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State-of-the-art in-home activity recognition schemes with wearable devices 

are mostly capable of detecting coarse-grained activities (sitting, standing, 

walking, or lying down), but can’t distinguish complex activities (sitting on the 

floor versus on the sofa or bed). Such schemes aren’t effective for emerging 

critical healthcare applications — for example, in remote monitoring of 

patients with Alzheimer’s disease, bulimia, or anorexia — because they require 

a more comprehensive, contextual, and fine-grained recognition of complex 

daily user activities. Here, a novel approach for in-home, fine-grained activity 

recognition uses multimodal wearable sensors on multiple body positions, 

along with lightly deployed Bluetooth beacons in the environment.

C onsiderable literature exists on 
recognizing users’ activities of 
daily living (ADLs). But the broad 

subject of human activity recognition 
at home has a large variation, based 
on the complexity of detected activity, 
and privacy or deployment overhead 
of sensing resources. On the one hand, 
most existing works are able to recog-
nize only basic coarse-grained ADLs 
with wearable or infrastructural sens-
ing, without direct privacy concerns. 
On the other hand, camera or video 
imaging can be used for fine-grained 
ADLs or instrumental activities of 
daily living (IADLs) recognition.1 How-
ever, this has significant privacy con-
cerns for major applications such as 
remote, assessment-based, in-home 

healthcare applications. The ADLs are 
typically basic self-care skills that peo-
ple learn during early childhood, such 
as sitting, standing, walking, and watching 
TV. But IADLs are more complex tasks 
needed for independent living, such 
as cooking, housekeeping, and doing 
laundry. In essence, the ADLs often 
include physical or postural activi-
ties, while IADLs include activities that 
require a combination of physical and 
cognitive capabilities.

In the literature, only limited work 
exists on recognition of fine-grained, 
complex ADLs and IADLs with mini-
mal infrastructure overhead and with-
out direct privacy concerns. Complex 
activity recognition using resource-
constrained sensors is a challenging 
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task and requires innovative solutions. To this 
end, we propose an algorithm for complex ADL/
IADL recognition that has potential applica-
tion in healthcare and wellness management, 
such as remotely monitoring the progression of 
Alzheimer’s disease in the elderly.

Elderly people affected by Alzheimer’s 
disease (the most common form of dementia) 
often exhibit forgetfulness, memory loss, and 
repetitive behavior such as wandering outdoors 
at unusual hours and frequencies, wandering 
indoors in confusion, oversleeping at daytime, 
repetitive opening/closing of cabinet doors, and 
increased chances of falling.2 Healthcare spe-
cialists (such as doctors, nurses, or caregivers/
relatives) can use our proposed ADL/IADL activ-
ity-recognition scheme to remotely monitor and 
assess cognitive health progression (improvement, 
stability at the current stage, or degradation) in 
elderly people, while they’re at home. Such cog-
nitive health assessment could be critical for doc-
tors in deciding whether it’s time for a patient to 
be moved to assisted living or other formal care 
facilities. In health conditions such as bulimia 
(recurrent and frequent episodes of eating) and 
anorexia (severe restrictions on food intake), the 
frequencies and durations of eating are anoma-
lous,3 implying the need for remote monitoring 
and assessment of the degree of the eating disor-
der. Professionals can use our ADL/IADL activity 
recognition scheme not only to detect eating hab-
its, but also to understand which other activities 
lead to or follow those eating phases.

Figure 1a illustrates our proposed ADL/IADL 
recognition system that exploits multimodal, 
wearable sensing of key contexts: body locomo-
tion (via accelerometer and gyroscope), ambi-
ent environment (via temperature and humidity 
sensors, and fine-grained change in altitude 
of user body position via barometric pressure 
sensor), and location (via communication with 
Bluetooth beacon location tags). As for the 
infrastructure component, one simple, small, 
inexpensive Bluetooth beacon device is placed 
in each room. These beacons just broadcast, 
while user’s wearable devices listen to them for 
assessing the location/proximity context. The 
activity classification algorithm (see Figure 1b) 
consists of three components:

•	 extraction of practical features from multi-
modal sensor suites on the wearable;

•	 a novel structured classification algorithm, 
based on the conditional random field (CRF) 
classifier,4 performed on each of the wear-
able devices (on multiple positions of the 
body) separately; and

•	 improvement in activity classification by 
leveraging and fusing decisions from the 
body’s multipositional wearable devices.

