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HuMAn: Complex Activity Recognition with
Multi-modal Multi-positional Body Sensing

Pratool Bharti, Debraj De, Sriram Chellappan, and Sajal K. Das

Abstract—Current state-of-the-art systems in the literature using wearables are not capable of distinguishing a large number of fine-grained
and/or complex human activities, which may appear similar but with vital differences in context, such as lay on floor vs. lay on bed vs. lay
on sofa. This paper fills the gap by proposing a novel system, called HuMAn, that recognizes and classifies complex at-home activities of
humans with wearable sensing. Specifically, HuMAn makes such classifications feasible by leveraging selective multi-modal sensor suites
from wearable devices, and enhances the richness of sensed information for activity classification by carefully leveraging placement of the
wearable devices across multiple positions on the human body. The HuMAn system consists of the following components: (a) practical feature
set extraction from specifically selected multi-modal sensor suites; (b) a novel two-level structured classification algorithm that improves
accuracy by leveraging sensors in multiple body positions; and (c) improved refinement in classification of complex activities with minimal
external infrastructure support (e.g., only a few Bluetooth beacons used for location context). The proposed system is evaluated with 10 users
in real home environments. Experimental results demonstrate that the HuMAn system can detect 21 complex at-home activities with high
degree of accuracy. For same-user evaluation strategy, the average activity classification accuracy is as high as 95% over all the 21 activities.
For the case of 10-fold cross-validation evaluation strategy, the average classification accuracy is 92%, and for the case of leave-one-out
cross-validation strategy, the average classification accuracy is 75%.

Index Terms—Complex activity recognition, smart health, smartphone multi-modal sensors, conditional random fields.
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1 Introduction
Daily activities of people are complex, and consist of one
or more than one unit-level sub-activities [43]. Automated
classification of human activity contexts (ranging from simple
activities to more complex ones) are important for applications
like smart healthcare [7], [41], quantified self [48], monitoring
elderly people in assisted living, designing smart homes and
appliances, activity-aware media content delivery, and so on
[10], [33], [34]. Although a significant body of literature exists
for activity context recognition, some of them incur high
infrastructure costs or direct privacy concerns, and above all,
the majority of existing works are able to recognize mostly
coarse-grained Activities of Daily Living (ADL) and only
very few complex Instrumental Activities of Daily Living
(IADL) [49]. Coarse-grained ADLs are typically basic self-
care skills that people learn during early childhood, such as
sitting, standing, walking, watching TV, etc. whereas IADLs
are complex tasks needed for independent living (usually learnt
later) such as cooking, housekeeping, doing laundry, etc. In
essence, basic ADLs often include more physical or postural
activities, while IADLs require a combination of physical
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and cognitive efficiencies. Recognition of complex activities
in humans is a challenging problem, requiring innovative
research solutions. This motivates our work.

Fig. 1. The HuMAn system for at-home ADL/IADL recog-
nition system with multi-modal and body multi-positional
wearable sensing.

1.1 Contributions of this Paper

In this paper, we design a novel system called HuMAn, which
stands for Hybrid Multi-modal and body multi-positional sys-
tem for complex Activity recognition. The overall architecture
of the HuMAn system is illustrated in Figure 1 that can
recognize 21 complex activities.

Our system significantly improves quality (in terms of
accuracy) as well as quantity (in terms of number) of activities
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detected as compared to existing works. This is due to a com-
bination of three factors: (i) multi-modal sensing, (ii) context
awareness from sensors placed at multiple body positions, and
(iii) location awareness using simple Bluetooth beacons.

Multi-modal sensing: Current smartphones and smart
wearable devices are equipped with versatile sensing capa-
bilities with multi-modal sensor arrays. These technological
developments are critical to classify complex activities of
interest in this paper. As an example, sensory data from an
accelerometer may indicate that a person is sitting, but when
combined with data from a humidity sensor, one may infer that
the person is sitting in a bathroom. Also, when combined with
an altitude sensor, one may even infer which floor the person is
currently at. Similarly, a gyroscope can indicate that person’s
wrist is moving, but when integrated with a temperature sensor,
we could glean that the person is in a kitchen, which can help
better differentiate between activities like cooking, cleaning
utensils, or opening a fridge. Example like these and more
make up the design premise of our HuMAn system.

