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Abstract

More and more applications in the Internet agguiring an intelligent service infrastructure to
provide customized services. In this paper, wegmrean infrastructure, which can transparently
and effectively provide customized active-servittesend users and dynamically adapt to
changing customized policies in large distributecetenogeneous environments. The
infrastructure consists of two components: the ggogent and middleware box. Particularly,
our technologies include: 1) Generic active-sentigsed infrastructure, where the policy agent
can integrate policies requested by applicatioms] eniddleware boxes can transparently execute
services and 2) Distributed policy processing ir tmiddleware box. We study two policy
partitioning schemes to achieve conflict-free pelicfor distributed policy processing and
guarantee the correctness of the policy execulida.conduct extensive performance evaluations
on different schemes proposed. Our experimentaltssdemonstrate that our policy partitioning
schemes can effectively generate partition-capablg conflict-free policy sets. The evaluation
results also show that distributed policy procegstan achieve over 70 percent increase in
performance/price ratio with proper assignmenttud policy distribution degree compared to a

purely centralized approach.
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[. Introduction

In this paper, we present a distributed policgcpssing infrastructure which can effectively
deploy customized services. We also address tleeteféness of policy processing issues in this
infrastructure. Our proposed distributed policyqassing schemes can effectively support large

number of policies requested by increasing numbapplications and services.

With the number of new applications and end sig&reasing, services to be supported in the
Internet are increasing. For example, services\iR&l (virtual private network), NAT (network
address translator), access control, layer 4/@mguand content delivery services are becoming
basic services, and newer services keep coming theilnternet. At the same time, customized
policies requested by services are becoming marglex. For example, some services such as
content delivery require checking some customizddrimation in the packet payload [1] [2].
Services like dynamic VPN service, dynamic-coatitiervice require the service to be deployed
for a limited time and are either automaticallyntalown or canceled by the user. These services
require the system to be endowed with the capghitit dynamically modify the network’s
application supported profile and provide on-demaerdrices. Some emerging services such as
active worm defenses have become very important@lseveral such attacks in the recent past.
Coupled with their ability to propagate fast, worh@e caused significant economic losses [3].

Motivated by above observations, we need a nmétwdrastructure provide the ‘active service’,
which means that we have to efficiently integratisteng services transparently, quickly deliver
new services, and intelligently adapt to changimgwork environments. By leveraging the
existing active network results (breaking with ttimsh by allowing the network to perform
customized computation on the user data [4] [58,study an active-service based infrastructure
in this work. In our proposed infrastructure, twormgonents are involved: the service policy
agent and middleware boxes. The service policy tagen the service request interface can
effectively integrate the application policies adutribute the corresponding policies to the
middleware boxes. The middleware boxes deployedsdme functional network locations
construct an overlay network and cooperate in tiliged fashion to upwardly provide services
required by applications and downwardly adapt tertegeneous networks. In this infrastructure,
service creation is very simple from the user'sspective. The user/ application service creators
only need to submit their service requirements he service policy agent. The service
requirements can also be changed during run-timethiey end users. The service can be
automatically created/ updated by the cooperatfaenvice policy agent and middleware boxes,

i.e., the service policy agent translates and rateg the new service policies and/ or updates



service policies and distributes it in an undemdtdre format to corresponding middleware
boxes. The middleware boxes execute the policieactueve customized service execution
dynamically during system run-time. The middlewarx is the basic functional entity in the
infrastructure for policy execution. It plays anpamtant role in the efficiency of policy

processing to support increasing number of servigds complex policy requirements. In this
paper, we conduct an extensive study on policygssiag in the middleware box. Specifically,

the contributions of our paper are:

» We propose a generic active-service based inficstet We integrate the policies
requested by applications and middleware soluttongansparently execute services in
heterogeneous networks. The middleware are equipfibdolicies that are generated by

the policy agent, which translates various apghceservice requirements.

» We propose distributed policy processing schemabkarmmiddleware box. By distributed
policy processing, we mean that the line cards iofidlaware boxes can deploy a portion
of policy rules and make the policy matching andcpssing efficient. We study two
policy partitioning schemes to achieve conflictefrpolicies in the case of distributed
policy processing and guarantee the correctnesiseopolicy execution. We then discuss
enhancements to our approach using available t&tatisnformation of policy rules to

increase the effectiveness of the policy partition.

* We conduct extensive performance evaluations dierdifit infrastructures and schemes.
The evaluation results show that our distributeticpgprocessing can achieve over 70
percent increase in performance/price ratio wittoppr assignment of the policy
distribution degree, compared with a centralizedrapch. The experimental results also
demonstrate that in order to make the policy baktitpon-capable and conflict-free,
newer policies have to be generated, which canfieetigely reduced by using policy

compression schemes.

The rest of paper is organized as follows: IntiBa I, we discuss necessary background and
related work in this area. In Section Ill, we prasan active-service based infrastructure with two
important components: service policy agent and fawddre box. In Section IV, we present the
distributed policy processing in the middleware bamd describe policy partition-capable
algorithms. In Section V, the simulation and evabraresults are presented. The summary of

this paper and future work are given in Section VI.

Il. Background and Related Work



In this section, we discuss background and iegistork related to providing ‘active service’.
These include work on active networks, policy pesieg/ packet classification, and policy-based
routing.