Through real experimental study we vali-
dated that the proposed scheme can classify 
a set of 19 complex, in-home activities with a 
high degree of accuracy overall. These activi-
ties are

Figure 1. Our proposed system. (a) Multimodal sensing used in the proposed activities of daily living (ADL)/instrumental 
ADL (IADL)recognition system. (b) Our proposed activity classification algorithm from multimodal and multipositional 
sensing on a user’s body.
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•	 walk and run indoors (categorized as loco-
motive activities);

•	 use refrigerator, clean utensil, cook, sit and eat, 
and use bathroom sink (categorized as seman-
tic activities, because they are related to certain 
routines or tasks belonging mostly to IADLs);

•	 move from indoor to outdoor, move from 
outdoor to indoor, walk upstairs, and walk 
downstairs (categorized as transitional 
activities); and

•	 stand, lie on the bed, sit on the bed, lie on 
the floor, sit on the floor, lie on the sofa, sit 
on the sofa, and sit on the toilet (categorized 
as postural/relatively stationary activities).

To the best of our knowledge, this is the first 
effort to recognize 19 in-home activities mainly 
with wearable devices. This is in contrast to 
typically 6 to 12 in-home activities recognized 
in existing literature,5-7 as Table A shows (see 
the “Related Works in Activity Recognition” 
sidebar).

Complex ADL/IADL  
Recognition Scheme
We now describe the underlying methodology 
of our proposed in-home ADL/IADL recognition 
system (see Figure 1b). It consists of the follow-
ing pipeline of three phases:

Related Works in Activity Recognition

Over the years, many have researched human activity 
recognition, generating work that provides some back-

ground on the state of the field. Here, we discuss the most 
relevant of such works.

Oscar Laras and Miguel Labrador provided a detailed sur-
vey on human activity recognition schemes based on wearable 
sensors.1 In another work, Saguna Saguna and her colleagues 
discuss complex activity recognition theory.2 Based on sensing 
resources, there are three broad categories of approaches pro-
posed in the literature for in-home activity recognition:

1.	 only with wearable devices,3-5

2.	 only with external static infrastructure-based systems 
deployed in surrounding physical environments,6 and

3.	 combining wearable devices and external static infrastruc-
ture-based systems.7

With wearable devices only, activity recognition can be accom-
plished with the help of learning from data sensed by smart-
phones, wearable health tracker devices, smartwatches, 
augmented reality devices (such as Google Glass), and so on. 
For example, Kai Zhan and his colleagues used a smartphone-
based accelerometer and first-person-view video camera for 
recognizing both locomotive and stationary activities.3

For static infrastructure-based systems, we can achieve 
activity recognition by learning from data sensed by sensor 
networks, telemetry systems, motion detectors, RFID tags 
and readers, video and image cameras, or smart appliances 
deployed in physical environments. For example, in Daniel 
Wilson and Chris Atkeson’s work, they used static infrastruc-
ture-based sensors for room-level tracking and basic activity 
recognition such as sleeping in a bed, user movement status, 
and so on.6

Finally, there also exists a line of work that achieves activi-
ties of daily living (ADL) recognition by combining data sensed 
from wearable devices and additional static infrastructure. As 

an example, Nirmalya Roy and his colleagues’ work integrates 
data sensed from networked motion sensors (that also pro-
vides location contexts) with those generated from smart-
phone sensors for classifying postural/locomotive activity 
states of multiple inhabitants.7

Table A provides a comparison of relevant existing works 
with our proposed ADL/instrumental ADL (IADL) recognition 
scheme. Note that although there’s a large body of literature 
concerning a variety of activity recognition, here we focus on 
relevant works that detect only in-home activities and don’t 
use sensing modes with direct privacy concerns. In particular, 
our approach uses very light additional infrastructure (Blue-
tooth beacon tags in each room) and has no direct privacy 
concerns (regarding infrastructure or a wearable camera), yet 
recognizing a larger number of fine-grained complex activities 
of individuals at home.
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1.	data preprocessing followed by feature 
extraction on each of the sensor data stream 
(which runs separately on each wearable 
device’s data); 

2.	multiscale CRF-based classification,4 fol-
lowed by the proposed weight-based proba-
bilistic decision state selection (which runs 
separately on each wearable device data); and

3.	final user activity state classification, given 
an individual decision from each multiposi-
tional wearable device on the body.