Specifically, the HuMAn system utilizes a careful combina-
tion of existing sensor suites in smartphones to detect several
body locomotion activities (via accelerometer and gyroscope).
Then, the context of such activities are refined by sensing the
ambient environment (e.g., temperature or humidity sensors)
and relative altitude (e.g., a barometric air pressure sensor).
To the best of our knowledge, there exists very little work
that uses multi-modal ambience sensing for complex activity
recognition. The work in [13] used atmospheric pressure
sensing, but only for differentiating whether the user is indoor
or outdoor. The work in [37] utilizes humidity sensing (along
with other sensors like audio and bio-sensing), but mainly
for detecting different outdoor sports and social activities of
users. The key challenges in this realm are identifying the right
modalities and features for different activities, demonstrating
the feasibility of multi-modal integration for specific activities
classified, and actually fusing the sensory data at run-time
despite differences in sampling rates and sensitivities. We
addressed these challenges in our HuMAn system.

Context awareness from multiple body positions: The
second novelty of the HuMAn system is the extraction of ad-
ditional contextual information from sensor suites by placing
them on multiple positions on the human body. For instance,
an accelerometer on the leg can indicate that a person is
standing, but when combined with a gyroscope sensor on
the wrist, one can differentiate between simply standing, or
standing while talking, cooking or cleaning utensils. Similar
challenges as mentioned above also lie when fusing multi-
modal sensors from multiple positions in the body, which are
addressed in our system.

Specifically, we demonstrate how devices placed in dif-
ferent positions of human body (e.g., waist, back, thigh,
wrist) provide subtle, but distinct signatures on activities
by themselves. This, coupled with sensed information from
ambient environments, altitudes and beacon locations provide
us with a superior set of features for much more accurate
detection of complex human activities. Note that there are
already a number of commercial products (e.g., ProeTEX [15])
on textile-based smart wearables that come integrated with

embedded sensors at different positions within the textile for
sensing information from various locations in the human body.
Other such wearables include Lumo Back (on waist or lower
back) [3], Lumo Lift (on back) [4], Nike+ (on legs or shoes)
[5], Fitbit (on wrist) [2] and Biostrap (on wrist and feet) [1].
Therefore, the contributions of this paper are feasible with
today’s wearable technologies.

Bluetooth beacon to leverage location context: The indoor
locations of a user (at room level granularity) are very useful
to predict activities. For example, a set of activities performed
in a bathroom are very different from the ones performed
in a kitchen. For our study, we installed a few small and
cheap Bluetooth beacons on walls across the home to get
the subject’s coarse location. Based on the beacon id and
RSSI (Received Signal Strength Indicator), we approximate
the subject’s position in the home. Note that, while these
location beacons provide room level granularity, the privacy
concerns are far less than in the case of video cameras.

Demonstrating the classification of complex activities:
By conducting detailed experiments, we demonstrate that our
HuMAn system, can classify 21 complex human activities
with high accuracy. These activities are listed in Table 1.
To the best of our knowledge, this is the first time that 21
at-home activities are recognized via wearable devices. This
is significantly higher compared to between 6-12 at-home
activities reported in most existing works [12][28][53][55].
Furthermore, HuMAn does not need expensive infrastructures
like networks of sensors or cameras, which is an advantage of
our system from cost and privacy perspectives.

1.2 Relevance of Activities Recognized to Healthcare

Upon discussions with healthcare experts in diverse areas,
we see a relevance and need to classify the 21 complex
activities in this paper. Caregivers will derive benefit if they
are aware when patients with Dementia move from indoors
to outdoors or cook repeatedly or walk upstairs/ downstairs
too often. Even if not in real-time, progression of Dementia
can be comprehended from detecting such activities over time.
As another example, in the case of Hemorrhoids, a simple
feedback message can be given to a person sitting for too
long in a toilet. Activities related to eating, sitting for too long,
and running are very important to monitor obesity and heart
health. We point out that state-of-the-art work in ADL/ IADL
recognition are limited in their ability to detect such complex
activities, while our proposed HuMAn system can do so with
very good accuracy for real-world healthcare applications.
This is the novelty and impact of our proposed work.