Traditional data networks passively transpots$ fiom one end system to another. Due to the
Internet end-to-end design philosophy, the netwask conducts the packet forwarding and its
role in the network is limited [4]. Active networlksctually allow the user to inject customized
programs or deploy policies into the network duning-time, where the routers or switches in the
network will perform customized computations on tmessages passing through them. For
example, a user in the active network could sefgirert packet” to each router and arrange for
the program to be executed when their packetsraeegsed [5]. The fundamental benefit of the
active network is to provide a powerful way for thger or application to drive the customization
of network infrastructure and allow new servicedi(@ services) to be deployed at a faster pace
than possible in traditional network infrastrucsir®uch work has been done in active network
research area. SPIN [6] and SwitchWare [7] are sx@mples. Most of current work on the
active networks focuses on designing a platformhiwithe single node to execute the code-
embedded packet [8] [9]. Some work also studiegkissn providing active services by designing
application-specific support services such as, ovidenference transcoding proxy [10], content-
aware gateway [11], NAT [12], customized many toe ccommunication [13], customized
multicast communication [14] etc. In this paper wainly focus on efficiently integrating
services, transparently providing services and lligently adapting to changing network

environments for applications in a distributed fash

Depending on the service requirement, policycatien can have impacts on the network
packet, as the service policies are normally execut the network core device — Routers and
Switches. The policy execution needs to match timetime packet with the deployed policies.
This policy match problem can be generalized bypheket classification problem defined as
follows: A policy table has N rules 4 R<C;=> A; >, where 1<j <N and Rcontains two parts:

1) Condition G C[1], Ci[2], Ci[3],... C[D], a D-tuple, where D is the policy dimension) 2
Action set Awith j actions from the system action set with Mians (1< j < M). For an
incoming packet P with the header considered aguple (R P, . |
packet classification problem is to find the m suR, (1 < m < N) matching among N rules with
D-tuple, such that Pmatches ¢]t], /71 <t <D. We call thesd?, rules as the ‘best’ matching set
for the incoming packe®. For exampleR = <(1010*, *, TCP, 1024-1080, *), DENYi#s policy
rule with condition C;=(1010*, *, TCP, 1024-1080and action with DENY. Then, the packet



with header(10101....1111, 1110..000, TCP, 1050n®&tches th€ondition G, and is therefore
dropped. The packet with head@l11111...000, 1111..001, UDP, 102d9es not match the
conditionC, andis therefore forwardedComputational Geometry theory has been shown that i
its fully generality, packet classification requireitherO(log\°’-1) time and linear space togN
time andO(N°) space, wherdl is the number of rules ardlis the number of header fields used
for matching. Specifically, the IP routing lookup one of the simplest examples of the above
problem, whereD is 1 and the action is always forwarding. Much kvtyas been done on
effective IP routing lookup schemes such as bitréeg, LC tries and controlled prefix expansion
[15]. Due to service requirement such as netwosfitr management, firewalls, VPN, high
dimensional packet classification/ policy procegsihas been studied with interest and
approaches like [16] can effectively work at tworénsional packet classifications. Bit
Parallelism and RFC (Recursive Flow Classificatifityj] and Cisco Turbo ACL [18] introduce
new packet classification schemes which only woell im average cases. Work in [19] translates
the high dimension packet classification problemaw dimension assuming that the utilized
space in some dimensions are small;, TCAM (Ternaontént-Addressable Memory) [20]
provides hardware-based algorithms to support lehraedatching for different fields, which
currently are only suitable for small policy tabl€zenerally, most of the solutions are service
specific or have some limitations and are not blatdor policy processing in our infrastructure.
Our distributed policy processing is more generid &an effectively provide different service
requirements.

Due to requirements on QoS (quality of servipeicy-based routing defines a router/switch as
one, configured to use different criteria than jastlistance metric to decide which peer to
forward a packet to. Policy routing is defined tnfigure a router to inspect and modify the
attributes of routes to provide a flexible mechanis route IP traffic to a destination with QoS
requirement. Especially, the policy-based routggrie type of ‘active service’ for QoS, which is
actively reconfiguring the packet path to satigfg QoS requirement. In [21], the policy routing
problem is initially defined with three models: jpgtbased distribution of routing information,
policy-based packet filtering/ forwarding, and pgtbased dynamic allocation of network
resources. Several products have implementedahtare [22] [23]. Most of policy-based routing
schemes only focus on the IP layer to provide QO&. approach targets policies in different
layers. Thus, our approach extends work on polased routing and provides a generic platform

to support requirements of different services.

[1l. Active-Service based Infrastructure



In this section, we present the active-serviageld infrastructure. We first give an overview of

the proposed infrastructure and then introduckatsc components and its service workflow.

A. Overview

Service deployment is the fundamental aspecthef promise of next-generation network
applications. With unprecedented demand to creadedaploy new revenue-generating and cost
saving services quickly, the next-generation nekkw@re compelled to provide scalable service
deployment infrastructures to enable the servieat@n. Active networks break with tradition by
allowing the network to perform customized compata on the user data. For example, a user
on top of an active network could send a customigeahpression program to a node in the
network and request that the node execute the @mogvhen processing its packets. However,
allowing the user to directly configure the netwdskings several management and security
concerns to the network. We leverage the existittiye network results and present an active
service based infrastructure, which can be usedfftoiently integrate services, transparently

provide services, and intelligently adapt to chaggietwork environments for applications.

Applications and Services

ServicePolicy Agent

Hosts/Network Middlewares

Heterogeneous Network (Hosts, Firewall, NAT, Routef)

Figure 1: Host/Network Middleware

VPN Defense Content Distribnt Anonymous Other
Service Service Service Service Services

\ 4
Service Policy Interfe

ServicPolicy Agen

A 4
Middleware bo;

Figure 2: Policy Agent-basadtem

In this infrastructure, there are two importantmponents: network service policy agent and
middleware-box. In simple terms, the network sepalicy agent becomes the interface between
the user/ application and network itself. It carfeetively integrate the user/ application
requirements and translate them to a format unmmisby the programmable network devices,

i.e., middleware boxes. The middleware boxes exetiw customized policies to achieve the



service deployment in the network. The middlewangds can be deployed in some functional
locations (host, network edge or network core) asdalleware in the network. They construct an
overlay in the network data plane and cooperatedistributed fashion to upwardly provide and
activate services required by applications and aeavdly adapt to heterogeneous networks as

shown in Figure 1.

