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Leveraging Smartphone Sensors to Detect Distracted
Driving Activities

Kaoutar Ben Ahmed, Bharti Goel, Pratool Bharti, Sriram Chellappan and Mohammed Bouhorma

Abstract—In this paper, we explore the feasibility of leveraging
the accelerometer and gyroscope sensors in modern smartphones
to detect instances of distracting driving activities (e.g., calling,
texting and reading while driving). To do so, we conducted an
experiment with 16 subjects on a realistic driving simulator.
As discussed later, the simulator is equipped with a realistic
steering wheel, acceleration/ braking pedals, and a wide screen to
visualize background vehicular traffic. It is also programmed to
simulate multiple environmental conditions like day time, night
time, fog and rain/ snow. Subjects were instructed to drive the
simulator while performing a randomized sequence of activities
that included texting, calling and reading from a phone while
they were driving, during which the accelerometer and gyroscope
in the phone were logging sensory data. By extracting features
from this sensory data, we then implemented a machine learning
technique based on Random Forests to detect distracted driving.
Our technique achieves very good Precision, Recall and F -
Measure across all environmental conditions we tested. We believe
that our contributions in this paper can have significant impact
for enhancing road safety.

Keywords—smart sensing, intelligent transportation systems, dis-
tracted driving, machine learning, smartphones.

I. INTRODUCTION

AS of today, driving while simultaneously using a smart-
phone is one of the most significant dangers to road

safety. It is reported that in 2014 alone, 3, 129 people were
killed in distracted driving crashes in the US [1], and in
many of them, usage of smartphones was identified as a major
contributing factor. The impact of phone usage on reaction
time is explained with reference to a phenomenon referred
to as “inattentional blindness” or “perceptual blindness”, well
documented in the psychological literature, wherein a person
who is focusing his or her attention on one particular task will
fail to notice an unexpected stimulus (even if he or she looks
at it) [2]. Five seconds is the average time a person’s eyes are
off the road while texting. When traveling at 55mph, that is
enough time to cover the length of a football field blindfolded,
which explains the severity of the problem. Naturally, there is
renewed urgency in the US and across the globe to combat
this problem, with several laws being enforced that either
restrict, or totally ban the use of smartphones while driving.
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Unfortunately, even with restrictions/ bans, nothing prevents
a person from reaching out to a phone while driving, which
makes this issue complicated.

A. A case for technology based intervention
Recently, there are some earnest attempts at leveraging tech-

nology based solutions to combat the problem of smartphone
use during driving. These are partly due to people accepting
such solutions, as evidenced by a recent finding in a study
sponsored by the American National Safety Council in 2016
[3]. In that study, more than 2, 400 drivers across the country
were surveyed, and 55% of drivers said that they would accept
any simple to use technological solution that will prevent
distractions while driving.

Efforts in Industry: There are some innovative products
developed by industry to cater to this need. AT&T and other
service providers offer apps that when executed by a driver
before driving will prevent notifications sent to the driver
while driving [4]. Unfortunately, users have to proactively turn
on the app before starting to drive that can be cumbersome.
“Snapshot” from Progressive Insurance is a small device that
plugs to a car, typically located beneath the steering column
[5]. The device collects and sends driving information like
miles driven, driving times, and braking patterns to a server
for approximately one policy term. In exchange for this data,
prudent drivers can receive discounts off their premiums. The
“Metromile Pulse” is another device that collects driving stats
and engine health among others, which can be used to save on
insurance premiums [6]. While these products encourage safe
driving, and could be used to detect more fine-grained driver
activities, they are not designed to enable the detection of
distracted driving activities as and when they happen. Further-
more, such devices are external, and are additional investments,
hence limiting their permeability for a wide audience.

Efforts in Academia: In the academia also, there are
interesting solutions in the space of enhancing driver safety
and comfort with external devices (like smartphones). In [7],
images from smartphone cameras attached on car windshields
are processed for predicting signal times, while in [8], smart-
phone images of drivers are used to detect tired or distracted
drivers for road safety. Other papers like [9]–[11], use inertial
sensory data from smartphones or wearables placed inside cars
to profile driver routes, that could have potential applications
in path planning. Other works in the academia more closely
related to the one in this paper are [12] and [13], where inertial
sensors in smartphones are used to detect driving related
activities like acceleration, steering, braking etc. In [14], a
technique is proposed to only detect texting while driving by
assessing the timing differences between key pad entries on
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Fig. 1: Four Participants in the Driving Simulator in Different Environmental Conditions (Day time, Night time, Fog and
Rain/Snow)

the phone. More sophisticated techniques like a) using external
antennas [15]; b) using acoustic ranging techniques between
a phone and car speakers [16]; and c) computing centripetal
acceleration from smart-phones sensors to assess vehicular
dynamics [17] are also attempts to detect phone use while
driving. However, none of these techniques aim to detect the
type of distracted driving activity among texting, calling and
reading on the phone, which we accomplish in this paper.

