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Abstract—Chronic Obstructive Pulmonary Disease (COPD)
and Congestive Heart Failure (CHF) are leading chronic health
concerns among the aging population today. They are both typ-
ically characterized by episodes of cough that share similarities.
In this paper, we design TussisWatch, a smart-phone based system
to record and process cough episodes for early identification of
COPD or CHF. In our technique, for each cough episode, we
do the following: (1) filter noise; (2) use domain expertise to
partition each cough episode into multiple segments, indicative
of disease or otherwise; (3) identify a limited number of audio
features for each cough segment; (4) remove inherent biases
as a result of sample size differences; and finally, (5) design
a two-level classification scheme, based on the idea of Random
Forests, to process a recorded cough segment. Our classifier, at
the first-level, identifies whether or not a given cough segment
indicates a disease. If yes, the second level classifier identifies the
cough segment as symptomatic of COPD or CHF. Testing with a
cohort of 9 COPD, 9 CHF and 18 CONTROLS subjects spread
across both genders, races and ages, our system achieves good
performance in terms of Sensitivity, Specificity, Accuracy and
Area under ROC curve. The proposed system has the potential
to aid early access to healthcare, and may be also used to educate
patients on self-care at home.

Index Terms—Congestive Heart Failure, Chronic Obstructive
Pulmonary Disease, Healthcare, Cough, Audio, Machine Learn-
ing, Smart-phones, Aging.

I. INTRODUCTION

CHRONIC Obstructive Pulmonary Disease (COPD) and
Congestive Heart Failure (CHF) are progressive disor-

ders, and often the terminal stage of pulmonary and cardiac
disease leading to death. It is estimated today that 15 million
people have COPD [1] and 6.5 million people have CHF in
the US [2]. Both COPD and CHF are systemic disorders
with overlapping causes and pathophysiological processes.
The most common cause of COPD is smoking, which accounts
for 85% of cases, while the rest are due to factors like
occupational smoke/dust and genetics [3]. The most common
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conditions that lead to CHF are coronary artery disease, high
blood pressure and previous heart attack(s).

Cough is often regarded as a critical symptom of COPD and
CHF, and listening to cough is still an important mechanism
for physicians to gauge disease onset and severity. In this
paper, we design TussisWatch, a smart-phone based system
that is user-friendly and low cost to enable self-diagnosis of
COPD and CHF by patients.

Specifically, our system consists of a) a simple and user-
friendly mobile application to record cough; b) noise cancella-
tion techniques to filter out ambient noise; c) careful extraction
of a small number of audio features that provide discriminatory
power among classes; and d) a two-level Random Forest
based classification technique, where the first-level identifies
the recorded cough as symptomatic of DISEASE (COPD or
CHF) or otherwise (CONTROLS); followed by a second-
level classification of the recorded cough as symptomatic of
COPD or CHF, based on classification at the first-level. With
a cohort of 9 COPD, 9 CHF and 18 CONTROLS subjects,
spread across both genders, races and ages, we extensively
evaluate our proposed system. We see good performance
across Sensitivity, Specificity, Accuracy and Area under ROC
curve, across multiple testing strategies, which demonstrates
practical utility of our proposed system.

The paper is organized as follows. We survey related work
in Section II. We present details on our Data Collection in
Section III, and the Technical Approach in Section IV. Results
of performance evaluations are presented in Section V, and the
paper is concluded with important discussions in Section VI.

II. RELATED WORK

We now present important related work in the space of
designing algorithms to process cough audio for healthcare.