The sampled multimodal sensor data are 
individually preprocessed and fed to the 

feature-extraction process. The extracted fea-
tures are then used in the multiscale CRF clas-
sifier for supervised learning. But instead of 
using the deterministically best decision about 
the activity state, our modified classifier uses a 
weight-based, probabilistic activity state selec-
tion. This selection is done from the set of top 
K classified activities and their emission/output 
probabilities. Finally, the classifier decisions 
from individual wearable devices are converted 
into a final activity state using a body-posi-
tion-based selection. This last phase of decision 
selection is flexible, based on the number of 
simultaneous wearable devices worn by the user.

7.	 N. Roy, A. Misra, and D. Cook, “Infrastructure-Assisted Smartphone Based 

ADL Recognition in Multi-Inhabitant Smart Environments, Proc. IEEE Int’l 

Conf. Pervasive Computing and Comm., 2013, pp. 38–46.

8.	 P. Gupta and T. Dallas, “Feature Selection and Activity Recognition System 

Using a Single Triaxial Accelerometer,” IEEE Trans. Biomedical Eng., vol. 61, 

no. 6, 2014, pp. 1780–1786.

Table A. Comparison of different categories of works related to in-home activities of daily living (ADL)/ 
instrumental ADL (IADL) recognition.

Referenced work Wearable sensing component

Infrastructural sensing 

component Activities recognized

Daniel Wilson and 

Chris Atkeson6
None Motion detectors, break-

beam sensors, pressure 

mats, and contact 

switches

Room-level tracking and basic activities such as 

sleeping in bed, and user-movement status.

Piyush Gupta and 

colleagues8
Belt-clip accelerometer None Six activities: walking, jumping, running, sit-to-

stand/stand-to-sit, stand-to-kneel-to-stand, and 

staying stationary.

Kai Zhan and 

colleagues3
Accelerometer

Wearable video camera

None Twelve activities: walking, going upstairs, going 

downstairs, drinking, stand up, sit down, sitting, 

reading, watching TV/monitor, writing, turning 

water faucet on/off, and hand washing.

Nirmalya Roy and 

colleagues7
Smartphone accelerometer and 

gyroscope

Ceiling-mounted infrared 

motion sensors

Six low-level postural or motion activities (sitting, 

standing, walking, running, lying and climbing 

stairs), and six high-level semantic activities 

(cleaning, cooking, medication, sweeping, washing 

hands, and watering plants).

Complex ADL/

IADL recognition 

(this article)

Wearable multimodal sensing with

•	 accelerometer, gyroscope (for 

body locomotion);

•	 temperature, atmospheric pres-

sure, and humidity (for ambient 

environment); and

•	 Bluetooth message reception  

(for location context).

Bluetooth beacons in the 

physical environment (one 

beacon in each room)

Nineteen fine-grained activities:

•	 walking and running indoors (locomotive);

•	 using refrigerator, cleaning utensils, cooking, 

sitting and eating, and using bathroom sink 

(semantic);

•	 indoor to outdoor, outdoor to indoor, and 

walk upstairs or downstairs (transitional); and

•	 just standing, lying on bed, sitting on bed, 

lying on floor, sitting on floor, lying on sofa, 

sitting on sofa, and sitting on toilet (postural/ 

stationary).
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With growing commercial use and devel-
opment of smart wearable devices, it won’t be 
uncommon to see users with multiple wearable 
devices on different body locations. In fact, 
there already are popular wearable devices on 
the market, such as Lumo Back (on the waist 
or lower back; see www.lumobodytech.com/
lumoback), Lumo Lift (on the back; see www.
lumobodytech.com/lumolift), Nike+ (on legs 
or shoes; see https://secure-nikeplus.nike.com/
plus), and Fitbit (on the wrist; see https://www.
fitbit.com). Upcoming wearable health trackers 
are going to host not only the movement- and 
posture-based sensors, but also ambient envi-
ronment sensors, and also will record com-
munication signatures with Bluetooth beacons 
in the surrounding infrastructure. This shows 
potentially broad practical applicability of our 
designed system and algorithm.

Next, we describe each of the three pipeline 
phases in detail.

Phase 1: Feature Set Extraction
Computation of meaningful features from the raw 
multimodal sensor data is important. To extract 
the feature dataset, we employ a selection of fea-
tures that are lightweight to compute, moder-
ate in number, and robust to practical situations 
that might affect their effectiveness (for example, 
changing the tile or rotation of the wearable).