B. Our Contributions
In this paper, our problem is to leverage the in-built iner-

tial sensing functionalities of modern smartphones to detect
instances of distracted driving. Unfortunately, getting real data
for such a purpose is dangerous as it puts subjects at risk. To
overcome this, we utilize a state of the art driving simulator,
called the CAREN platform [18] which is equipped with a real-
istic steering wheel, driver seat with belts, acceleration/ braking
pedals, and a wide screen to visualize background vehicular
traffic. The system also enables subjects feel accelerations/
decelerations of the platform when they simulate driving.
It is also programmed to simulate multiple environmental
conditions like day time, night time, fog and rain/ snow.

We conducted an experiment with 16 adult subjects driving
in the CAREN simulator for multiple environmental con-
ditions. Our data (as we show later) demonstrates that the
accelerometer and gyroscope sensors in smartphones show
subtle changes when subjects attempt to text, call or read from
a phone while holding it and driving, that are also distinct from
safe driving patterns (i.e., driving without holding the phone).
Utilizing this insight, we design a machine learning technique
to detect instances of distracted driving from processing the ac-
celerometer and gyroscope data in the phone. Specifically, we
first derive a large number of intuitive features from the sensor
readings, from which we employ Filter-based [19] techniques
to identify a subset of six features that provide a high degree of
discriminatory power. Then, we design a Random Forest based
machine learning classification algorithm (details in Section
IV-C) to detect instances of distracted driving in real-time.
Our technique achieves an overall accuracy of more than
87.94%, 80.09% and 70% respectively for same-user cross-
validation, cross-user cross-validation and cross-user leave-
one-out evaluation strategies in determining the specific type
of distracted driving activity (i.e., texting, calling and reading)
averaged across four background environmental conditions.
When we reduce the problem to merely a binary classification
one in terms of detecting whether or not a subject is using the
phone while driving, the accuracy reaches 96% even in the
more stringent cross validation with leave one out evaluation

strategy, hence demonstrating the effectiveness and practicality
of our proposed technique.

II. BACKGROUND ON CAREN PLATFORM
We now present details on the driving simulator used to

collect data to address our problem of detecting distracting
driver activities. The driving simulator used for our study is
the Computer Assisted Rehabilitation Environment (CAREN)
system [18], which was developed by the Center for Assistive,
Rehabilitation and Robotics Technologies (CARRT) at Uni-
versity of South Florida, in collaboration with Motek Medical
[20]. This driving simulator was originally developed to help
train individuals with spinal cord injuries to learn how to drive
in a safe and controlled environment. The simulator includes a
six degree of freedom motion base, an optical motion capture
system, a sound system, and a 180-degree projection screen.

The two drive by wire (DBW) controls a lever device to
control the gas and brake components, and a small wheel de-
vice to control steering. In doing so, an electrical signal is sent
to a Phidget board, which interfaces with the CAREN system.
The motion platform enables the driver to feel accelerations
and decelerations during driving while being in the platform’s
work-space. It also displays the driver’s speed, surrounding
traffic, and number of collisions if any. Evaluation of the
system in [18] identified that subjects felt comfortable, and
they also stated that the environment felt real. The sensitivities
of accelerometer and braking were also identified as realistic.
Note that driving scenes were created using Google SketchUp
3D modeling software. After a scene was exported, it was
imported into D-Flow to be used in the driving applications.
For our experiments, multiple environmental conditions were
simulated including day time, night time, fog and rain/ snow
in a highway like environment that comprised of a four-lane
highway with speed limits of up to 70mph, while also simulat-
ing moving background traffic. Fig. 1 shows four participants
in our experiments driving in each of the four environments.

III. EXPERIMENTAL DESIGN
In this section, we describe in detail the procedures of our

experiment using the CAREN system for data collection. The
experimental procedures were approved by the Institutional
Review Board (IRB) of the University of South Florida. The
authors performed experimental procedures in accordance with
the approved guidelines.
A. Smartphone for the Experiments

We used in our experiment one Samsung Galaxy S4 smart-
phone, of dimensions 136.6 × 69.8 × 7.9mm. The smartphone
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has Android 4.4 (KitKat) OS, and is embedded with multiple
sensors including an accelerometer and a gyroscope. The
LIS344ALH accelerometer sensor in the Samsung S4 phone
[21] can consistently sample up to around 250Hz, and the
sampling rate is programmable. It records the smartphone
movement state based on three axes x, y and z in m/sec2.
The gyroscope measures rate of rotation of the smartphone
with respect to x, y and z axes in rad/sec, with similar
sampling rates. We designed and implemented an app on the
phone that allowed the recording and storing of accelerometer
and gyroscope readings at a sampling rate of 200Hz for
experiments in this paper, along with time.