The first class of related work we survey relates to iden-
tification of basic cough from audio. In [7], a smartphone
application has been developed to detect respiratory events like
sneezing, coughing, sniffling and clearing the throat. Using
a number of time and frequency domain features, followed
by SVM based algorithms, the authors design a multi-level
classifier (similar to our design in this paper) for classification.
The accuracy achieved is 82% for respiratory events, and
99.1% for non respiratory events. Similar results to classify
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only cough from other noises are presented in [14]. In related
works, like [12], [18] and [13], the problem is to classify wet
cough from dry cough. The sources of data were external
recording devices in [12] and [18], and a high fidelity data
acquisition system in [13]. Features extracted include 1st,
2nd and 3rd order formant frequencies, mel-cepstrum, non-
Gaussianity, bispectrum, pitch, zero crossing rates, peaks of
cough spectrum envelopes, and power ratios of frequency
bands. Subsequently, using standard machine learning algo-
rithms, good classification accuracies are achieved in these
works. Another work in [19], specifically focuses on classify-
ing cough in pediatric settings. Using specialized instruments
to record cough, features extracted include MFCC, formant
frequency, ZCR, non-Gaussian score and Shannon entropy.
Then, using Neural Net models, Sensitivity, Specificity, and
Cohen’s Kappa of 93%, 98%, and 0.65, respectively, were
achieved during classification.

The second class of work we survey attempts a finer
grained classification of cough. The work in [15] attempts
to differentiate pneumonia from asthma using a sample of
18 child subjects and cough data recorded from a low noise
microphone. Using features like MFCC, non- gaussianity score
and Shannon entropy, the authors design Artificial Neural Net
classifiers to achieve a Sensitivity, Specificity and Kappa of
89%, 100%, and 0.89, respectively in classification. In [16],
the problem is to evaluate the airflow and sound characteristics
of a voluntary cough to classify lung diseases, wherein spe-
cialized instruments were designed to record signals. Using
a sample of around 100 subjects, and a relatively large
number of features (more than 100 of them), the authors
design a Principal Component Analysis model, wherein the
classification accuracies were in the range of 94% and 97% for
female and male subjects, respectively. In another paper [17],
the problem is to detect pertussis in children. Classification
was performed using publicly available audio sources from
38 children patients to achieve an accuracy of 92%. In [20],
work has been done to diagnose and screen pulmonary disease
via cough sounds, using a sample of 33 healthy subjects
and 54 patients having COPD, asthma, and allergic rhinitis.
The source of data was a stethoscope to collect lung sounds
data. Using 7 audio features (including kurtosis, variance, zero
crossing rate, and rate of decay), and a logistic regression
algorithm, classification accuracy of 80% was achieved.

Summary: To summarize, the problem we address in this
paper follows the overall flavor of most related works. How-
ever, our problem, namely classification of cough symptomatic
of COPD/CHF is unique and not explored yet, but very
important. Naturally, the features we extract in this paper,
explanations of their relevance, and design of classification
algorithms are unique in this paper. Note that in a recent paper
[11], we present results on detecting only COPD symptoms
using cough recorded from smart-phones. However, the system
in [11] does not address the issue of classifying both CHF and
COPD cough, which is a much more difficult problem. This
necessitates new features and methods for classification, which
are new contributions of the system proposed in this paper.

III. DATA COLLECTION

We now present details on data collection.

A. Custom Mobile Application for Cough Recording

All cough episodes were recorded using a custom voice
recording Android application, called V oiceRecorder, devel-
oped by the authors. This application was installed on a Sam-
sung Galaxy S5 smart-phone, which uses Android Operating
System 5.1.1 Lollipop, and whose microphone has a sampling
rate of 44100Hz. The recording applications works as follows.
When the application is opened, it immediately initiates a
30 second timer, and the subject’s cough will be recorded.
A ‘Stop’ button is pressed to stop recording. Otherwise, the
application will automatically close after 30 seconds. The
recording is saved in the phone as 3GP file, later converted to a
.wav format for feature extraction. We kept the recording time
to 30 seconds, since for patients with COPD/ CHF, symptoms
of the disease from cough are highly likely to manifest within
this duration. Allowing a subject to cough beyond 30 seconds
was unnecessary, and can be strenuous for elders.