Accelerometer
Features from accelerometer data are collected 
as follows. Several works in the literature pro-
pose to compute too many features from the 
accelerometer data streams, which can often be 
time- and resource-consuming due to the com-
putational load and fast sampling required for 
an accelerometer. Realizing this, and after ana-
lyzing the literature on accelerometer data pro-
cessing, our proposed system uses six particular 
features from accelerometer data for each sam-
pled sliding window (with the sliding window’s 
size and duration generally set at two seconds): 
mean and variance of resultant acceleration 

a a ax y z
2 2 2+ +( ), where ax, ay, and az are accelerated 

along the x-, y-, and z-axes), with mean and 
variance of the first derivative of resultant 
acceleration, and mean and variance of the sec-
ond derivative of resultant acceleration.

The resultant acceleration is a good mea-
sure of the degree of body movement due to 

activity. These features are commonly used in 
the related literature. Our system doesn’t use 
as many features so that it can support online 
activity classification (computation of too many 
features will bring considerable delay).

More importantly, note that axis-specific 
parameters of the accelerometer aren’t used for 
practical applicability in real-world scenarios. 
All six features are the combined property of 
all three axes, and thus not affected by contin-
uous change in rotation or tilt of the wearable 
devices. The three-axis accelerometer is sam-
pled at 100 Hz. This sampling frequency is sat-
isfactory to capture acceleration-based human 
users’ regular body movements.5

Gyroscope
Features from the gyroscope data are collected 
as follows. The proposed system uses the fol-
lowing six features from gyroscope data for 
each sampled sliding window (again with a size 
of two seconds): mean and variance of resul-
tant (of the three-axis) angular speed, mean 
and variance of first derivatives of resultant 
angular speed, and mean and variance of the 
second derivative of resultant angular speed. 
These features from a gyroscope are also com-
monly used in the related literature. However, 
as previously mentioned, our system doesn’t use 
extra features that would delay computation. 
Also, the axis-specific parameters of a gyro-
scope aren’t used here for practical applicability 
in real-world scenarios. All six features are the 
combined property of all three axes. The three-
axis gyroscope is sampled at 100 Hz.

Temperature, Humidity,  
and Atmospheric Pressure
Features from these sensors are collected as 
follows. They’re sampled at 1 Hz, 1 Hz, and 5 
Hz, respectively. The system used the mean and 
variance of windowed data for each of these 
sensors (again with the sliding windows’ size 
typically chosen as two seconds). The pressure 
sensor sampling rate is kept a little higher to 
capture fine changes in atmospheric pressure 
in different user positions at slightly different 
heights (elevations), such as on the floor, sofa, 
bed, or chair. We observed that the baromet-
ric pressure sensor indicates subtle differences 
in pressure data at those elevations. Although 
the differences are subtle, it can be exploited 
through machine-learning-based supervised 
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classification for successfully distinguish-
ing complex activities. While moving upstairs 
or downstairs, the atmospheric air pressure 
change is distinct. Also, subtle changes of tem-
perature and humidity around wearables on 
certain body positions help detect and distin-
guish complex and fine-grained activities. For 
example, the temperature and humidity around 
the wrist-worn wearable changes during activi-
ties such as opening the refrigerator, using 
the sink, cooking, transitioning from indoors 
to outdoors, and so on. This motivates us to 
monitor the user’s sensing of physical ambience 
surrounding temperature, humidity, and atmo-
spheric pressure.

Bluetooth Beacons
Another novel feature of the proposed system 
is determining and using the location con-
text through message reception on a wearable 
device from Bluetooth beacon broadcasts. These 
Bluetooth beacon devices (see Figure 2b) are 
becoming popular due to their low overhead in 
deployment and management. These are small 
transmitters that can notify nearby devices of 
their presence, representing proximity of those 
devices to the beacons. We exploited this prac-
tical feasibility to provide our system with loca-
tion context-based features. The system uses 
a received signal strength indicator (RSSI) of 
the received message on the wearable device to 
estimate location context in its closest proxim-
ity. Because we equipped each room with one 
Bluetooth beacon, the features were basically 
an indicator of user presence in rooms, such 

as the bedroom, kitchen, or bathroom. How-
ever, in future work we aim to add more loca-
tion features, and also refine location context 
detection with more analysis on RSSI data from 
beacon broadcasts.