B. Components
1) Policy Agent

The main functionality of the service policy agenpolicy translation and global consolidation
in the system. The functional components of theisermolicy agent are shown in Figure 2. All
users/ applications provide their customized serviequirements such as, VPN traffic
requirement matrix, firewall access control listfrision detection requests etc to the service
policy agent. The service policy agent can nowdlae the high-level application requirements
into the defined policy format for the middlewarexb With secured policy communication
protocols, the middleware box can obtain and exedhé policies for customized services.
According to application/ service requirements #mel network information, the service policy
agent includes the following functionalities:

The correction check of application/service polieguirementsit includes two separate tasks.
The first one is the syntax check, which checkssyrax of the application policies. The other
one is the consistency check, which checks forcamylicts between different policies [24].

Static resource optimizatiohis task has the objective of maximally satisfyiime service
requirements with the constraints of system ressuré-or example, VPN users may have
multiple aggregation bandwidth requirements frone ovetwork to another; our service policy
agent can find optimal routes to globally satidfg tapplication requirements with the limited
network bandwidth constraints by using previousilts§25] [26].

Policy optimizationHere, middle-level policy code for each middlewhox will be generated
and redundant functions among services are deldteerefore, the execution policy can be
optimized to a certain degree. As our infrastruetslapports dynamic service creation, policies
for executing services can be changed at systeftiman

Policy generation and distributionAccording to the network information and service
requirement, the service policy agent can findgbwvice logic and locations to deploy policies.

Then, it will distribute the policy to correspondimiddleware boxes.

2) Middleware box



Middleware normally refers to the software lagetween the operating systems — including the
basic communication protocols and the distribufgglieations that interact via the network [27].
Our middleware box can be software/ hardware indetbetween physical networks and
applications that transparently and efficiently sapplication requirements to what the network
provides, similar to the functionality of operatilgystems. In this sense, we term our
programmable device as the middleware box. The lmigate box is the basic unit to integrate
and execute policies in the infrastructure. FigRishows the component architecture of the single
middleware box with following modules:

Signaling Module (SM)This module provides the communication mechanigtwéen the
middleware box, service policy agent, and othemwndt entities to exchange the network
information and policy rules.

Policy Parse Module (PPM)This module provides the basic parser functiopaditsupport the
policy configuration of the middleware box whichsisnilar to the Cisco IOS command parser in
router/ switch platforms. This module takes thepatifrom the service policy agent.

Policy Integration Module (PIM)This module takes the input from different modules, run-
time system data, policy parameters and effectiveggrates policies. This module also takes the
responsibility for the policy partition, which witle described in a later section. The output &f thi
module will be downloaded to the policy rule tallehe data subsystem.

Traffic Processing Module (TPM)This module is related to the data subsystem, twksc
responsible for processing the on-going trafficoading to policy rules. The status variables
maintain some run-time system information from tfaéfic processing module and provide this

information to policy integration module.

[ Policy Parse Module

(configuration Command) j
Control Subsystem

Status H Policy H Signaling
Variables Integration Module Module

~=

C Traffic Processing Module )

Data Subsystem

Data Flow

Figure 3: Middleware Box Architectur
C. Workflow

Creating new services in distributed networks nexjai unique approach. In this section, we

introduce the service creation procedure and dematassome service examples which can be



deployed in our infrastructure. The service is madi as network capability or capability made
available to end users and applications. In ordesdiver a service, the service logic must be
created, distributed to the network and executethéyetwork equipments. The detail workflow
is given below.

Service creationThe service logic is actually created. The useplieation service creator can
submit its requirement, which can be processedenyice policy agent. Based on the system
information, the service policy agent translatemlyzes and generates the corresponding policy

rules for corresponding middleware boxes.

Service logic distributionThe translated policies are distributed to the@lhere it is needed
to be applied. We assume the service policy agemtomain-based device and only controls
middleware boxes in its own domain. The followingngric communication protocols between
the service policy agent and middleware-box caag@ied: 1) Secured topology auto-discovery:
When the middleware boxes and service policy agemtdeployed in the network, the service
policy agent broadcasts advertisement messagegotedtiby its private key to advertise itself as
the policy controller with limited TTL value. Onlgniddleware boxes located within a certain
network area can receive the advertisement mes¥dgen the middleware box receives this
message, it will decrypt the message with its qamBd agent’s public key to authenticate the
identity of the agent. If the authentication prasedis successful, the middleware box will
forward the advertisement to its neighbors. Finathe middleware boxes and service policy
agents will build a self-organized virtual overlagtwork to provide services. 2) Secured policy
download: After the middleware box finds its seevigolicy agent, it will send a request to the
service policy agent and get the correspondingcigsli Care must be taken about the integrity
verification during downloading of the policies. Bun-time control protocol: During the system
run-time, the service policy agent updates newisemequests to the middleware box according
to the new service requirements or the policy ckarfgr the existing services. 4) Inter-domain
policy agent protocol: When networks become lahyerarchical domain-based approaches will
make our system scalable. In order to coordinage gblicy execution in multiple domain
environments, domain policy agents in different doma are grouped as an inter-domain

controlling system to coordinate the policy exemutglobally.

Service executionWhen the policies are received by a middleware, toxill translate them
to a format that it can locally understand, suchagmslicy table. With the policy execution of
middleware box, the network is actually changedidtiver the service. This is typically in the

middleware box that acts in real-time on packetsaexd by the network.