B. Subjects
Sixteen adults were recruited for this study. They ranged

from ages 20 to 28. Ten participants were male and six were
female. All subjects had a valid US driver’s license, and at least
two years driving experience, and reported that they drive an
average of at-least ten hours per week. All subjects claimed
that they were comfortable to text, make phone calls, and read
from the phone while driving. After signing the IRB forms,
and having all their questions answered, participants were
familiarized with the driving simulator using a standardized
12 minute adaptation sequence. All participants indicated that
they were comfortable to participate in the experiments, and
also indicated they were alert and ready to drive (i.e. they were
not tired or stressed or sleep-deprived).

C. Procedure
After the practice session, participants were asked to sit

in the driver seat of the car simulator, and were given the
smartphone. The participant placed the phone in a horizontal
platform next to the steering wheel from where it could be
easily picked up. Our app to record accelerometer readings,
gyroscope readings, and time stamps was installed on the
phone and turned on. Subjects were instructed to drive the
simulator normally and respect the speed limits displayed
on screen, perform proper lane changes, and perform proper
overtaking of other vehicles on the road. Each subject drove
for a total of around 11 minutes in the simulator. In the first
two minutes the subject did not use the phone at all, so that
he/ she can familiarize with the simulator. Around the start
of the second minute, and for most of the next 9 minutes,
subjects were either called on the phone to engage in a voice
conversation, or were made to engage in a texting session, or
were sent an article to read while driving. Each session was
around two minutes long, and there was a one minute gap
between each event to let the subject put the phone down and
stabilize their driving in the simulator.

One of the co-authors was the other party in the commu-
nication with each subject during these sessions. Note that
the sequence of texting, calling and reading sessions were
randomized for every subject. All of the sixteen subjects
participated in the above experiment for all four environmental
conditions, namely, day time, night time, fog and rain/ snow.
At the conclusion of each experiment (around the end of the
11th minute), the subject gradually decelerated and exited the
simulator. We point out that throughout the entire duration,

Fig. 2: Accelerometer (x-axis) Readings for a Single Subject
for Multiple Events in Four Environmental Conditions

Fig. 3: Gyroscope (x-axis) Readings for a Single Subject for
Multiple Events in Four Environmental Conditions

each subject drove the simulator constantly and never stopped.
The text messages, voice conversations, and reading content
were the same for all participants, and the smartphone recorded
sensor data continuously for all subjects while driving. Recall
that Figs. 1 (a) to (d) shows four participants in our experi-
ments driving in each of the four environments.

D. Data Tagging
In order to tag the data, we compared the times when an

activity was initiated and terminated on the phone, with the
times when the sensor readings were recorded. From this, we
were able to tag the various activities with the sensor readings
for subsequent model development.

IV. OUR METHODOLOGY FOR CLASSIFYING
DISTRACTED DRIVING

In this section, we present in detail our methodology to
detect instances of distracted driving. First, we present the
rationale for our technique, followed by the process of feature
extraction, and finally algorithm design.

A. Rationale of our Technique
Figs. 2 and 3 highlight the feasibility of classifying dis-

tracted driving from smartphone sensory data technique. We
show for a single subject, how the readings of the accelerom-
eter and gyroscope (both in x-axis only) collected from the
smartphone are different when the subject drives without
distraction, and when the subject texts, calls or reads from
the phone while driving. We can also see that there are
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subtle differences in sensor readings among texting, calling
and reading. We also notice that the corresponding sensor
reading for the same event does not appear too different across
the four environmental conditions (possibly indicating that
the consequences of distracted driving are relatively uniform
across all environmental conditions). These trends also ex-
hibited repeatability across all three axes for both sensors,
and across subjects (which we do not show due to space
limitations). As such, our rationale is to leverage these insights
to process the accelerometer and gyroscope sensor readings in
the phone to automatically detect distracted driving activities
as and when they happen.

It is important to mention that during the times of un-
distracted driving, the smartphone was placed on a horizontal
platform next to the steering wheel. At these times, the phone
was relatively stable, since the participants in our study were
experienced drivers, and there was little to no abrupt driving
that would cause the phone to move suddenly, which could
create arbitrary spikes in sensory readings in the phone. This
is why the sensor readings are relatively stable during the case
of driving with no distraction 1.