1.3 Operation of Our HuMAn System

The proposed HuMAn system consists of three phases: (i)
initial pre-computation with training data and feature selection,
(ii) complex activity classification at each device, and (iii)
integration of decisions from each device to classify final
activity. In the first phase, the training dataset is used for
feature extraction and then for training a model based on multi-
scale Conditional Random Field (CRF) [31] based machine
learning algorithm. Note that the same training dataset is also
used for learning weights for each activity-device pair. These
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TABLE 1
List of activities detected by our HuMAn system.

Activities Abbreviation
Standing and Cleaning Utensils CLNG UTENSILS
Standing and Cooking COOK
Stand and Lean on Wall LEAN ON WALL
Lay On Bed LYNG ON BED
Lay On Floor LYNG ON FLOOR
Lay On Sofa LYNG ON SOFA
Running RUN
Standing STAND
Standing and Using Fridge STAND FRIDGE
Standing and Talking STAND TALK
Sitting and Eating STNG EATING
Sitting on Bed STNG ON BED
Sitting on Commode STNG ON COMM
Sitting on Floor STNG ON FLOOR
Sitting on Sofa STNG ON SOFA
Standing and Using Sink USING SINK
Walking WALK
Walking Downstairs WALK DWNSTR
Walking Upstairs WALK UPSTR
Walking Indoor to Outdoor IN TO OUT
Walking Outdoor to Indoor OUT TO IN

weights are essentially the precision (confidence) of a device
at a specific body position while classifying a certain activity.
The model and weights are then used for activity classification
on the test dataset. The second phase of complex activity
classification at each device works as follows. Initially the
feature set extraction is done with the help of multiple sensor
data sources from each wearable device. The devices in turn
perform fine-grained activity classification using the learned
CRF model. In our system, each wearable device is placed at
a specific position in the body (i.e., waist, lower back, thigh
and wrist) to get the contextual advantage of its placement.
To utilize the processing power of each device and balancing
the load, each device predicts an activity independently. In the
third and final phase, the classified activity from each wearable
is contextually integrated to predict one final activity.

We evaluated the HuMAn system in real home settings
with 10 users, where for each user, smartphones were placed
on their waist, lower back, thigh and wrist. Experimental
results revealed that our system can detect 21 complex at-home
activities with high accuracy. For same-user evaluations, the
average activity classification accuracy is as high as 95% over
all the 21 activities. . For the case of cross-user evaluations, the
average classification accuracy is 92% and 75%, for 10-fold
cross-validation and leave-one-out cross-validation evaluation,
respectively. Note that preliminary results of this work were
published in [16] and [46].

The rest of the paper is organized as follows. Section 2
reviews related work while Section 3 proposes the HuMAn sys-
tem. The individual components of the HuMAn are presented
in details in Sections 4, 5 and 6. Experimental evaluation and
validation results are reported in Section 7. Finally, Section 8
concludes the paper with directions of future work.

2 RelatedWork
Important fundamental concepts, and a comprehensive survey
of the literature on complex human activity recognition are
discussed in [43] and [32]. There exists three main categories

of works on activity recognition: (i) only with wearable
devices [7], [47], [53], [54]; (ii) combining wearable devices
and external static infrastructure based systems [42]; and (iii)
with non-wearable technologies [17], [51], [50].

With only wearable devices, the activities can be classi-
fied by learning from data sensed by smartphones, wearable
health tracker devices, smartwatches, near field communica-
tion (NFC) based gadgets, augmented reality devices (e.g.,
Google Glass), etc. For example, the work in [19] uses a belt-
clip accelerometer tied to the waist to detect six activities,
while another work [25] leverages an accelerometer sensor in
the subject’s dominant wrist to classify seven human activities.