According to above workflow, we demonstrate aaneple taking the case of active worm
defense services. Active worms, exploiting secuatypolicy flaws in the system can spread
throughout the Internet in a very short time [3% the middleware box is a device that is inserted
across various locations in the network, it is ndéto the network. With this strategy, no change
is needed to the current network and protocolshagily transparent worm defense services can
be achieved. The defense system consists of tHewfah. 1) The service policy agent
autonomously translates the defense requiremenseledts a number of middleware boxes as
the worm detection overlay system. The worm deiacsiystem can provide the service to detect
the presence of worm attack in the network by naoiniy worm scan traffic. We assume that
worm detection system can effectively detect themwby using monitoring methods [28]. 2) The
service policy agent connects to the correspondinddleware boxes and deploys the worm
monitoring policies. For example, the middlewarsdsmonitor the worm scanning traffic, i.e.,
the scanning traffic to unused IP addresses anctiveaport (inline with existing work like
Honeypots and Internet motion sensor [29][30]). Wimme middleware box detects potential
worm intrusion events, it will send alert eventghe service policy agent. As the service policy
agent has more network information, i.e., netwarkology, attack alert events from other
network middleware boxes, it can make an worm diete@and defense decision, i.e., finding the
location of the worm attacker, allocating systemited defense resource near to the worm
attacker to perform the worm traffic throttlingttieg other middleware boxes in its domain
cooperate etc. In this sense, the worm detectiochpaavention can be effectively and quickly
achieved by the cooperation of network-based midalle. 3) The service policy server deploys
the worm defense policies to corresponding midditevixes, like blocking certain active attack

flows and blocking traffic from certain worm infect networks.

IV. Policy Processing in Middleware box

The middleware box is the basic functional gniit the architecture for policy execution. It
plays the key role in the efficiency of policy pessing to support increasing number of services
with complex policy requirements. In this sectiave will first present the distributed policy
processing model and then study the policy partiimoblem which makes the distributed policy

process feasible.

A. A Distributed Policy Processing Model

1) Processing Models

10



We take the generic architecture of the IP routeithee base line design approach for the
middleware box, which includes the supervisor caing, router backplane and line cards [31]
[32]. The most important module for the policy peesing isPPE (Policy Processing Engine),
which can be developed by expensiveAM [22]. ThePPE can be located at the supervisor and
line cards. Thd’PE maintains the policy rule tables, performs thdaqyoinatching and executes
the corresponding policies for the incoming packitghe following context, we will usePPE
to represent théPE located at the line card arfPPEto represent théPE located at the
supervisor card. We assume that BRE is the most expensive subsystem in the middlewaxe
and it is the key module for the performance ofrthédleware box.

Depending on the location of tHePE, we have the following two models: Qentralized
Policy ProcessingThe PPE s located only at the supervisor card. While tiaige of architecture
has been widely deployed in current designs, poficycessing cannot be sped up due to
centralization being a bottleneck. Rjstributed Policy Processindgeach inbound/ outbound line
card maintains thePPE The policy matching procedure is executed foir@oming packet at
the LPPE located at the line card locally. If a match canbe found, the packet will be
forwarded to the supervisor card, which conduatspblicy matching and execution through the
SPPE We emphasize here that for a particular poliog, delay in finding a match is less if it is
found in theLPPEthan when it has to go tt8PPE

. . . Superwsor Card 1-r
Distributed Architecture (PacketmeESSmg
Engme >\/k U2

Packe
Processing
i Switch

Engin
‘ Fabric Mk Ha

Packet - .
Processing

Engine

Figure 4: Distributed Policy Processing and Queuing Model

The Distributed Policy Processing approach gives adslitional flexibility in policy
distribution amond.PPE andSPPE hence achieving high scalability and efficiendie describe
it in detail below.

In the distributed policy processing model, tipor of policies can be deployed at thEPE
locally. One fundamental question is how to settdiset of policies to be deployed at the line

cards. The most intuitively way is just random egtm, where each policy has equal chances to

11



be selected. Howevean alternate, albeit better approach to use thestatal information of
policy rules during deployment of policies that alfectively increase the policy matching hit
rate atLPPE and improve the overall packet policy matchingagielThe detailed scheme is
described in the following.

In the distributed policy processing model, sogmthe middleware box has deployé¢dumber
of policies, thePolicy Distribution Degrealefines the percentage Mfpolicies to be deployed at

the LPPE in the line cards locally. In this paper we le¢ thotations and PDD to denote the
Policy distribution Degrednterchangeably. WheRDD (L1[0,1]) is 0, the policy processing

becomes purely centralized. Figure 4 shows therilolised policy processing and its

corresponding queuing model [33]. As there @[ possible choices, one question is how to find

the best one. Practical data from real routers ghawthe routing table at higher speed backbone
routers contain few entries with prefixes longeartt24-bits. This is verified by a plot of prefix
length distribution of backbone routing table fraal configuration devices. For example,
99.93% of the prefixes are 24 bits or less [17f @stributed policy processing can be enhanced
by making use of this fact.

We can assign each poliBy <C;, A;> with a weightW, in the policy table witiN entries. The
weightW, can be calculated according to the probabilitpiinfation of the conditiol®; or other
considerations. After sorting the partitioned ppliale table based on the weightassignment,
we getr*N number of policies with largest weight assignmamd deploy them in the line cards.
This improves the probability of finding a matchipglicy in the line card locally improving the
performance. As th€; is composed dk-tuple<C;;,Cp, ...,G>, the fieldC; in the policy table is
assigned weight\jj according to the known probability distributiorfarmation. As we assume
that the probability ofC; for all j = 1,..., kare independent, the weight fBr can be easily

calculated bynklij . For the policy distribution schemes, we haveWgight assignment
=

(WA) is the scheme to assigtN number of policies with highest weight as the cdatd for

LPPE 2) Random Assignmer(RA) is the baseline scheme, where each policy is mahdo
selected with equal chance to be the candidateLRI?E In this schemer*N policies are
randomly chosen and deployed in the line cards. Wiescheme performs better that tR&

scheme and it is proved in the following Theorem.