TABLE I:
Initial Features Computed from Sensor Data

Feature Description Notation
Maximum, minimum and maxX, minX,

standard deviation of stdX
accelerometer in X axis

Maximum, minimum and maxY, minY,
standard deviation of stdY

accelerometer in Y axis
Maximum, minimum and maxZ, minZ,

standard deviation of stdZ
accelerometer in Z axis

Mean, Standard Deviation,
Resultant of Accelerometer Variance, Energy, Median,

Range, Interquartile Range
Square Sum Mean of µ(x2+y2), µ(x2+z2),

Accelerometer µ(y2+z2)

Square Sum Variance ρ(x2+y2), ρ(x2+z2),
of Gyroscope ρ(y2+z2)

Number of Peaks of NumPeaks
Gyroscope

Squared sum of data below
certain percentile (25, 75) sumsq25, sumsq75

of Accelerometer
Other features of µ( (x+y)

2 − z), µ( (x+z)
2 − y)

Accelerometer µ( (y+z)
2 − y)

1Even in the case of any abrupt sensory patterns that should manifest
without the driver using the smartphone (like sudden braking or encountering
a pothole for example), we hypothesize that the corresponding sensor spikes
will be larger in amplitude and shorter in duration, and we could filter them
as noise, but is something that needs more rigorous testing.

B. Data Pre-processing and Features Extraction

Once the tagged accelerometer and gyroscope sensor data from
the smartphone is available, the first step is pre-processing
the raw sensor data. The readings were sampled using a 2
seconds sliding window. We tried varying the window size
from 1 second to 10 seconds with different amounts of overlap.
After observations and analysis, we chose a sliding window
size of 2 seconds with 10% overlap for our problem. In prior
related work [22], it is found that 2 to 5 seconds window works
best for human activity recognition using inertial sensors, and
this explains the rationale for our choice.
Once the data is pre-processed, the next step is extracting
features from the sensor datasets. Feature extraction and fea-
ture selection from input data are critical for accuracy of any
supervised learning algorithm. To start with, we extracted 28
features from the accelerometer and gyroscope readings, which
are easy to calculate, energy efficient and intuitive for our
problem. Table I presents these. However, there are trade-offs
here. Too few features may not be representative, and too many
features incur processing overhead and sometimes can even
decrease accuracy by introducing noise. As such, it is critical
that we identify a limited set of features from accelerometer
and gyroscope data that provide good discriminatory power
among various activities of interest, while also keeping pro-
cessing delay and energy low.

TABLE II:
Six Highest Ranked Features Finally Selected

Description Notation
Square Sum Mean of Accelerometer µ(x2+y2), µ(y2+z2)

Squared sum of data below 75 sumsq75
percentile of Accelerometer

Other features of Accelerometer µ( (x+z)
2 − y)

Square Sum Variance of Gyroscope ρ(x2+y2), ρ(y2+z2)

To address this issue, we use feature selection algorithms.
Broadly, feature selection algorithms fall into two categories,
Filter-based approach and Wrapper based approach. The Filter-
based approach relies on general characteristics of training
data to select some features without involving any learning
algorithm. The Wrapper-based approach requires one prede-
termined learning algorithm during feature selection and uses
its performance to evaluate and determine which features are
best. It tends to find features better suited to the predetermined
learning algorithm, at times resulting in superior learning
performance, but it also tends to be more computationally
expensive than the Filter-based approach. When the number
of features becomes large, the Filter-based approach is usually
chosen due to its computational efficiency.
Filter-based approaches require some methods to find the
correlation between input feature and output classes. There
exists broadly two approaches to measure the correlation
between two random variables. One is based on classical
linear correlation and the other is based on information gain.
Linear correlation is easy to measure but may not be able to
capture correlations that are not linear in nature. It also requires
that all features contain numerical values. On the other hand,
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Information gain ranks features based on their informatory
power which is the direct goal of feature selection. It measures
how much additional information a feature provides after
adding it into the set of existing features. Therefore, it works
for both linear as well as nonlinear correlations.
In this paper, we use the Filter-based approach for feature
extraction using a two step process based on linear correlation
and information gain. First, we identify those features from our
initial list that correlate the most with the classes that need to
be identified (i.e., texting, calling and reading while driving).
Once these features are identified, we then want to narrow
down to those features that show sufficient contrast with each
other (i.e., high information gain), since we do not want to
select features that are already correlating among themselves.
To do this next step, we employ the notion of symmetrical
uncertainty [23] as explained below.
Consider a Random Variable X = (x1, x2, ...xn), where n is
size of Variable X , which in our case is the feature vector
computed over multiple time windows. Let H(X) be the
entropy of variable X . It is given by:

H(X) = −
∑

P (xi)log2(P (xi)), (1)

where, P (xi) is the probability that variable x is in state xi
(i.e., xi ∈ X).
Physically, the entropy here is the unpredictability of a value
of the feature vector (X) as it is computed over multiple
windows from sensor data for each class of activity assessed.
Let H(X|Y ) be the entropy of vector X after observing values
of another vector Y = (y1, y2, ...ym), where m is size of vector
Y , which is given by:

H(X|Y ) = −
∑

iP (yj)
∑

iP (xi|yj)log2P (xi|yj))). (2)

Let, IG(X|Y ) be the information gain about vector X pro-
vided by vector Y . A feature vector Y is regarded more
correlated to feature vector X than to feature vector Z, if
IG(X|Y ) > IG(Z|Y ). Formally,

IG(X|Y ) = H(X)–H(X|Y ). (3)

Finally the symmetrical uncertainty is given by:

SU(X,Y ) = 2 ∗ ( (IG(X|Y ))

(H(X) +H(Y ))
). (4)

The symmetrical uncertainty between two feature vectors X
and Y essentially reveals how much information feature vector
X gives us, with knowledge of feature vector Y . Its value
is one when knowledge of feature vector Y allows us to
completely and correctly determine feature vector X . It is
zero when knowledge of feature vector Y reveals nothing
about feature vector X . Ideally, we need to choose those
features that have a high degree of discriminatory power (or
low correlations). This will also provide good contrast for
features used during classification.
As a result of this process, we selected six best features from
this pool that considered both accelerometer and gyroscope
sensor data. All selected features are listed in Table II. These

features serve as an input vector x into Random Forest
algorithm for activity classification, presented next.

C. Random Forest Classification Algorithm

Decision trees are popular in machine learning for classifica-
tion. A decision tree represents a graphical tree where leaf
nodes are the classes depicting the final prediction, while non-
leaf/ internal nodes correspond to a decision that is made based
on one of the features. Each internal node generates several
branches depending on the condition placed on the correspond-
ing feature. Random Forests (RF) [24] is a decision tree-based
ensemble learning technique used for classification, regression,
among others. It has the advantage of being extremely fast,
efficient on big data and capable of overcoming overfitting.
RF is a voting based ensemble of L decision trees (DT). Each
DT works as an independent classifier and predicts one activity
from processing that particular tree. The final activity selected
from the algorithm is the one selected by the majority of trees.
A DT is represented as Ti(x, θi), where x is an input feature
vector extracted from raw sensor data and θi is a random vector
that controls the structure of ith tree. The random vector θi is
generated independently but with the same distribution of the
preceding θ1, θ2. . . , θ(i−1) vectors. In the random subspace
method, θi consists of K integers (K �M) randomly drawn
from a uniform distribution in the interval [1,M ], where M is
the number of available features. Given a dataset that contains
N feature vectors, each consisting of M features, the RF
algorithm builds the trained model using Algorithm 1.

Algorithm 1 Random Forest Algorithm

1) Draw N samples at random with replacement from the
dataset with bootstrapping, to generate the training set
of the tree.

2) Select any K features randomly from the set of avail-
able features M , where K �M .

3) Among the values for each of the K features drawn,
choose the best binary split according to the Gini
impurity index [25], which measures impurity degree
in dataset. Gini index value lies between 0 and 1. It is
maximum when all classes in dataset have equal proba-
bility and minimum when any one class has maximum
probability. Finally select those features, which has the
least impurity.

4) Grow the tree to its maximum size according to the
stopping criterion chosen and let the tree unpruned.

Once the forest has been created, an unseen data sample is
labeled with one of the activity classes by taking the majority
vote: i.e., it is labeled with the activity, which is selected by
maximum number of ensemble trees. In RF, given a decision
tree T , and an input feature vector x to be classified, let us
denote by v(x) the leaf node where x falls when it is classified
by T . The probability P (a|x, T ) that a sample feature vector x
belongs to the activity a, where a ∈ {A1, A2, A3, A4} for four
activities, namely Texting, Reading, Calling and No Distraction
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Fig. 4: Precision, Recall and F -Measure performance of our system for four activities for Same-user 10-fold cross-validation
strategy for all four environmental conditions.

while Driving, is estimated by the following equation:

P (a|x, T ) = na
n
, (5)

where, na is the number of training samples falling into the
leaf node v(x) after learning; n is the total number of training
samples assigned to v(x) by the training procedure; and T
is a decision tree. Given a forest consisting of L trees and
an unknown feature vector x to be classified, the probability
P (a|x) that x belongs to the activity a is computed as:

P (a|x) = 1

L

L∑
i=1

P (a|x, Ti), (6)

where, P (a|x, Ti) is the conditional probability provided by
the ith tree (Ti) and is computed according to Eq. 5. As a
consequence, for the sample feature vector x to be classified,
the RF algorithm gives as output the vector:

p = P (A1, x), P (A2, x), P (A3, x), P (A4, x), (7)

for four activities. The activity with the highest probability in
the set is chosen as the classified activity for the ith tree. The
final activity is the one that gets the majority vote among all
activities from all decision trees in the forest. For fine-tuning
the performance of our RF model, we performed randomized
grid search on hyper parameter space to find optimized hyper
parameters. By evaluating just 1000 random combinations
of different hyper parameter combinations, we achieved best
results for the following hyper parameter values: 121 decision
trees, information gain as splitting criteria, 6 as the maximum
depth of each decision tree, 5 as minimum number of samples
to split the internal node, and bag size of 100%. The entire
process of classification (pre-processing, feature extraction and
classification algorithm) was executed on a smart-phone.

V. RESULTS AND DISCUSSIONS

In this section we present results on the validation of our
technique to detect distracted driving activities from processing
accelerometer and gyroscope readings from the smartphone
across four environmental conditions − day time, night time,
fog and rain/snow.

A. Performance Measures
The results of our evaluation are presented in terms of three
standard measures: Precision, Recall and F -Measure. Each
measure is a function of the true positives (TP), false positives
(FP), and false negatives (FN). The precision is the ratio of
correctly classified positive instances to the total number of
instances classified as positive. It is given by,

Precision =
TP

TP + FP
. (8)

Recall is the ratio of correctly classified positive instances to
the total number of positive instances, and is given by,

Recall =
TP

TP + FN
. (9)

The F -Measure combines precision and recall into a single
value. It is given by,

F −Measure = 2 ∗ Precision ∗Recall
Precision+Recall

. (10)

Precision indicates how many of the testing samples classified
as a particular activity actually belonged to that particular
activity. Recall indicates how many of the instances of a
particular activity were correctly classified as that activity. The
F -Measure balances Precision and Recall.

B. Overview of Evaluation Methods
In this paper, we evaluate the performance of our system
using three well-established methods that are standard for our
problem scope. These testing methods are same-user K-fold
cross-validation, cross-user K-fold cross-validation and cross
user leave-one-out cross-validation.
In K-fold cross-validation, we divide the dataset into K
subsets, and evaluates them K times. Each time, one of the
K subsets is used as the test set and the other K-1 subsets
are grouped together to form a training set. Then, the average
error across all K trials is computed for final result. Within this
method, there are two approaches to evaluate. In the Same user
K-fold cross-validation method, the data evaluated belongs
to only one subject. In Cross user K-fold cross-validation
method, the data is aggregated from all subjects and then K-
fold cross-validation is applied. In Cross user leave-one-out
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Fig. 5: Precision, Recall and F -Measure performance of our system for four activities for Cross-user 10-fold cross-validation
strategy for all four environmental conditions.

Fig. 6: Precision, Recall and F -Measure performance of our system for four activities for Cross-user leave-one-out strategy for
all four environmental conditions.

method, out of n subjects, n−1 are chosen for training dataset
and one is left for testing. The process repeats for every subject
then average is computed for final result.
Note that our datasets are relatively uniform across classes to
minimize any inherent biases. Also, among the three strategies
evaluated, some may show better results than others. Usually
evaluations on same users show better result compared to any
cross user evaluation strategy. This is intuitive, since there are
subtle variations among people even when they do the same
activity that are sometimes hard to detect when training and
testing are done on different people. However, as we show,
our algorithm still achieves high performance both within and
across users, hence demonstrating the effectiveness of our
technique. However, with more training and testing across
more subjects, we expect improved outcomes, and this is part
of our on-going work with more experiments.

C. Integrated Evaluation across all Environmental Conditions
Recall that each of the 16 subjects in our study participated in
driving experiments in four environmental conditions − day
time, night time, fog, and rain/snow. Instead of training and
testing our model on each condition separately (that will give
us better results on accuracy), we chose to train and test our
technique on a mixed model, where data from all users for all
four conditions are incorporated. In other words, when testing
the accuracy of our system under any one environmental con-
dition (say night time) the training data sets includes data from
all of the four environmental conditions. The same is true when

testing across all other environmental conditions. As such,
results presented are averaged out across all environmental
conditions, for all of the three evaluation strategies presented
above. This is the most practical scenario, since any technique
proposed to detect distracted driving activities must work for
all environmental conditions, rather than be specifically tuned
for a single one. This will hence provide a more realistic
evaluation of our proposed technique.