There also exists a body of literature that accomplishes
activity recognition by combining data sensed from wearable
devices and additional static infrastructures. As an example,
the work in [42] integrates data sensed from infrared mo-
tion sensors mounted on ceilings of different rooms, with
data generated from a smartphone sensor in the pocket of
a human user for classifying postural/ locomotive states of
multiple humans inhabiting a home. Our prior work related
to activity recognition is reported in [16]. We fused multi-
sensor data from smartphones (used as wearables placed on
multiple body positions) and Bluetooth beacons to classify
19 human activities. This prior work did not consider more
complex activities related to ambient sensing (moving from
indoors to outdoors, or from outdoors to indoors) like we
do in the current paper. Furthermore, the feature selection
techniques in our prior work [16] were primitive leading to
lower accuracy of only 80% in activity classification for a
single user. In contrast, the current paper uses superior feature
extraction techniques, noise reduction, and parameter tuning
to significantly improve accuracy of activity classification.
Additionally, more thorough evaluations are done (e.g., cross-
user 10-fold and leave-one-out cross-validation) considering
the complexity of activities identified here to validate the
performance of HuMAn system. In another prior work [46],
we investigated deep-learning approaches for human activity
recognition by combining sensory data from smartphones
and Bluetooth beacons, but the complexity of deep-learning
algorithms on smartphones is a major limitation there.

Finally, there exists notable works in activity recognition
with non-wearable devices. Using a combination of motion
detectors, break-beam sensors, pressure mats, and contact
switches, the work in [50] accomplishes motion tracking and
limited activity recognition, such as sleeping. There also exist
works where Microsoft Kinect RGB, infrared (IR) and 3D
depth cameras were used for activity recognition [9], [17],
[24], and [51]. Another work in [8] uses Active Sonar tech-
nologies for activity recognition and classification. The above
techniques are not ubiquitous in the sense that the hardware
used for classification are expensive, and as such, cannot cover
an entire home. Typically, the hardware is fixed in a particular
location (say in one room), and relocating them to other rooms
as the subject moves away (from that room) is too cumbersome
and not practical. Furthermore, in the case of cameras, privacy
concerns are also raised. In [11], in-home WiFi signals are
used for activity recognition. However, WiFi based techniques
cannot distinguish activities which require no to minimal body
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TABLE 2
Comparison of literature on activity classification.

Activity classi-
fication work

Wearable sensors in use Additional infras-
tructure in use

Activities recognized

Gupta et. al.
[19]

Belt-clip Accelerometer None 6 activities: walking, jumping, running, sit to-stand/stand-to-sit, stand-to-kneel-
to-stand, and being stationary

Kao et. al. [25] accelerometer None 7 activities: brushing teeth, hitting, knocking, working at a PC, running, swinging,
walking

Riboni et. al.
[40]

Accelerometer, GPS None 10 activities: brushing teeth, hiking up, hiking down, riding bicycle, jogging,
standing still, strolling, walking downstairs, walking upstairs, writing on black-
board

Zhu et. al. [55] Accelerometer, gyroscope, magne-
tometer, temperature

None 11 activities: Standing, sitting, sleeping, sitting-to-standing, standing-to-sitting,
level walking-to stair walking, stair walking-to-level walking, walking level,
walking upstairs, walking downstairs, running

Cheng et. al.
[12]

Electrodes on neck, chest, leg and
wrist

None 11 activities: bread swallow, water swallow, chew, nod, shake head, look down,
speak, look up, look left, look right, look straight

Khan et. al.
[28]

Accelerometer None 15 similar activities: standing, sitting, lying, lie-stand, stand-lie, sit-lie, lie-sit,
sit-stand, stand-sit, walk-stand, stand-walk, walking, walking-upstairs, walking-
downstairs, running

Zhan et. al.
[53]

Smartphone accelerometer and
video cameras

None 12 activities: walking, going upstairs, going downstairs, drinking, stand up, sit
down, sitting, reading, watching TV/monitor, writing, switch water-tap, hand-
washing

Roy et. al. [42] Smartphone accelerometer and gy-
roscope

Ceiling mounted
infrared (IR)
motion sensors

6 “low-level” postural or motion activities: sitting, standing, walking, running,
lying, climbing stairs
6 “high-level” semantic activities: cleaning, cooking, medication, sweeping,
washing hands, watering plants

Wilson et. al.
[50]

None Motion detectors,
break-beam
sensors, pressure
mats, and contact
switches

room-level tracking and basic activities such as sleeping on bed

Gaglio et. al.
[17]

None Microsoft Kinect
RGB and IR video
camera

10 gestures: horizontal arm wave, high arm wave, two hand wave, high throw,
draw x, draw tick, forward kick, side kick, bend, clap hands
8 actions: catch cap, toss paper, take umbrella, walk, phone call, drink, sit down,
stand up