It’s worth mentioning that instead of dedi-
cated Bluetooth beacons, someone also could 
use existing in-home Bluetooth devices (for 
example, from smart appliances or connected 
utility devices) as alternative sources of loca-
tion contexts. Our proposed scheme can work 
with those already in-use Bluetooth devices 
by simply changing the source of location tags 
listed by the wearable Bluetooth receivers. The 
Bluetooth hardware ID to location tag mapping 
is flexible and used in the software that runs in 
the server, thus requiring no reconfiguration or 
reprogramming of devices.

Phase 2: Structured  
Classification of Activities
We based our proposed activity classifier on the 
CRF multiscale graphical model-based struc-
tured classifier.4 It’s a class of statistical mod-
eling method used for structured learning and 
prediction. CRF can support more complex 
and useful feature sets by modeling the pos-
terior probabilities instead of joint probabili-
ties. Unlike ordinary classifiers, which predict 
activities for a single sample (from a combina-
tion of chosen features) without using neigh-
boring samples, the CRF classifier can take into 
account the multiscale context. It’s used in this 
work for modeling the multiscale context in 
activity sequences.

Figure 2. The conditional random field (CRF) model. (a) Multiscale CRF graph structure. The thick edges represent the pair-
wise edges for the template setting of (010304) for hidden state node yt. (b) From left to right: application screenshot for 
ground-truth data collector, smartphone application screenshot for sensor sampling, and Bluetooth beacons.
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The CRF model captures the temporal rela-
tionships in sequential activity data. Figure 2a  
shows the graph structure used in the CRF 
model, with observation sequence x (obtained 
from the feature extraction of the multimodal 
sensor data), hidden states y (the user activ-
ity states to be classified) of class probability 
assignments, and the edges E between hidden 
states that represent pair-wise relationships. 
As in Figure 2a, the different scale or length 
of edges (for example, that run from yt to yt−1, 
yt+1, yt−3, yt+3, yt-4, yt+4) enables flow of con-
textual information in the whole network. To 
implement the CRF model, we used a modified 
version of the standard CRFSharp toolkit (see 
http://crfsharp.codeplex.com).

Phase 3: Body Multipositional 
Decision Selection
The classification output from the modi-
fied CRF-based classifier consists of tuples: 
<detected activity, body position of wearable>. 
The number of such tuples is decided by the 
number of wearable devices needed — for exam-
ple, four if waist, back, leg, and wrist positions 
are used. The final task is to select one overall 
user activity state from these pairs. We handle 
this selection as follows: we select each possible 
activity state to be most relevant to one of the 
body positions (for example, walking/running 
for leg position, lying down for back position, 
and so on). We base this relevance relationship 
on basic knowledge of human physiology and 
also on our experimental observations. Then 
the system makes the final decision about the 
user’s activity state from the most relevant pair 
available. If there’s a tie, the system chooses the 
final activity state randomly from the equally 
probable choice of pairs.

Note that this multipositional decision-
selection methodology might not be the best 
solution. This is kept as future work, as the 
main focus of this work has been to first solve 
multimodal sensing-based classification. Also 
for future work, we aim to improve the multipo-
sitional device decision selection with another 
layer of machine-learning classifiers, which 
don’t need a temporal order for learning.

Experimental Evaluation
Now we present preliminary experimental 
results to evaluate our ADL/IADL classification 
system’s performance. We tested the classifica-

tion performance with a user in a real-home set-
ting. Our experimental setup includes Samsung 
Galaxy S4 smartphones’ onboard sensors, along 
with Gimbal Bluetooth beacons (see www.gim-
bal.com). We used collected data from four 
smartphones worn on different body positions: 
waist, lower back, thigh, and wrist.

It’s important to note that smartphones are 
used only as a multisensor data-collection plat-
form. The wearable devices on different body 
positions will ideally be designed with dif-
ferent form factors in practical scenarios. Our 
next stage of work will include the design of 
wearable prototypes with those multimodal 
sensing capabilities. The available wearable 
devices on the market mostly don’t have such 
specific sensors needed by our activity classi-
fier and detector. For future work, we plan to 
use the RFduino-based small form-factor sensor 
platform and off-the-shelf sensing modules, to 
design the wearable prototype for further sys-
tem integration and application.

We developed two Android applications to 
serve two purposes. First, to collect data from 
on-board selected sensors and receive signals 
from Bluetooth beacons installed in differ-
ent rooms of the home environment (collected 
data was locally stored with proper timestamps; 
a clock of each device was Network Time Pro-
tocol [NTP]-time synchronized with an avail-
able Android app called NTPSync). Second, the 
Android applications collected user activity 
ground truth with proper timestamps (we also 
used a separate person as a dedicated observer 
for using the ground-truth application).