Theorem 1 There areN policies{R; Ry, ... R\} in the policy setd is the request rate and each

policy rule R has weight assignmel¥, whereWw, > W, > ... > W, and z_”:lwi =1. WithK =

r*N policies deployed at the line card, M8\ scheme is better than tRA scheme in terms of

successful policy matching rateldRPE

12



Proof. 1) Calculating the number of successful policy matdhdke line card.
For theWA scheme, th& policies with the largest weights are deployedhia line card and

the number of successful matches is given @;Wi)- For theRA scheme, the number is

given byaK /N .
2) Derive thatA(3"" W) 2 AK /N

Assume thax(z_’ilwi)<)|K/N. Then there must exist w, <1/N,i0[1,K]. On the other
hand,A(ZiKzlwi) >A(N-K)/N. This means there exists & >1/N,i0[K +1,N]. As W is

sorted, there is a contradiction. Q.E.D.

2) Performance/Price Analysis

To make the analysis feasible, we make followasgumptions: 1) The incoming packets
follow Poissonarrival rateA, which contributes to the packet queuing delay ithikd®PE and
SPPE 2) The packet transmission delay betwePRE andSPPEis constant. The system has
line cards and packet arrivals at each line caedadsoPoissonwith a mean rate ol / k 3)
Packet pre-processing time in the line card aneérsigor card are exponentially distributed with
means ofl/y;, and1/u,. 4) The packet delay in the middleware box incltite packet matching
and execution time for the matched policy, the pattansmission delay between ttlePE and
SPPEand the queuing delays in thPPE andSPPE The packet matching time is determined by
the policy size and policy complexity defined be fholicy dimension. The policy execution time
is also constant. 5) We assume that the cost jprfdePE is the main price of the whole system.

With the increasing number of policies and disiens, more memory ardPU resources are
required for policy matching and processing. Thegpfunction is defined as follows [19][20].

C=G(N,D), 1)
where N is the number of policied) is the dimension of the policy rule. The pricegisen

by,Cc =G(N, D) = K, * N°’2, whereK, is a constant.

By using theM/M/1 queuing model in Figure 4, the average delay eaexdpressed as

T2 00 gy g L +d,)
U, - ((rA) /) u, - ((rA)/K) u, - Ad-r)—rbA 2)
TRl S
u, —A@-r)-rbA
d, = F(rN, D) 3)
dZZF(N,D), (4)
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whereTy is the total delaygd; andd, are delays for packet policy matchingLiRPE and SPPE
(note thatSPPEhas the whole policy table ahdPE hasr*N policies.) respectivelyr I[Q1] is

the Policy distribution Degredy is an adjustable parameter which defines the [mibtyaof
finding a match in th&PPE, F(x, y) represents the packet delay for policy matching) policy
execution and is given bi,*y*log(x) (where,x andy represent the policy number and policy
dimension respectively. We consider the optimataetime for the table with sizeis log(x) and
each policy withy dimensions need3(y) search time). The three components of equatioarg)
the processing delay and queue delay for packetepsing inLPPE, LPPESPPE and SPPE,
respectively.

From (1), we can calculate the price of systsrfolows:

C, = KG(iN, D) (5)
C, =G(N, D) (6)
P=(C,+C,)/C, (7).

whereC; is the price of line card€;, is the price of supervisor car{, is the number of line
cards G(x,y)is the price function defined in (1) and tRés the comparative price compared to
the standard price for the centralized architecture

Combined with (2) and (7), theerformance/Price (PP)netric is defined as the achieved
performance with the price spent and is given by,

pp=_1 (8).
T,*P

We note that it is natural that the performantay not increase in the same order as price
increase for some complex systems. The simple orersf PP provides general relationship
between the price and performance benefit for tiayais purposes in this paper. More complex

price-benefit estimations can be a part of futuoekw
B. Policy Partition
1) Problem Definition

To achieve the distributed policy processing, diporof policies need to be deployed at the
LPPE In order to guarantee the correctness of poli@cetion for the policy distribution, the
policies at thd_.PPE should not have any conflict or overlapping withear policies at both the
LPPE and SPPE We define the following problem Policy Partition-capable Set (PPCS)
Generation Problem Given policy set C outputted by algorithm X, eagle in set C is a 2-tuple

{P;: <G, Ai>, n>i > 1}, where Ris the entity of policy rule, (enotes the Condition, and A

14



denotes Actions. Mis the K-dimensional rectangular defined by canditG. We say that
algorithm X solves this problem if 1) Each M a rectangular-related subset in T, where T,= M

0...0M,. 2) My and M have no overlap, i.e., M M; =0, whenever# j.

When the policy set S is generated as PPCS,anepartition the policy set S into several
different smaller sets denoted by.S,S,, where $1...0S, =S Thus, each;&an be deployed
separately while guaranteeing the correctness lafypexecution. In other words, this policy set

with PPCS can easily meet the requirements foriloiged policy processing mentioned above.

The importance of PPCS is demonstrated by follovexgmple: Company network X has two
smaller policy subnets namely 8nd 3, where $1S, = S, We assume that company has the

following ACL and IPSEC policies deployed in pauii@r middleware box by the policy agent:
1. From § To X allow only port 100-200
From S To X allow port 100-400
From X to § deny port 100-500

2
3
4. From Xto $ deny port 100-1000
5. From S to S encrypt all ports

6

From S to S authenticate all ports

If policies 2, 3 and 6 are deployed at line carchlly in the policy distributed processing, there
might be the following issues: i) Saccessing to X with port 300 will be allowed, whicas the
conflict with policy 1. ii) The X accessing to,Swith port 600 will be allowed, which has the
conflict with the policy 4. iii) Packets from;S0 S are only to be authenticated without
encryption. It actually violates the security ofju@ement policies, as the policy 5 needs the
packets from Sto S to be encrypted. So, we can say that if the inognpacket matches with
several policies, then all of them must be treaiegether as the ‘best matching policies’
according to defined policy requirements. If onéigyas in the policy set of LPPE, and the one is
in policy set of SPPE, the inconsistency may happaere is no way for the LPPE to know that
packet has to go to the SPPE if the matching has fmund locally. With the increasing number

of policies for different services, this issue b@es worse.

In the next section, we will design the detaidgbrithms to achieve the PPCS.