Yang et. al.
[51]

None 3D video camera 16 Daily activities: drink, eat, read book, call cellphone, write, use laptop, vacuum
clean, cheer up, sit still, toss paper, play game, lie down, walk, play guitar, stand
up, and sit down

Blumrosen et.
al. [9]

None Microsoft Kinect
RGB and IR video
camera

2 activities: Walking in a complex pattern in relatively limited space,and repetitive
hand tapping

Chen et. al.
[11]

None In-home Wi-Fi 6 activities: Pick up from the ground and stand up, sit down on a chair, stand up
from a chair, lay down onto the mattress, stand up after lay down, fall

Blumrosen et.
al. [8]

None Active sonar 3 activities: Standing, walking and swinging arms

Our proposed
HuMAn
system

Wearable (body multi-positional)
multi-modal sensors: accelerom-
eter, gyroscope (for body loco-
motion); temperature, atmospheric
pressure, humidity (for ambient en-
vironment); GPS, Bluetooth recep-
tion (for location context)

Bluetooth beacon
in the physical
environment

21 fine-grained activity classes: (i) Locomotive (walk indoor, run indoor), (ii)
Semantic (use refrigerator, clean utensil, cooking, sit and eat, use bathroom sink,
stand and talk), (iii) Transitional (indoor to outdoor, outdoor to indoor, walk
upstairs, walk downstairs), and (iv) Postural/ Stationary (just stand, lay on bed,
sit on bed, lay on floor, sit on floor, lay on sofa, sit on sofa, sit on commode,
lean on wall)

movement (e.g., between ‘sitting in sofa’ vs. ’sitting in bed’),
or activities which are contextually very similar in location
and body movement (e.g., between ‘standing and cooking’ vs.
‘standing and cleaning utensils’). This is because the change in
Channel State Information (CSI) used for classification is very
limited or similar in either case, which makes the classification
very hard. Moreover, activity classification solutions based on
WiFi signals may need recalibration based on the environment,
hardware and associated signal strengths, which again can
complicate practical adoption [52]. There also have been some
work done on energy management on wearables for activity
recognition. In [22], [26], [27] kinetic energy harvesting tech-
niques have been used to produce energy from user’s motion.

Also, note that the above works can classify about 6 to
12 human activities as shown in Table 1, while our HuMAn

system can classify 21 activities. Table 2 provides a compre-
hensive comparison of related works with our HuMAn system.

3 HuMAn: Complex Activity Recognition System
This section describes our complex activity classification sys-
tem, called HuMAn. Figures 2 and 3 highlight the rationale
behind our system. Figure 2 demonstrates how a multi-
sensor wearable worn just on the wrist has the potential to
provide fine-grained signatures for activity detection ranging
from stationary activities (e.g., sitting and standing) to activi-
ties like walking upstairs or downstairs, and more complex
activities (e.g., cooking or cleaning utensils). The sensing
information comes from multiple sensor modalities including
accelerometer, gyroscope, atmospheric pressure, temperature
and humidity sensors. In Figure 3, we observe the subtle yet
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distinct signatures in variations of atmospheric pressure sensor
data from a multi-sensor wearable worn on the thigh, for
different complex indoor activities. In both cases, a smartphone
is used as the data collection platform, but the same rationale
holds true for any other multi-sensor wearable platform. If
these subtle signatures can be combined with a) multi-modal
information from other sensors placed on different body po-
sitions and b) location context information from miniature
Bluetooth beacons, then it is possible to achieve significantly
higher accuracy in detecting complex activities. This is the
principal rationale and motivation behind our HuMAn system.

Fig. 2. Motivation behind utilizing multi-modal sensor data
in the complex activity classifier, HuMAn. The figure shows
variation of raw sensor data (accelerometer, gyroscope, air
pressure, temperature, humidity) from the smartphone wear-
able worn on wrist during sequence of different activities.

Fig. 3. Plot of barometric air pressure sensor data vs. time,
showing subtle variation of atmospheric pressure (from the
smartphone wearable worn on thigh) during different activi-
ties inside a home environment on the ground floor.

