we illustrate the following 

example: Assume R1 : <Cx , A1>, R2 : <Cy , A2>, R3 : <Cz , A3> are three policies, where Cx= C1 | 

C4 | C6 | C7 , Cy= C2 | C4 | C5 | C6 , and Cz= C3 | C5 | C6 | C7 denote the conditions shown in Figure 6. 
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Figure 6: Example of Policy Partition 
 

    We also assume that the policy rules - A1, A2, and A3 satisfy following operations, i,e., A1 o A2 = 

A1, A1 o A3 = A1 and A2 o A3 = A2. By using above algorithm, a new policy rule will be added for 

the overlapping condition. After calculating all the overlapping regions, the policy partition-

capable set with 7 policies is listed as follows by the BPPS scheme: 

 C1 => A1, C2 => A2, C3 => A3, C4 => A1&A2,  

C5 => A2 & A3, C6 => A1 & A2 & A3, and C7=>A 1 & A3                                                                              (9) 

      By using the action operation rules among A1, A2, and A3, we get 

  C1 => A1, C2 => A2, C3 => A3,  

             C4 => A1, C5 => A2, C6=>A 1 and C7 =>A1                        (10)  

      By using the OOPS scheme, we achieve following final result: 

 C1 | C4 | C6 | C7 => A1, C2 | C5 => A2, C3 => A3                                               (11)  

      Some examples of deleting operations are listed as follows:  

      1) When the policy R1 is deleted, the output rule set is  

  C2 | C5 => A2, C3=>A 3                                           (12) 

      2) When the policy R2 is deleted, the output rule set is  

 C1 | C4 | C6 | C7  => A1 

 C3 => A3                                               (13) 

      3) When the policy R3 is deleted, the output rule set is  

 C1 | C4 | C6 | C7 => A1 

 C3 | C5 => A3                           (14) 

   Dynamic Partition Set Generation: During the system run-time, the application has some 

policies to be applied (add/ remove) to the middleware box and this procedure needs to run again 

to guarantee the new policy set to be PPCS. We want the policy update have minimal impacts on 

run-time packet processing. One practical way is for middleware box to be implemented as a dual 

mode with two policy processing engines: one module is active and the other module is at 

C1 

   C2 

C3 

C4 

C6 

C7 

C5 
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standby mode. When the policy update is done, the standby module conducts the policy update 

and PPCS generation without impact on the active mode. When the policy partition task is done, 

the standby module takes over to be the active and active module becomes the standby module. 

The basic idea is similar to the Algorithm 1. The detailed description is in Appendix A. The worst 

case execution times of AddNewPolicy and DeletePolicy algorithms are O(D(N+C)) and 

O(D(N+C)), respectively.  

V. Simulation Results and Analysis 

 
   In this section, we present results from the evaluation of our system. We first discuss our 

experimental model before presenting our results. 

 

A. Experimental Model 
 

• Performance Metrics: In this paper, we propose a distributed architecture for policy 

processing and algorithms for policy partitioning and distribution. We evaluate the 

performances of the centralized and the distributed architectures using the Delay defined 

in Formula (2) and Performance/ Price metric (PP), defined in Formula (8). We also 

evaluate the performance of the policy distribution schemes using the PP metric. We use 

the number of increased policies and total execution time metrics to study the 

performance of policy partitioning. As this paper is focusing on the single middleware 

box, we do not consider the bandwidth cost for the policy distribution and propagation 

delay for the policy distribution.  

• Evaluation Systems: Our simulation system includes a middleware box including K line 

cards and 1 supervisor card. Each subsystem is simulated by a M/M/1 system based on 

input rate and capacity. The SPPE in the supervisor card has the full copy of the policies 

table and each LPPE in the line card locally has PDD times the number of policies. The 

evaluation setups are listed below: 1) The tuple <K, PDD, W, N, D, λ, µ1, µ2 >  defines 

the configuration parameters: K denotes the number of system line cards, PDD denotes 

the Policy Distribution Degree, },{ RAWAW ∈  denotes whether WA (Weighted 

Assignment) or RA (Random Assignment) scheme is adopted for policy distribution, N 

denotes the total number of policies, D denotes the policy dimension, λ, µ1, and µ2 denote 

the policy request rate (Poisson Process), capability of line card and capability of 

supervisor card respectively. We will use ‘*’ for a parameter in the tuple representation 

when it is not be used in the simulation scenarios. 2) To evaluate the PP metrics for WA 
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and RA schemes, we randomly generate 10000 three dimensional policies and each 

dimension is generated based on normal distribution (N(300,300), mean=300 and 

variance=300, respectively). 3) To evaluate the performance of policy partition 

algorithms, ]100000,1000[∈n  number of two-dimensional policies (each dimension is 

generated by normal distribution (N(300,300) and 40 policy actions are uniformly 

generated in [1,40]).  