2) Policy Patrtition Algorithms

The basic idea of policy partition algorithmtés check the relationships among policies and

generate the policies which do not have overlagscanflicts. In order to partition the policy set,
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we look at the relationship between policy rules<i;, A > and R <G, A; >. We need consider

both the condition and action tuples for the pebciThe detailed description is listed:

Condition Relationship: We define several operations to describe theioelstiips between

hyper-rectangular regions;Mnd M constructed by conditions @nd G
i) R1 - Complete disjointed relationshipi # j, M, OM (&M OM;
ii) R2 - Strict superset or subset relationshipz j,M, OM M. OM;
iii) R3 - Equal relationshipgi # j,M, =M ;
iv) R4 - Partial overlapping relationshipi # j,M, n M, #0.
Action Relationship: We assume that both action and A are single action. We define

following possible relationships between two actidnand A.

) RS- No Order rulepoA, = A 0A;

i) R6 - Order ruIe:AoA‘_ # AOA;

iii) R7 - Cancellation rule;yoa = NULL;

iv) R8 - Inclusion rule:poa = A |AoA = A;

O represents the operation between the two actidfes.state that actions operation can be

applied if they satisfy above rules.

In the distributed policy processing environmealicy partition task can happen at the system

initial time and system run-time. Our algorithm&ddo handle both situations.

Static Partition Set Generatiohe procedure for the policy partition with no daté needs
to be conducted during the system initial time. Tdsk is to generateRPCSpolicy set by given
a nonPPCSpolicy set. The detailed algorithm is describednaBigure 5. The basic idea of this
algorithm is to conduct the condition verificatitor relationships withR;-R;, we can apply the
four rules —Rs-Rg to construct thd®PCS For the actions with overlapping relationshifRs a
new rule is added to cover the overlapping regimh @nstruct th€PCS In this algorithm, two
basic function€CheckRelationshipndResolveConflicare used (detailed description is provided
in Appendix A) to verify the condition relationship eliminate conflict resolution. Note that our
algorithms can always transform the policy set iR&CS policy set. However, the number of

output policies in PPCS may be larger than theadneput policies.

The time complexity for function€heckRelationshipand ResolveConflictare bothO(D),

where D is the policy dimension. The worst case time caxipy of the function
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ConstructPartitionCapablePolicySet O(N(N+C)D/2) whereN is the size of policy table ar@

is number of policies which are overlapping.

In Algorithm 1 shown in Figure 5, following twpartition schemes are considered:BBPS
(Basic Policy Partition Schemelt checks only theonditionrelationship between policies, i.e.,
equal, subset/superset or overlapping. Thus, ndigigm are generated and all the generated
policies are disjointed. ADPPS (Optimized Policy Partition Schemh)is easy to see that the
output policy set byBPPShas some redundant policies, the poéicyion rules R-Rgare used to

compress the policy set and make the number olibptgicies decrease as much as possible.

Algorithm 1: ConstructPartitionCapablePolicySet (B, C, Enbanc
/I Input: B - input policy set with #B policies, Enhancasetmeans that BPSS algorithm is
/I configured
/I Output: C - output policy set withgtilicies
/I Function: go through all the entries in the policy table to chieelpolicy relationship and
Il resolve conflict. If the new policgénerated and the system is configured with BPSS
/I optimization mode, the new added policies neéalpethe same procedure again with

/I existing policies

1. initiate a new set F = empty

2. C+=B[1]

3. fori=2to#B

4. F = BJ[i]

5. forj=1to#C

6. G = B[j]

7. flag = CheckRelationship (F, G)

8. temp = ResolveConflict(F, flag)

9. if Enhance is true && a new poligygenerated at ResolveConflict

10. Based o#t R, verify any compression can be done with
adding new pptio exist policies

11. C +=temp

12. End

Figure 5: Algorithm for the Policy Partition to remove conflicts
To better understand algorithm 1 wBPPSand OPPSschemeswe illustrate the following

example: Assum®; : <C,, A>, R;: <C,, A>, R;: <C,, A> are three policies, whe@= C, |
C4| G| Cr, C= C;| C4| Cs| Cs, andC~= C5| Cs| Cs | C; denote the conditions shown in Figure 6.
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Figure 6: Example of Policy Partition

We also assume that the policy rulds,-A,, andA; satisfy following operations, i,e&;, 0 A =
A, AL 0 A=A andA; 0 A = A,. By using above algorithm, a new policy rule via#t added for
the overlapping condition. After calculating alletfoverlapping regions, the policy partition-
capable set with 7 policies is listed as followstliyBPPSscheme:

Ci=>A, G =>A, G=>A; C=>A8A,,

Cs=> A& A; G=>A1& A& Az, andC;=>A 1 & A 9)
By using the action operation rules améagh,, andAs, we get

Ci=> Ay, G => Ay Gy => A,

G=>A; G=>A,C~>A;andC; =>A; (10)
By using th®©OPSscheme, we achieve following final result:
CLG|GC|C=>A, G| C=>A, G=>A3 (11)

Some examples of deleting operations aredias follows:
1) When the policR, is deleted, the output rule set is
Co | G =>A, C=>A3 (12)
2) When the policiR; is deleted, the output rule set is
CGIGIGIG=>A
C=>As (13)
3) When the policiR; is deleted, the output rule set is
Ci|C|Co| Cr=>As
Cs| Cs=>As (14)
Dynamic Partition Set GeneratiorDuring the system run-time, the application hameo
policies to be applied (add/ remove) to the middliembox and this procedure needs to run again
to guarantee the new policy set toRfeCS We want the policy update have minimal impacts on
run-time packet processing. One practical way igrfmldleware box to be implemented as a dual

mode with two policy processing engines: one modsiactive and the other module is at
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standby mode. When the policy update is done, tdmedby module conducts the policy update
andPPCSgeneration without impact on the active mode. Witenpolicy partition task is done,
the standby module takes over to be the activeaatide module becomes the standby module.
The basic idea is similar to the Algorithm 1. Thetadled description is in Appendix A. The worst
case execution times oAddNewPolicyand DeletePolicy algorithms areO(D(N+C)) and
O(D(N+Q)), respectively.