3.1 System Overview

As illustrated in Figure 4, the HuMAn system consists of three
phases:

1) Data pre-processing followed by feature extraction on
each of the sensor data streams (executed separately on
each wearable’s data at multiple body positions).

2) Multi-scale Conditional Random Field (CRF) classifi-
cation followed by weight-based probabilistic decision

Fig. 4. HuMAn: complex activity classifier system.

state selection (executed separately on each wearable’s
data stream).

3) Final user activity state classification by integrating
individual decisions from each of the wearables.

All sensor data across different modalities are individually
pre-processed and fed to the feature extraction algorithm.
These extracted features are used as input to the multi-scale
CRF classifier [31]. But instead of using a deterministic
decision about activity states, our classifier employs a novel
weight-based probabilistic activity state selection approach.
This selection is done from the set of top K classified activities
and their emission/ output probabilities. Finally, the classifier
decisions from the individual wearable devices at different
body positions are integrated into a final activity state using a
multi-positional selection approach. This last phase of decision
selection in the HuMAn system is flexible, based on the
number of wearable devices worn by the user on various body
positions. This phase intelligently exploits the soft decisions
from each device towards making an integrated final decision
on the activity. Taking into consideration the complexity of
integrating multi-modal sensor data from multiple body posi-
tions for decision making, our proposed system is designed for
each device to make independent soft decisions that are then
integrated for deciding on the final activity. This approach also
leverages the processing power in each device. Adapting this
design to recognize the final activity from directly fusing and
processing multi-modal and multi-positional wearable sensor
data is possible. However, there exist challenges such as packet
losses, delays, jitter and time synchronization between devices,
the exploration of which is part of our future work.

3.2 Two-Layer Classification Algorithm in HuMAn

The workflow of the HuMAn system is formally presented in
Algorithm 1. As shown in Step 1, raw training data TrDi and
testing data TeDi from multi-modal sensors on each wearable
device i (placed on four body positions: waist, lower back,
thigh, and wrist) is passed through low-pass and median filters
for noise reduction and smoothing. Then critical features Fi

are extracted from processed data as described in Section 4.
In Step 2, the pre-processed training data features paired

with ground truth activities Ai from all 4 wearables denoted
as

[
Fi, Ai

]
for 1 ≤ i ≤ 4, are used for training the CRF
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Algorithm 1: CRF-based Algorithm for HuMAn System

TrDi = Training data from sensors on i-th device;
TeDi = Testing data from sensors on i-th device;
Fi = Features extracted from TrDi on i-th device;
Ai = Classified Activity from i-th device;
P (Ai|Fi) = Conditional Probability of Activity Ai given
feature Fi;

Step 1 Pre-Processing:
1) Median filters are applied to remove accidental

spikes from TrDi and TeDi.
2) Low-pass filters are applied to remove high

frequency signals from TrDi and TeDi.
3) Features Fi are extracted from processed data TrDip

and TeDip obtained from steps (1) and (2).

Step 2 Training:
Input: Training dataset tagged with ground truth[
TrDi, Ai

]i=4
i=1

Output: Trained CRF parameters ω from Section (5.2)
Eq. (1) and activity weight

[
Wik

]i=4,k=21
i=1,k=1 for each activity

[Aik]i=4,k=21
i=1,k=1 for every device, where i and k represent

device id and activity id, respectively.
1) Manually decide on the feature functions

Φ j(At, At−1 | F), i.e., connections between different
activity windows At and At−1 at time t and t − 1
respectively, given input features F as shown in Fig 5.

2) Given all training pairs
[
TrDik, Aik

]i=4,k=21

i=1,k=1
, apply

conditional maximum likelihood to find the optimal
ω to maximize P

(
Ai|Fi;ω

)
.

3) Estimate the weight parameter Wik based on the
precision of each device i for corresponding activity k .

Step 3 Prediction:
Input: Testing dataset without tagged ground truth[
TeDi

]i=4
i=1 , Trained CRF parameter ω, Feature functions

Φ j(At, At−1 | F) and Activity weight parameter Wik.
Output: Final activity selection A f s

1) Calculate conditional probability of each activity
given input features using Eq (1), P

(
Ai|TeDi;ω

)
.

2) Select the K top activities based on conditional
probability values.