• Evaluation Method: We use simulation to obtain performance data. 
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    Figure 7: Delay with varying Policy Distribution Degrees 
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Figure 8: PP with varying Policy Distribution Degrees       

 
B. Performance Results and Observations 
 

Due to the space limitations, we present only a limited number of cases here. However, the 

conclusions we draw here generally hold for many other cases we have evaluated. 
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Performance/Price Versus Policy Request Rate
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       Figure 9: PP with different PDD under varying Policy Request Rate 

 

1)  Performance for Different Policy Distribution Degrees 

    We present the delay and PP results while comparing different architectures by varying the 

PDD in Figure 7 and 8. The system configuration here is given by <10, *, {RA}, 5000, 5, 2500, 

3000, 4000>. In the legend of Figure 7, validation shows the validation results provided by 

Formula (2). We make the following observations.  

• When PDD is set to 0, the system is purely centralized. When the PDD is set to 1, the 

system is purely distributed. As expected, the delay in centralized system is longest and 

the delay is decreasing with the increase of the PDD. Both the cases result in poor 

performance of PP. Although the centralized architecture has smaller price, it suffers 

from the bottleneck of a single centralized SPPE resulting in low PP. The totally 

distributed architecture results in lower processing delay with higher price, resulting in a 

poor PP. Thus both the extremes are not desirable. In the following, we report our 

performance results. The data obtained from analytical derivations in Section IV.A are in 

very good agreement with our simulation data. 

• PP increases first and then decreases with increasing PDD. This is due to the trade-offs 

as discussed above due to which both extremes result in poorer performance. Thus a 

carefully chosen PDD will result in high values of PP. In this particular configuration, 

when PDD is 0.4, PP is 1.8, which is 70 percent and 300 percent higher compared to the 

purely centralized and pure distributed architectures respectively. 

2) Performance Comparison versus Policy Request Rate 
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    We present results while comparing different architectures (different PDD) under varying 

policy request rate, λ in Figure 9. The system configuration is given in the Legend in Figure 9. 

We make the following observations:  

• PP decreases with increase in λ. Also the fall in PP is steeper as λ increases. This is due 

to the fact that as the request rate becomes larger it causes longer queuing delays, 

resulting in poorer performance. 

• Both the extreme cases of purely centralized and purely distributed architectures perform 

poorly. A system in between the two (PDD = 0.4) performs better than both extreme 

cases. 
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   Figure 10: PP with different policy distribution schemes under varying Policy Request Rates 

 

3) Performance Comparison of Different Policy Distribution Schemes 
 

    Figure 10 shows the performance for different policy distribution (WA and RA) schemes under 

varying policy request rates. The system configuration is <10, 0.5, {RA or WA}, 10000, 3, *, 

3000, 4000>. Here, we make following observations.  

• The performance of WA scheme outperforms that of RA scheme. As shown in Theorem 1, 

more packets can find matches in the line card locally by using the WA scheme, which 

makes the overall packet processing delays smaller and achieves higher PP. PP decreases 

with the increase in λ for both schemes. As expected, with increase in policy request rate 

queuing delays are longer, resulting in poorer PP. 
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Figure 11: Increase in Output Policy Number for different Policy Partition Algorithms 
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Figure12: Execution Time of different Policy Partition Algorithms 

 
  4) Performance of Policy Partition Algorithms 

   Due to our policy partitioning algorithms, the total number of output policies increases. Figure 

11 shows this trend. Figure 12 shows the total execution times for the two partitioning algorithms 

(BPPS and OPPS) we propose in Section IV.  

• As expected, with the number of input policies increasing, there are more chances of 

overlapping policy conditions and action conflicts. Thus, newer policies have to be 

generated. We argue that by using the policy compressing technologies, the number of 

increased policies can be effectively reduced. 

• With increasing number of input policies, the execution time of algorithms also increases. 

As the OPPS needs to check the policy actions and optimize the number of output 

policies, it requires more time for constructing the policies. 

VI. Conclusions and Future Work  
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  In this paper, we propose a generic active-service based infrastructure. We integrate the policies 

requested by applications and middleware solutions to transparently execute services in 

heterogeneous networks. The two key components of the infrastructure are the policy agent and 

middleware box. We propose scalable policy processing schemes in the middleware box. To the 

best of our knowledge, this is the first study addressing this issue from this aspect. In summary, 

our technology includes the following: 1) Generic active-service based infrastructure. 2) 

Distributed policy processing in the middleware box. We conduct extensive performance 

evaluations on different architecture and algorithms. The evaluation results show that the 

distributed architecture can achieve over 70 percent increase of performance/price ratio with 

proper policy distribution degree compared to a purely centralized approach. The experimental 

results also demonstrate that to make the policy be both partition-capable and conflict-free, newer 

policies have to be generated, which can be effectively reduced by using policy compression 

schemes.  