V. Simulation Results and Analysis

In this section, we present results from thelwatéon of our system. We first discuss our

experimental model before presenting our results.

A. Experimental Model

» Performance Metricsin this paper, we propose a distributed architectior policy
processing and algorithms for policy partitioningdadistribution. We evaluate the
performances of the centralized and the distribaretiitectures using the Delay defined
in Formula (2) and Performance/ Price metric (RRefined in Formula (8). We also
evaluate the performance of the policy distributsshemes using the PP metric. We use
the number of increased policies and total exeoutione metrics to study the
performance of policy partitioning. As this papsrfocusing on the single middleware
box, we do not consider the bandwidth cost forgb&cy distribution and propagation

delay for the policy distribution.

» Evaluation System®ur simulation system includes a middleware batuiding K line
cards andl supervisor card. Each subsystem is simulated biyM/1 system based on
input rate and capacity. TIBPPEin the supervisor card has the full copy of théqmes
table and eachPPE in the line card locally haBDD times the number of policies. The
evaluation setups are listed below: 1) The tupde PDD, W, N, D,A, w4, - > defines
the configuration parameter&: denotes the number of system line caRI3D denotes
the Policy Distribution Degree,w O0{WARA denotes whetherWA (Weighted
Assignment) oRA (Random Assignment) scheme is adopted for polistribution, N
denotes the total number of polici@sdenotes the policy dimensiaoh, 14, and» denote
the policy request ratePgisson Process), capability of line card and capabilify o
supervisor card respectively. We will use *' forparameter in the tuple representation

when it is not be used in the simulation scena@ps o evaluate th®P metrics forWwA
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and RA schemes, we randomly generate 10000 three dimmalsmolicies and each
dimension is generated based on normal distribufig(800,300), mean=300 and
variance=300, respectively 3) To evaluate the performance of policy pantiti
algorithms, n[0[1000,100000] number of two-dimensional policies (each dimens®n
generated by normal distributioN(@00,300)and 40 policyactions are uniformly
generated in [1,40]).

» Evaluation MethodWe use simulation to obtain performance data.

Delay with Policy Distribution Delay
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Policy Distribution Degree - PDD
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Figure 7: Delay with varying Policy Distribution Degrees

Performance/Price with Policy Distribution Degree
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—e— <10, *, {RA}, 100000, 5, 2500, 3000, 5000>

Figure 8: PP with varying Policy Distribution Degrees

B. Performance Results and Observations

Due to the space limitations, we present only atdichnumber of cases here. However, the

conclusions we draw here generally hold for mamgptases we have evaluated.
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Performance/Price Versus Policy Request Rate

1.8

15 B —

1.2 |
& 0.9

0.6

0.3 - —

0 ; ; ; :
0 500 1000 1500 2000 2500

Policy Request Rate
—e—<10, 0, {RA}, 100000, 5, 2500, 3000, 4000>
—m— <10, 0.4, {RA}, 100000, 5, 2500, 3000, 4000>
—a— <10, 1, {RA}, 100000, 5, 2500, 3000, 4000>

Figure 9: PP with different PDD under varying Policy Request Rate

1) Performance for Different Policy Distribution Degrees

We present the delay and PP results while cangadifferent architectures by varying the
PDD in Figure 7 and 8. The system configuration hergiven by 40, *, {RA}, 5000, 5, 2500,
3000, 4006. In the legend of Figure 7, validation shows tradidation results provided by

Formula (2). We make the following observations.

« WhenPDD is set to 0, the system is purely centralizathen thePDD is set tol, the
system is purely distributed. As expected, theydelecentralized system is longest and
the delay is decreasing with the increase of thé& PBoth the cases result in poor
performance of PP. Although the centralized architee has smaller price, it suffers
from the bottleneck of a single centraliz&PPE resulting in lowPP. The totally
distributed architecture results in lower procegsielay with higher price, resulting in a
poor PP. Thus both the extremes are not desirable. InfoéHewing, we report our
performance results. The data obtained from amalytierivations in Section IV.A are in

very good agreement with our simulation data.

* PPincreases first and then decreases with incred®Dig. This is due to the trade-offs
as discussed above due to which both extremest riespborer performance. Thus a
carefully choserPDD will result in high values oPP. In this particular configuration,
whenPDD is 0.4,PP is 1.8, which is 70 percent and 300 percent higbempared to the
purely centralized and pure distributed architexguespectively.

2) Performance Comparison versus Policy Request Rat
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We present results while comparing differerthdectures (differenPDD) under varying

policy request rate) in Figure 9. The system configuration is giverthie Legend in Figure 9.

We make the following observations:

PP decreases with increaselinAlso the fall inPP is steeper ad increases. This is due
to the fact that as the request rate becomes largesuses longer queuing delays,

resulting in poorer performance.

Both the extreme cases of purely centralized amdlyudlistributed architectures perform

poorly. A system in between the twBOD = 0.4) performs better than both extreme

cases.
Performance/Price Versus Policy Request Rate
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Figure 10: PP with different policy distribution schemes under varyingyféquest Rates

3) Performance Comparison of Different Policy Distibution Schemes

Figure 10 shows the performance for differesiiqy distribution WA andRA) schemes under

varying policy request rates. The system configonats <10, 0.5, {RAor WA}, 10000, 3, *,

3000, 4000>Here, we make following observations.