3) Select the final activity from each device
Aik = (Wik ∗

Pik∑
k Pik

) > 0.5 ∀i ∈ [1, 4] and ∀k ∈ [1, 21].
4) Select final activity A f s from one of i decisions, one

from each device, based on the physiological context
evaluation from each device-activity pair.

model. Subsequently, the weight Wik is calculated for each
device-activity pair. Higher Wik implies that device i has higher
confidence to predict the activity k. The CRF parameter ω is
estimated using maximum likelihood function to maximize the
conditional probability P

(
Ai|Fi;ω

)
. The execution of CRF is

described in Section 5.2.
In Step 3, features

[
Fi

]
for 1 ≤ i ≤ 4, extracted from

the testing data are fed to the CRF model to calculate the
conditional probability P

(
Ai|Fi;ω

)
. The conditional probability

of each activity is multiplied with weight Wik to calculate the
final activity score. The activity having the highest score is
selected as inference from the corresponding device. Finally,
the multi-positional decision selection approach (see Section
6) is applied to select the final decision from four soft decisions
from each smartphone.

4 Sensor Sampling and Feature Selection
This section discusses in detail about the sensor sampling, fea-
ture extraction and feature selection process used in HuMAn.
This is described in Algorithm 1.

4.1 Sensor Sampling

Accelerometer and Gyroscope: In our system, the 3-axis
accelerometer and 3-axis gyroscope are both sampled at 100
Hz. This sampling frequency is enough to capture human body
movements [19]. The HuMAn system is designed to compute
features from these two modalities for each sampled sliding
window of size two seconds.

Temperature, Humidity and Air Pressure sensors: These
ambient sensors are sampled at 1 Hz, 1 Hz and 5 Hz,
respectively. Since they are sampled at low frequencies, they
do not add significant burden towards energy consumption but
add valuable relevant information for activity recognition. The
pressure sensor sampling rate is set a bit higher to capture fine
changes in atmospheric pressure in different location contexts
as shown in Figures 2 and 3.

Location Context: The HuMAn system is targeted for com-
plex activity recognition in indoor homes. It is designed to use
GPS sensor (if available) and Bluetooth message receptions
from beacons deployed in the infrastructure which are sampled
at 1 Hz frequency. Although GPS signals are usually not
available, or are incorrect indoors, HuMAn collects GPS data
to help recognize activities like outdoor to indoor transitions.
But the more effective location features are Bluetooth beacon
message containing RSSI values. This is one of the novelties
of our system. The simple, small and cheap Bluetooth beacon
devices [18] are popular in commercial sectors. They can
periodically notify nearby devices of their presence, thus
representing proximity of those devices to the beacons. We
have exploited this in HuMAn to enable location context based
features. From the beacon id and corresponding RSSI values,
it is feasible for nearby wearable devices to infer coarse-grain
location contexts such as bedroom, kitchen, bathroom, etc.

4.2 Feature Selection

Feature selection is a very important part of a machine
learning algorithm. It defines a mapping function between
input features and output class based on the information from
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input features. Unfortunately, not every input feature provides
useful information about the output class. Irrelevant features
can cause problems like over-fitting, overhead, and inability
to visualize the feature map to glean insights on the data.

In this paper, we have initially identified a pool of 49
features (Table 3) which are easy to compute in real-time. We
have used filter-based approach using Relief-F [29], Wrapper-
based approach using a Sequential Forward Floating Search
(SFFS) [23], and Greedy approach based on Pearson’s correla-
tion co-efficient [20] to find a subset of relevant features which
is a good balance of generality and performance. We also used
many classifiers to evaluate error estimation, for example, K-
Nearest Neighbors [38], Naive Bayesian [36], C 4.5 [39] and
Random Forest [30]. These results are illustrated in Table 4
and Table 5. Finally, as shown in Table 6, a total of 12 features
were selected based on evaluations from these algorithms. All
input features were normalized to obtain best results for the
classifier used for feature evaluation. This is to ensure equal
weight to all the potential features, thus reducing bias. The
feature selection techniques are briefly presented below.