   Our work has broad impacts. With a tremendous spurt in newer and customized services 

demanded by Internet applications like VPN, NAT, access control, content delivery services, 

defense services against attacks etc., it is increasingly difficult to deploy such services in today’s 

existing Internet. Such services can be easily deployed with our approach presented in this paper. 

Another benefit of our approach is the ease in which service policies can easily change during 

system run time without any modifications to the existing infrastructure. To summarize, our 

infrastructure is general enough and a wide spectrum of customized services can be deployed 

with it. 

   There are several directions to extend our study. As the middleware box is the generic 

functional entity to provide different services, our design approach can easily be adopted in other 

areas like, high performance firewall systems, content delivery gateways etc, which will be part 

of our future work too.  
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Appendix A: 
  
Basic Functions for Policy Partition: 

       Algorithm 2: AddNewPolicy(F, B, C) 

        // Input: F - new policy and B - policy set with #B policies 
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                     // Output: C – PPCS policy set   

                     // Function: Check the relationship between F and the entity of policy set B; based on the 

                    //  CheckRelationship result and use the  ResolveConflict function to resolve the policy  

       //  confliction.   

1.          initiate a new set C = null 

2.          for i = 1 to #B do 

3.                   flag = CheckRelationship(F, B[i]) 

4.                  ResolveConflict (F, B[i], flag) 

5.                  C += temp; 

6.          return C 

7.         End  

 

       Algorithm 3:  DeletePolicy( F, B, C) 

         // Input: F - new policy and B - Input policy set with #B policies 

                      // Output: C – PPCS policy set 

                      // Function: check the relationship between F and all the entity in set B; based on the 

                     //  CheckRelationShip results, different actions are conducted, such as, if overlapping, a new  

                     //  rule need to retained. 

1.         for i = 1 to #B 

2.               flag = CheckRelationship (F, B[i]) 

3.               if flag is ‘equal’  

4.                       delete B[i] from B 

5.               if flag is ‘subset/superset’ 

6.                     apply the rules R5 – R8 to generate new rule X and overwrite rule B[i] 

             by X  

7.               if flag is ‘overlapping’ 

8.                     generate the two rule X1 and X2, which corresponds to the overlapping              

                           region and non-overlapping region;  

                           delete the rule B[i] and  insert new rule {Y1 , Y2 } to C 

9.           return C 

10.          End 

 

      Function 1: CheckRelationship (Yi, Yj) 

               // Input: policies Yi and Yj   

                    // Outupt: flag={disjoint, superset/subset, equal, overlapping}  
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                   // Function: check the relationship between two rules Yi and Yj, where Yi and Yj are tuples <Ci, 

                   //  Ai> and <Cj, Aj>.  Mi and Mj are the hyper-rectangles constructed by Ci and Cj, respectively. 

1.   if Mi and Mj are disjoint 

2.           return ‘disjoint’ 

3.   if Mi and Mj are subset and superset 

4.           return ‘superset/subset’ 

5.  if Mi and Mj  are equal 

6.          return ‘equal’  

7.  if Mi and Mj  have intersection 

8.         return ‘overlapping’ 

9. End 

 

      Function 2: ResolveConflict (Yi, Yj, flag) 

             // Input:  policies Yi, Yj and  flag={disjoint, superset/subset, equal, overlapping} 

                   // Function: Solve the rule with conflict between Yi, Yj. based on the flag value returned by 

                   //  CheckRelationship function call. According to the flag setting, the conditions of original 

                   //  policies are compared. If there is an overlapping between conditions of the policies, the new 

                   // policy will be generated. 

1.         if flag is ‘disjoint’ return set {Yi, Yj} 

2.         if flag is ‘superset/subset’ 

3.              check the Ai and Aj, apply rules {R5-R8}, and generate new action rules  

4.              with { Rn1, Rn2} and return  

5.         if flag is ‘equal’ 

6.              check the Ai and Aj, apply four rules {R5-R8}, generate new rule -  

7.              < An, Rn> and return  

8.         if flag is ‘overlapping’ 

9.               For m = 1 to k do 

10.               let Xi be the longer of two prefix Ci[m] and Cj[m] 

11.                      generate new policy set R = <C, A>,  

12.                      where C = <X1, …., Xk> and A = Ai U Aj 

13.                        apply rule {R5-R8}, construct F’ and G’ to take out C from the 

                              overlapping region 

14.               return new policy set with {F’, G’, R} 

15.     End 

        