D. Results
Figs. 4 5, 6 and 7 present our results. Recall that the algo-
rithmic approach to classify activities was presented earlier
in Algorithm 1. The input features used for classification were
only the six features from accelerometer and gyroscope sensors
in the phone identified earlier in Table II.
a. Classification Performance: For the same user 10-fold
cross-validation strategy, as shown in Fig. 4, the performance
of accelerometer and gyroscope sensors are high to classify
activities correctly, as indicated in the Precision, Recall and
F -Measures. The overall performance is 85% for Precision,
84% for Recall and 87% for F -Measure for both sensors
combined. We also see that while integration of features
from the gyroscope sensor and the accelerometer sensor does
improve accuracy for the most part, it is not significantly more
than the accuracy when only features from the accelerometer
sensor are used.
For the cross user 10-fold cross-validation in Fig. 5, we
can see that average performance in classifying activities in
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Fig. 7: Precision, Recall and F-Measure performance evaluation for Binary Classification Problem (Detecting Distracted vs. Not
Distracted driving) for Cross-user leave-one-out strategy for all four environmental conditions.

terms of Precision, Recall and F -Measure is more than 80%,
which again demonstrates the validity of our technique. Fig.
6 presents results for the more stringent evaluation strategy,
which is cross validation with leave-one-out. We do see a
drop in performance in this evaluation strategy. While the
accuracy in detecting un-distracted driving is still very high
(98.76%), we see that our proposed technique does not do
well in detecting instances where the subject is texting, calling,
or reading (where the average accuracy is only 63%). It is
because, different users do have subtle differences in the way
they text, call and read from a phone while driving, that
can reduce classification performance with the leave one out
evaluation strategy. We certainly hope that with more data from
more subjects, our proposed technique will learn better for
fine-grained activity classification.
However, we wanted to see how our current technique per-
forms when we attempt to address a simpler, but nevertheless
important and practical problem, which is to classify instances
of distracted driving (irrespective of the type of distraction)
from un-distracted driving. Fig. 7 presents the results for the
cross validation with leave one out evaluation strategy. As
we can see, our proposed technique achieves near perfect
performance in terms of Precision, Recall and F -Measures in
classifying distracted driving from un-distracted driving using
the accelerometer, or a combination of the accelerometer and
the gyroscope. This result further validates the practicality of
our proposed technique, since it is known that irrespective
of why a driver picks up a phone (for texting, or calling, or
reading), they are all sources of distraction and best avoided.
As such, we believe that the more complex problem of
determining the fine-grained activity that causes the distraction
may not be necessary after all if the motivation is to ensure
safer driving by detecting any instance of distracted driving,
which our system is able to determine as seen in Fig. 7.
b. Energy and Latency: We believe that our system is energy
efficient and fast. For collecting accelerometer and gyroscope
data continuously over 5 minutes, the energy expended on
the Samsung Galaxy S4 phone was equivalent to 91mJ. The
entire classification system including pre-processing, feature
extraction and RF classification algorithm was implemented
on a Samsung Galaxy S4 smart-phone. The total memory
consumed by the app was 23MB. For 10 minutes of operation

Fig. 8: Algorithm Performance in a Binary Classification
Problem of Detecting Phone use during Driving as compared to
Phone use during Walking, Sitting, Sitting or Being Passenger
in a Car.

in an actual driving scenario, the battery consumed was about
3%, making our system energy efficient and practical. The
latency of execution was less than 2 seconds.
c. A Note on Classifying Phone use while Driving from
Phone Use in Other Contexts: In Fig. 8, we present results
for another binary classification problem, where the goal was to
detect if a subject uses a phone for texting, or reading or calling
while driving, compared to when the phone is used for texting
or calling or reading when performing other basic tasks which
were Walking, Standing, Sitting, and Being a Passenger in a
Car. All 16 subjects also participated for data collection in this
experiment. The results shown are when the classification was
attempted using Random Forests by leveraging the six features
from accelerometer and gyroscope sensors identified earlier in
Table II. The evaluation strategy was the more stringent leave
one out cross user 10-fold cross validation strategy.
As we can see from Fig. 8, we have near perfect accuracy in
classifying when the phone is used while driving compared to
when the phone is used while performing other tasks. Now,
smartphone applications can be designed to process sensory
data from a phone and infer when a subject is texting, reading
or calling, but initiate an alarm only when these happen while
the subject is driving. This will make the detection of distracted
driving activities completely pervasive to the user, which will
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Fig. 9: Variance Trend for Different Subsets of our Dataset.