B. Subjects Recruitment and Cough Recording

With the help of nurses at Tampa General Hospital, located
in Downtown Tampa, we identified patients who were clini-
cally diagnosed, by a physician, with early stage COPD and/or
CHF. We also identified subjects of a similar age group who
did not have COPD or CHF, and they served as CONTROLS.
All subjects who gave us cough data consented to do so.

In our study, a registered nurse asked each subject to cough
close to the microphone of the Samsung Galaxy S5 smart-
phone, and would then turn on our app. The duration of each
cough ranged from 3 seconds to 17 seconds per subject. In
this manner, cough data was collected from 9 COPD, 9 CHF
and 18 CONTROLS subjects. After recording a cough episode,
the corresponding audio file in the phone was renamed with a
unique subject identifier appended with the subject type (i,e.,
“COPD” or “CHF” or “CONTROLS”). In our experiment,
40% of subjects were female, and 60% were male. The average
age of subjects was 55 years, with a standard deviation of 7.

IV. TECHNICAL APPROACH

Fig. 1 presents the work-flow of TussisWatch. It is a two-
level classification system, where at the first level, a cough
segment is identified as either DISEASE or CONTROLS.
In the case of the former, the second level of classification
identifies the cough segment as symptomatic of COPD or CHF.

A. Removal Of Pauses and Noise

The first step is to remove pauses and noise. Occasionally,
during a cough recording, there were few instances of audio
data containing long pauses before, after, and in between
coughs. Such pauses were discarded using an online audio
cutting application. Afterwards, we applied a band-pass filter
to remove additional noises. The cut-off frequencies are 300Hz
and 1200Hz, since cough related sounds are primarily in this
range [21]. This design choice is also applied in other related
works for extracting extract cough signals from noise [12].



3

Fig. 1: Work-flow of our Two-Level Cough Classification
Scheme

B. Segmentation Algorithm based on Physiology of Cough

We now present information related to the physiology of
cough that necessitates us to partition a cough episode into
multiple segments before analysis. This is because, when a
patient with COPD/CHF suffers from an episode of cough,
only selected segments within that episode indicate either
condition, and the rest of the cough can appear as normal.

In the case of a patient with COPD, whistling noises and/or
sounds indicating a large mucus buildup due to infection are
heard in the middle of a cough episode. In the case of a patient
with CHF, crackling sounds from fluid buildup in the lower
lungs are heard in the breath drawn right after the cough. In
either case, the remainder of cough during that episode for
a patient typically sounds as regular cough. In the case of
a patient with neither disease (i.e., CONTROLS), the cough
stems from the throat, and naturally sounds like regular cough.

As we can see, in any cough episode, only selected portions
of the episode are indicative of COPD or CHF, and not the
entire episode. The issue for us is how to partition a cough
episode to only retrieve only those segments symptomatic
of disease to enable learning. Fortunately, three authors of
this paper (i.e., the fifth, sixth and seventh authors) have
decades of combined experience in identifying COPD and/or
CHF cough by listening, and they indicated that segmenting
a cough episode into one second windows was optimum to
catch the corresponding cough sounds of interest. A window
size smaller than one second is too hard for the ear to process,
and a window size larger than one second may contain data
from more than one class, both of which are problematic.

As such, we partitioned each cough episode into multi-
ple segments, each of one second duration. That is, for a
cough episode of 10 seconds, we extract 10 segments each
of one second duration. Then, our three COPD/CHF expert
co-authors jointly listened to each (one second) segment of
each recorded cough episode carefully, to agree and tag that
segment as symptomatic of COPD or CHF or otherwise. At the
conclusion of segmentation, we derived a total of 82 segments
of cough that were symptomatic of COPD and 47 segments
of cough symptomatic of CHF from all the patients. The rest
of cough segments from these cohorts, and those from the

CONTROLS cohort were labeled as CONTROLS cough. In
this manner, we labeled 81 cough segments as CONTROLS.
Note that the duration of each cough segment across all classes
was one second. Also, recall that since the sampling rate of the
smart-phone in our case was 44100Hz, each cough segment in
our data set had that many data samples within. This dataset
enabled subsequent model development.