The performance diVA scheme outperforms that BA scheme. As shown ifheorem 1

more packets can find matches in the line cardlliotsy using theWA scheme, which
makes the overall packet processing delays snaigrchieves highéP. PP decreases
with the increase ii for both schemes. As expected, with increase licypcequest rate

gueuing delays are longer, resulting in po&er

22



Policy Partition Output
25000

20000
15000 1 /./l
10000

5000 A//'
0 l!/

0 30000 60000 90000
Input Policies
‘—0— BPPS —m— OPPS ‘

1es

Polic

Number of Increased

Figure 11: Increase in Output Policy Number for different Policy Rartiklgorithms

Execution Time of Partition Algorithms

100

80 P
60 e
/’70’

40
" .‘/
0 : : :

0 20000 40000 60000 80000 100000

Execution Time
(ms)

Input Policy Number
‘—Q—BPPS —=— OPPS ‘

Figurel2: Execution Time of different Policy Partition Algorithms

4) Performance of Policy Partition Algorithms

Due to our policy partitioning algorithms, theal number of output policies increases. Figure
11 shows this trend. Figure 12 shows the total i@t times for the two partitioning algorithms
(BPPS and OPPS) we propose in Section IV.

* As expected, with the number of input policies @aging, there are more chances of
overlapping policyconditions and action conflicts. Thus, newer policies havebt
generated. We argue that by using the policy cossirg technologies, the number of

increased policies can be effectively reduced.

» With increasing number of input policies, the exemutime of algorithms also increases.
As the OPPSneeds to check the policy actions and optimize rthmber of output

policies, it requires more time for constructing folicies.

VI. Conclusions and Future Wbrk
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In this paper, we propose a generic active-setvased infrastructure. We integrate the policies
requested by applications and middleware solutibtmstransparently execute services in
heterogeneous networks. The two key componentBeoinfrastructure are the policy agent and
middleware box. We propose scalable policy proogsschemes in the middleware box. To the
best of our knowledge, this is the first study asdding this issue from this aspect. In summary,
our technology includes the following: 1) Generictige-service based infrastructure. 2)
Distributed policy processing in the middleware bdke conduct extensive performance
evaluations on different architecture and algorghrithe evaluation results show that the
distributed architecture can achieve ovér percent increase of performance/price ratio with
proper policy distribution degree compared to aefucentralized approach. The experimental
results also demonstrate that to make the polidydile partition-capable and conflict-free, newer
policies have to be generated, which can be effgtireduced by using policy compression

schemes.

Our work has broad impacts. With a tremendougtspp newer and customized services
demanded by Internet applications like VPN, NAT¢ess control, content delivery services,
defense services against attacks etc., it is isgrgly difficult to deploy such services in today’s
existing Internet. Such services can be easilyayepl with our approach presented in this paper.
Another benefit of our approach is the ease in Wwisiervice policies can easily change during
system run time without any modifications to thdsBmg infrastructure. To summarize, our
infrastructure is general enough and a wide specwé customized services can be deployed
with it.

There are several directions to extend our stusly the middleware box is the generic
functional entity to provide different servicesralesign approach can easily be adopted in other
areas like, high performance firewall systems, eontelivery gateways etc, which will be part

of our future work too.
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Appendix A:

Basic Functions for Policy Partition:

Algorithm 2: AddNewPolicy(F, B, C)

/[ Input: F - new policy and B - policy set with #B pefic
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// Output: C — PPCS policy set
I/ Function: Check the relationship betweand the entity of policy set B; based on the
/I CheckRelationship result and use tesolReConflict function to resolve the policy

/I confliction.

1. initiate a new set C = null

2. fori=1to #B do

3. flag = CheckRelationship(F, BI[i])
4. ResolveConflict (F, BJi], flag)

5. C +=temp;

6. return C

7. End

Algorithm 3: DeletePolicy( F, B, C)
/[ Input: F - new policy and B - Input policy set withpticies
I/l Output: C — PPCS policy set
I/l Function: check the relationship leetavF and all the entity in set B; based on the
/I CheckRelationShip results, diffesgtibns are conducted, such as, if overlapping, a new
/I rule need to retained.

1. fori=1to#B

2. flag = CheckRelationship (F, BJi])

3. if flag is ‘equal’

4, delete BJ[i] from B

5. if flag is ‘subset/superset’

6. apply the rules R R; to generate new rule X and overwrite rule BJi]
by X

7. if flag is ‘overlapping’

8. generate the two ruleafd % which corresponds to the overlapping
region and non-overlapping region;
delete the rule B[i] and insgew rule {Y, Y,}to C

9. return C

10. End

Function 1: CheckRelationship;(Yf;)
// Input: policies;and Y
I/ Outupt: flag={disjoint, superset/subsefyal, overlapping}
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I Function: check the relationship betwaenrtiles Yand Y, where Yand Y are tuples <G

Il & and <G, A>. M; and M are the hyper-rectangles constructed by G, respectively.

1
2
3
4
5.
6
7
8
9

if M; and M are disjoint
return ‘disjoint’
if M; and M are subset and superset
return ‘superset/subset’
if M; and M are equal
return ‘equal’
if Mj and M have intersection
return ‘overlapping’
End

Function 2: ResolveConflict (YY;, flag)

I Input: policies;YY; and flag={disjoint, superset/subset, equal, overlapping}

I Function: Solve the rule with conflidvieen Y, Y, based on the flag value returned by

/I CheckRelationship function call. Accordinthe flag setting, the conditions of original

/I policies are compared. If there ioaarlapping between conditions of the policies, the new

/Il policy will be generated.

1.

© ©®© N o g~ N

U i =
w np o

14.
15.

if flag is ‘disjoint’ return set {Y Y}
if flag is ‘superset/subset’
check the;And A, apply rules {B-Rg}, and generate new action rules
with { Ry, R,2} and return
if flag is ‘equal’
check the Ai and Aj, apply four rules-fg}, generate new rule -
< A, R> and return
if flag is ‘overlapping’
Form=1tokdo
let Xbe the longer of two prefix[@] and G[m]
generate new policy set R = <C, A>,
where C=<X..., Xx>and A=AUA
apply rule §Rg}, construct F' and G’ to take out C from the
overlapping region
return new policy set with {F', G’, R}
End
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