enhance practical adoption of our technologies. The downside
though is the energy consumed during constant sensing and
processing of sensory data on the phone. Designing strategies
for optimizing this is part of our future work though.
d. A Note on Confidence of our Results: It is vital for any
machine learning system to train on sufficient size datasets
to avoid overfitting problems. To emphasize the sufficiency of
our datasets, we point out that each of the 16 subjects gave
us 11 minutes worth of data for each environmental condition,
where the size of the sampling window was 2 seconds with
10% overlap. This results in an aggregate of about 1450 data
points for each subject, and for each feature across across
all four environmental conditions. Recall again that we have
16 subjects and six features for model development. For
classifying just four activities (texting, reading, calling and no
distraction), we believe that this is a good number of relatively
balanced data points for our results to be representative.
Nevertheless, to validate this, we employ a variance based ap-
proach by incrementally quantifying the representativeness of
our datasets for the case of 10-fold and 5-fold cross validation.
This approach is well suited for our problem scope, and is
also validated in the literature [26], [27]. In this approach,
we randomized our entire dataset by dividing it into 10 non-
overlapping subsets initially. We then classified activities using
our algorithm for the first subset, that is 10% of the dataset
to get 10 numbers for overall classification accuracy for the
case of 10-fold cross validation evaluation. Then, we quantify
the variance among classification accuracies identified. Then,
we do the same for 20% of datasets, and again we compute
the variance in classification accuracies among the 10 values
for 10-fold cross validation. We do the same for 30%, 40%,
50%, 60%, 70%, 80%, 90% and the entire 100% of datasets.
We repeat the same procedure for 5-fold cross validation.
Fig. 9 plots the resulting variances. As we see, for small size
datasets, the variances are higher, but they start to decrease
with more data. Beyond 60% of data, the variances are
very stable tending towards zero. This we believe gives us
confidence on the representativeness of our datasets for the
problem we address in this paper.

VI. LIMITATIONS OF OUR STUDY
We now present important limitations of our study in this
paper, and their impact on the findings and utility of our
contributions. At the outset, the entire study was ‘controlled’

in a closed environment, but as we presented in Section II,
the CAREN simulator we used has been widely tested, and
evaluated by many participants to be realistic. Nevertheless,
real roads are not simulated in CAREN, meaning that potholes,
U-turns, speed breakers, sharp turns, excess winds etc. were
not simulated. We can see this from Figs. 2 and 3 where there
are no accelerometer and gyroscope readings on the phone
outside of Texting, Calling and Reading. This will not be
the case in real life on real roads where disturbances are
common, and will be felt by the phone leading to spikes
in accelerometer and gyroscope responses, and could trigger
false alarms. We hypothesize that such abrupt changes could
be detected and filtered as noise, but this hypothesis has not
been tested, and very difficult to do as well in any driving
environment (controlled or otherwise).
Secondly, our study used a subject group that was relatively
younger, but homogeneous. Older people, Senior Citizens, and
those with certain disabilities (but still legally allowed to drive)
may have different patterns when using the phone, triggering
differing sensor responses. As such, we cannot claim that our
model is applicable for these groups as well. Much more
diversity in testing and assessment are needed before we make
generic claims on the broader impact of our study. But results
in this paper provide a foundation to do so as future work.

VII. CONCLUSIONS

In this paper, we attempt to classify instances of distracted
driving during phone usage via processing data collected
from in-built accelerometer and gyroscope in the phones.
Our contributions: a) We collected experimental data from 16
subjects that drove on a realistic car simulator, while texting,
calling and reading from the phone for four environmental
conditions, namely day time, night time, fog and rain/snow; b)
We designed an app to collect time stamped sensory data from
the accelerometer and gyroscope in the phone continuously in
the background while the subject drove; c) We extracted 28
features from both sensory data, out of which only 6 features
were finally selected using an information gain approach that
provided good classification power; d) We then designed a
Random Forests based algorithm to classify distracted driving
activities in real-time, and evaluated the system extensively
across multiple metrics, multiple environments, and multiple
testing strategies that yielded favorable results.
We are encouraged by the fact that existing literature identifies
the need for tech based solutions for better self management of
potentially risky driving patterns to enhance road safety, which
convinces us that our proposed contributions are impactful
and practical. Limitations of our study, and the potential to
overcome them were also presented at the end.
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