C. Feature Extraction to Classify a Cough Segment as DIS-
EASE or CONTROLS at the First Level

Any learning algorithm is sensitive to the features on which
it is trained. At the first level of our scheme, we identify
whether a given segment of cough is indicative of DISEASE
(either COPD or CHF) or CONTROLS. To do so, we extract
6 features that we carefully identified for our problem. Each
feature is computed for each (one second) segment of a cough
episode in either class. The features are presented below.
Zero Crossing Rate (ZCR): Let sgn(x) return +1 when x
is positive, or when x = 0; and return −1 when x is negative.
For a cough segment f , with L samples, ZCR is

ZCR(f) =

L∑
i=2

|sgn(si)− sgn(si−1)|
2(L− 1)

. (1)

ZCR [7] is a measure of the number of times the amplitude
of sample points si in a segment f of a given cough episode
passes through a value of zero. Fig. 2 demonstrates an instance
of the significance of this feature for classification, where the
DISEASE cough (COPD & CHF) has much higher ZCR’s
compared to CONTROLS cough.
Sound Pressure Level (SPL): SPL is a logarithmic measure
of the actual sound pressure of a cough segment, with respect
to a fixed reference pressure. For a given cough segment f ,
the SPL, measured in decibels dB, is defined as

SPL(f) = 20log10
r

rref
dB. (2)

Here, r denotes the average sound pressure of a cough segment
and rref denotes a reference value of 20µPa, which is
lowest hearing threshold of a healthy ear. The DISEASE class,
when compared to the CONTROLS class, showed consistently
higher SPL values. This is depicted in Fig. 3.
Interquartile Range (IQR): To derive IQR, we divide the
frequencies within each cough segment into quartiles, the 75th

percentiles (upper quartile) and the 25th percentile (lower
quartile), and determine their difference. Cough segments
corresponding to DISEASE class have consistently lower fre-
quencies, due to lower pitches. CONTROLS cough segments
have frequencies fluctuating more, which usually start high
(upper quartile) and end much lower (lower quartile). Hence,
the differences between the two quartiles were higher for
CONTROLS cough in comparison to DISEASE cough.
Percentiles (PER): To calculate PER, we extract all fre-
quencies available in a cough segment, and sort them in
ascending order. The PER value for this cough segment is that
frequency, below which 40% (which is a tunable parameter) of
all frequencies contained in that segment are present. For our
dataset, the PER values computed as above were consistently
higher for CONTROLS cough compared to DISEASE cough.
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Fig. 2: Zero Crossing Rate of COPD, CHF and CONTROLS cough segments over time

Fig. 3: Sound Pressure Level of DISEASE and CONTROLS
cough segments

Mean Absolute Deviation (MAD): This parameter is the
mean absolute deviation of the set of all frequencies con-
tained within a cough segment. In our dataset, DISEASE
cough had consistently higher MAD values in comparison to
CONTROLS cough.
Standard Deviation (STD): This parameter is the standard
deviation of the set of all frequencies contained within a cough
segment. In our datasets, DISEASE cough had consistently
higher STD values in comparison to CONTROLS cough.

D. Feature Extraction to Classify a Cough Segment as COPD
or CHF at the Second Level

At the second-level of classification, recall that we want to
classify a cough segment as symptomatic of COPD or CHF, if
the first-level classifier identified the segment as belonging to
the DISEASE class. To do so, we identify 11 features which
we compute for each segment of cough in either class.
Spectral Centroid (SC): Let pi (i = 1, 2,. . .n) represent the
normalized magnitude of the ith frequency bin of a cough
segment f computed using Fast Fourier Transform (FFT). The
Spectral Centroid is calculated as

SC(f) =

∑n
i=1(i)(pi)∑n
i=1(p2i )

. (3)

Here, SC represents the “brightness”, or loudness, of a cough
segment. As shown in Fig. 4 (a) for a few instances, the SC
is higher for the CHF class compared to COPD class. This is
because CHF coughs contain crackles and fluids, which have
higher sounds (i.e., volume) compared to COPD coughs that
contain mucus, which produce lower, muffled sounds.