The user performed all 19 activities over the 
course of 45 minutes in the user’s own selected 
order of choice and repetition (to keep the natu-
ral activity behavior, movements, and postures). 
The user did this twice to obtain separate train-
ing and testing datasets. Figure 3 shows the order 
of performed activities (the ground truth through 
time) in the testing dataset collection. We evalu-
ated the proposed ADL/IADL classifier perfor-
mance on the same user’s activity data, with 
separate datasets for training and testing. Fig-
ures 4a and 4b show high classification accuracy 
performance. In our next stage of work, we aim 
to evaluate cross-user activity classification per-
formance. In this work, however, our proposed 
scheme has shown to be highly effective for per-
sonalized application that requires fine-grained 
and complex activity recognition.
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Furthermore, the accuracy errors for each 
ground truth of activity aren’t randomly or 
equally distributed across all of the other 
remaining activities. The activity classifica-
tion errors are distributed in only a small num-
ber of other similar activities. This is clearly 
observed in the confusion matrix shown in 
Figure 4a. Some complex/hybrid activities, 

such as opening the refrigerator, are more dif-
ficult to detect. One possible reason could be 
that detecting such activity partly relies on the 
temperature sensor on the wrist (which gives 
a unique temperature signature when a wear-
able device on the wrist is in close proximity 
to an opened refrigerator). Because the tem-
perature sensor had some delay in sensing the 

Figure 3. Ground truth. The order of 19 activities performed by the user (this shows the activity index versus sample 
number or time).

Figure 4. Same-user evaluation (with different datasets for training and testing). (a) A confusion matrix of accuracy 
performance across 19 activities. (b) Individual accuracy performance of 19 activities. From Figure 4b, we observe that 
the mean accuracy over all activities is 80.48 percent, and the median of accuracy over activities is 82.14 percent. 
The accuracy of individual activities was a minimum of 40 percent (using the refrigerator), and maximum of 97.3 
percent (sitting and eating). Note that with the 19 complex activities classifier, a random guess will lead to an average 
of 100/19 percent or 5.26 percent accuracy. Thus, the accuracy percentage of 40 percent is still an improvement 
compared to the 5.26 percent accuracy of a random guess. Statistically, the requirement of 50 percent or higher 
accuracy isn’t representative in this particular case, because this isn’t a binary classifier or one with a much lower 
number of activities. Yet our proposed scheme achieved considerably higher accuracy for most of the 19 activities.
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environment, it sometimes confused activities 
with a similar context in the kitchen, such as 
cleaning utensils and cooking. From the confu-
sion matrix in Figure 4a, we observe that our 
classification error for using the refrigerator 
didn’t spread randomly among other activities, 
but was distributed in just two other kitchen-
related activities.

Figure 5 presents the performance evalu-
ation of multipositional decision making in 
the final phase of our proposed scheme. For 
same-user evaluation (same-user training and 
testing on different datasets), the individual 
wearable devices (worn on the user’s differ-
ent body positions) provide accuracy ranging 
from 65.83 to 71.48 percent, while our mul-
tipositional decision-selection strategy pro-
vides an overall accuracy of 80.48 percent. 
It’s important to note that the main thesis of 
this research is to design an improved classi-
fier for a large number of complex activities by 
using multimodal sensing. The next step is to 
design a good final decision selection method-
ology. We’ve used the basic notion of human 
physiology-based activity decision selection 
from devices worn on the waist, back, thigh, 
and wrist. But we can further improve sys-
tem performance by using a more intelligent 
design for final activity selection, which is the 
next goal of our research. We also aim to use 
another classifier for final decision selection, 
which will use temporal activity information 
from previous time instances.

H ere, we presented a scheme for recognizing 
humans’ fine-grained, complex, in-home 

activities using wearable multimodal sensing 
and minimal infrastructure with only Blue-
tooth beacons. In particular, we designed a con-
text-based activity classifier based on hybrid 
multimodal sensors, and body multipositional 
wearables. Our experimental results demon-
strate that, on average, the proposed scheme 
provides more than 80 percent accuracy of clas-
sifying 19 in-home activities.

For future work, we plan to improve the body 
multipositional device decision-selection algo-
rithm. We also aim to design a custom wearable 
prototype and apply the complete system for 
specific applications, such as remote assessment 
of elderly people with dementia while they live 
independently at home.�
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