Spectral Roll-Off (SR): Consider the Total Energy of a cough
segment, which is computed as

∑n
i=0(pi), where n and pi are

defined above. In this case, SR is that frequency below which
85% of the energy of the cough segment is contained. The SR
for CHF cough was consistently higher compared to COPD
cough as seen in Fig. 4 (b).
Spectral Flatness (SF): SF characterizes the audio spectrum
of each cough segment by determining how “noise-like” a
cough is versus how “tone-like” it is. It is determined as

SF (f) =
n
√

Πn
i=1(pi)∑n−1

i=1 (pi)

n

dB. (4)

COPD cough segments, considering their common mucus
sounds, are more “noise-like” compared to CHF segments.
Thus, SF for COPD segments were higher than that of CHF.
Mel Frequency Cepstral Coefficients (MFCC): Let C de-
note the mean of the frequencies in a cough segment. Let
x = 1, 2 . . .K, where K = 44100 (the sampling rate of the
smart-phone) and Sk represent the Discrete Cosine Transform
(mel cepstrum) coefficients. The MFCC is calculated via

Cx =

K∑
k=1

(logSk)[x(k − 1

2
)
π

K
]. (5)

The MFCC represents the spectral envelope of a given
cough segment, and its computation requires a series of
complex steps [5] [9] [10], which are not elaborated here
due to space limitations. For best performance of our cough
classification scheme, only 2 of the 13 cepstrum coefficients
were selected after analysis, which were the third and sixth
coefficients. As seen in Figs. 4 (c) and (d) for a representa-
tive case, the third coefficient reflected a consistently higher
MFCC for COPD cough, while the sixth coefficient reflected
a consistently higher MFCC for CHF cough.
Short Time Energy (STE): Let yi denote the amplitude of
the ith sample of a cough segment, and h(w) denote impulse
response of a linear filter of signal w. For a cough segment f ,

STE(f) =

∞∑
i=−∞

y2i ∗ h(w − i). (6)

The STE measures (in increments) energy increase of a cough
segment. In our case, we set w = 10ms. We find that COPD
cough segments had consistently higher values for STE as
compared to CHF cough segments.
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(a) Spectral Centroid (b) Spectral Roll-Off

(c) MFCC Coefficient 3rd (d) MFCC Coefficient 6th

Fig. 4: Spectral Centroid (a) & Roll-Off (b), and MFCC Coefficients 3rd (c) & 6th (d) for COPD and CHF cough segments.

Root Mean Square (RMS): Let L denote the number of
samples in a cough segment f , and ni denote the normalized
amplitude value of the ith sample in f . Then,

RMS(f) =

√√√√ 1

L

L∑
i=1

n2i . (7)

RMS is used to characterize the energy contained in the
sound waves of a given cough segment. We see a consistently
higher RMS in COPD, compared to CHF cough segments, due
to its higher averaged sound pressure.
Maximum Value (MAX), Variance (VAR), Median (MED)
and Mean (AVG): These features denote the maximum value,
variance, median and mean among frequencies contained in a
cough segment. For each feature, values were higher for CHF
cough compared to COPD cough.

E. Data Balancing via SMOTE
Recall that our dataset is imbalanced, containing 129

seconds of cough in DISEASE class (i.e., 82 seconds of
COPD , and 47 seconds of CHF cough); and 81 seconds of
CONTROLS cough. Classification on unbalanced datasets can
create biased results. To alleviate this problem, we balance our
datasets by oversampling the deficient classes, following the
idea of Synthetic Minority Oversampling Technique (SMOTE)
[6]. SMOTE is a widely used data balancing method in which
feature values in the minority classes are oversampled by
creating synthetic examples, rather than by replacement or
creating copies 1. We explain using Fig. 5.

1Undersampling the majority class is not viable due to our limited amount
of data. Also, balancing techniques, like Cost Matrix are better for larger
datasets, and are shown to not work as well as SMOTE when datasets are
small [22] [23], as is the case with our dataset.

Fig. 5: Three step implementation of SMOTE

Let us consider an arbitrary feature in the minority class.
In the SMOTE technique, for this feature, an arbitrary feature
point from the feature vector is picked as seen in Fig. 5 (a).
Then, the distance to a randomly chosen neighboring feature
point among 5 closest ones is computed 2. This is shown in
Fig. 5 (b). The difference (i.e., distance) is multiplied by a
random number in the range [0, 1] and this value is added to
the initial arbitrary data point picked, and this resulting data
point becomes a new entry in the corresponding feature vector
for the minority class, as shown in Fig. 5 (c). The process
repeats until the desired number of feature points are computed
and added. The process naturally repeats for each feature. The
SMOTE technique is widely used, and has been identified as a
robust technique for over-sampling (by sometimes up to 200%
of the original data) to overcome class imbalance effects [6].

In our proposed implementation for class balancing, each
feature in the CHF class was increased from 47 to 82 (75%);
and each feature in the CONTROLS class was increased from

2Choosing 5 neighboring feature points gave us best results, and is also
recommended in [6].
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81 to 162 (100%). As a result, we now have 164 data points
for each feature in the DISEASE class (i.e., 82 for COPD
cough, and 82 for CHF cough); and 162 data points for each
feature in CONTROLS class resulting in a balanced dataset.

F. Random Forest Classifier

Finally, we design a Random Forests (RF) based classifi-
cation algorithm at both levels. The RF algorithm creates a
random subset of training samples from the cough datasets,
for both classification levels by assembling a congregation
of decision trees. Each decision tree predicts a class, based
on a majority vote made by each individual tree. Then, the
decision tree utilizes the majority vote to determine the final
predicted class. The parameters of our RF model, that gave us
best results for both classification levels are as follows: 121
decision trees, information gain as splitting criteria, 6 as the
maximum depth of each decision tree, 5 as minimum number
of samples to split the internal node, and bag size percent of
100. We found these parametric values optimal by applying
grid search on wide range of parameters.

V. RESULTS AND RELATED DISCUSSIONS

A. Results and Interpretations

1) First Level Results: At this level, the classification of
a cough segment was between DISEASE and CONTROLS.
Employing 10-Fold Cross Validation, we achieved a Sensitiv-
ity of 80%, Specificity of 82% and an Accuracy of 80.67%.
Furthermore, the ROC Area is 83%. Employing Leave-One-
Out Validation, we achieved a Sensitivity of 77%, Specificity
of 79% and an Accuracy of 75.45%. The ROC Area was 78%.

2) Second Level Results: Here, the classification of a cough
segment was between COPD and CHF. Employing 10-Fold
Cross Validation, we achieved a Sensitivity of 82%, Speci-
ficity of 75% and an Accuracy of 78.05%. Furthermore, the
ROC Area is 80%. Employing Leave-One-Out Validation, we
achieved a Sensitivity of 75%, Specificity of 73% and an
Accuracy of 74.63%. Furthermore, the ROC Area was 76%.

B. Justification for our Two-level Classification Scheme

Note that both COPD and CHF related cough sound similar,
even for experts. In our system, when we attempted a single
level classification scheme to differentiate between COPD,
CHF and CONTROLS cough, our system learns to recognize
CONTROLS cough from the other two classes better, but there
was significant confusion between COPD and CHF cough.
This is because the features used to differentiate CONTROLS
cough from DISEASE (i.e., either COPD or CHF) do not work
well enough to isolate COPD cough from CHF cough. This is
reasonable, since the differences between physiology of CON-
TROLS cough and DISEASE cough are more pronounced.
Once we identify that the cough belongs to the DISEASE
class, the separate set of features we designed to separate
COPD cough from CHF cough perform much better, hence
explaining our design choice.

Fig. 6: Variance trends for different subsets of our dataset

C. A Note on Representativeness of our Dataset

It is vital for any machine learning system to train on suffi-
cient sized datasets to avoid overfitting. We present insights on
the representativeness of our datasets, by employing a variance
based approach that is used in the literature [24] [25]. In
employing this approach, we randomized our entire dataset by
dividing it into 10 non-overlapping subsets initially. We then
classified cough using our technique for the first 10% subset of
the dataset to get 10 numbers for classification accuracy for the
case of 10-fold cross validation. Next, we quantify the variance
among accuracies derived. Then, we do the same for 20% of
datasets, and again we compute the variance in classification
accuracies among the 10 values for 10-fold cross validation.
We do the same for 30%, 40%, 50%, 60%, 70%, 80%, 90%
and the entire 100% of our dataset. Fig. 6 plots the resulting
variances. As we see, for small sized datasets, the variances are
higher, but they start to decrease with more datasets. Beyond
70% of datasets, the variances are stable and very low as well.
This, we believe, gives us confidence on representativeness of
our datasets for our system at both levels.

D. Complexity of Execution

We designed a simple Android app to record cough, remove
noise, segment cough, extract features identified above, and
execute our Random Forest Algorithm for classification. On
a Samsung Galaxy S5 smart-phone, our app consumed a
memory of less than 5MB. Processing a 10 second cough
episode consumed 40Joules (a very small amount), with a
processing time of less than 5 seconds on the average. These
numbers are highly encouraging for practical deployment and
potential extensions of our TussisWatch system for better care.

E. Comparing Performance of Classification Algorithms

In Table I, we show classification results from implementing
different learning algorithms for our problem, and found that
Random Forests performs the best. This is because Random
Forests Classifiers are one of the most accurate learners
available, and better reduce the likelihood of over-fitting [8].

VI. CONCLUSION AND FUTURE WORK

In this paper, we designed TussisWatch, a smart-phone
based system to record and detect cough patterns indicative
of COPD, CHF or no disease, using a two-level classification
scheme. We believe our system is the first to demonstrate the
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TABLE I: Comparing Accuracy (%) of Different Machine
Learning Algorithms

Algorithm First Level Second Level
Random Forests 80.67% 78.05%
Support Vector Machine 76.77% 75.60%
k-Nearest Neighbors 69.75% 67.13%
Naive Bayes 62.07% 72.03%

feasibility of a smart-phone based system for self-detection of
cough symptomatic of COPD/CHF.

As future work, first, we want to improve our classification
accuracies further. To do so, we are carefully planning new
data collection experiments. This time, instead of going to
clinics, we will release our app to a larger sample of patients
and control groups, and request them to use our app to record
and store cough data for (say) a month. All cough data
locally stored on the phone will be collected and processed
subsequently by us. In this manner, our data sets will be
bigger. The data will be more realistic since it is obtained in
natural settings of patients, and not in clinics where the cough
is more voluntary. There will also be better diversity in terms
of locations commonly visited by patients as well (e.g., clinics,
homes, gyms, shopping centers etc.). With such kinds of data,
our team plans to investigate (1) deep learning approaches for
classification that do away with feature extraction; (2) design
personalized models to enhance classification accuracies; (3)
attempt more complex problems like evaluate the impact of an
intervention (e.g., an inhaler [4]) via processing cough before
and after administering the intervention. Interviewing patients
to understand their security and privacy expectations during
design and deployment of a comprehensive self-care system
are additional directions of our future work. All these are
exciting avenues for which results from this paper serve as
a strong foundation.
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