1) Filter-based feature selection using Relief-F: This al-
gorithm relies on contextual information and dependencies
between the features to estimate the quality of features.
Initially, it assigns a default weight to each feature. Then, while
iterating through each data point, it increase the weight of
those features which exhibit significant difference in values for
different classes, and then decreases the weight for those that
are unchanged for different classes. The process is repeated
for p times, where p is a user-defined parameter, and finally it
calculates the average weight for each feature. A higher weight
for a feature means more utility for classification [29].

2) Wrapper-based feature selection using SFFS: The basic
difference between the filtering and wrapper methods is that
the filtering method evaluates subsets by their information
content, (e.g., interclass distance, nearest neighbor, statisti-
cal dependence), whereas the wrapper-based method uses a
classifier to evaluates subsets by their predictive accuracy (on
test data) by statistical re-sampling or cross-validation. One
of the disadvantages of a wrapper-based method is its lack of
generality when applied to multiple classifiers [23].

3) Correlation-based feature selection using greedy method:
Correlation based methods evaluate the worth of a subset of
features by considering the predictive ability of each feature
along with the degree of redundancy between them. Subsets of
features that are highly correlated with the class while having
low intercorrelation between other features are preferred. The
method uses Pearson’s correlation coefficient [6] to evaluate
the subset correlations. Finally, a greedy forward or backward
search is made through the space of feature subsets. It starts
with no/all features or from an arbitrary point in the space,
and stops when the addition/deletion of any remaining features
results in a decrease in the final evaluation [21].

5 Structured Classification

We now describe the graphical model based structured classi-
fier used in HuMAn, as presented in Step 2 of Algorithm 1.

TABLE 3
Features initially calculated from all the available raw sensor

data.

Accelerometer Features Components
µ = Mean, ρ = Variance, σ = S td.Dev

Resultant µaccR σaccR
First Derivative µacc f d σacc f d

Second Derivative µaccsd σaccsd
Correlation ρaccxy ρaccyz ρacczx

Square Mean µaccx2 µaccy2 µaccz2

Square Variance ρaccx2 ρaccy2 ρaccz2

Square Sum Mean µaccx2+y2 µaccy2+z2 µaccz2+x2

Square Sum Variance ρaccx2+y2 ρaccy2+z2 ρaccz2+x2

Gyroscope Features
Resultant µgyroR σgyroR
First Derivative µgyro f d σgyro f d

Second Derivative µgyrosd σgyrosd
Correlation ρgyroxy ρgyroyz ρgyrozx

Square Mean µgyrox2 µgyroy2 µgyroz2

Square Variance ρgyrox2 ρgyroy2 ρgyroz2

Square Sum Mean µgyrox2+y2 µgyroy2+z2 µgyroz2+x2

Square Sum Variance ρgyrox2+y2 ρgyroy2+z2 ρgyroz2+x2

Ambient Features
Pressure µp σp
Temperature µt σt
Humidity µh σh
Bluetooth Beacon Features
Location index Iloc

TABLE 4
Filtered features by applying Relief-F and Correlation-based

evaluation algorithm.

Feature selection method Selected Features
Relief-F µaccz2+x2 , µaccz2 , µaccy2 , Iloc,

µaccx2+y2 , µt , µh, µp, µaccx2 , µgyroR ,
ρacczx , µaccy2+z2 , ρaccyz

Correlation-based Evaluation µaccsd , σaccsd , Iloc, µt , µh, µp,
µaccx2 , µaccy2 , µaccz2 , µaccy2+z2 ,
µaccz2+x2 , µgyrox2+y2 , ρaccyz , ρacczx ,
ρgyroxy , ρgyroyz , ρgyrozx

TABLE 5
Filtered features by applying wrapper based algorithm.

Wrapper-based Feature selection method
Classifier Features
Naive Bayesian µgyroR , Iloc, µt , µp, ρaccyz , ρacczx ,

ρgyrox2 , µaccy2+z2 , µaccz2+x2

K Nearest Neighbors (KNN) µt , µh, Iloc, µaccx2 , µaccy2+z2

Random Forest µgyroR , µt , σt , µh, Iloc, ρacczx ,
µaccx2 , σaccx2+y2 , µaccz2+x2

C 4.5 µaccsd , µt , Iloc, µaccz2+x2

TABLE 6
Finally selected features, based on the ones common in all

or at least in multiple classifiers.

Final Selection of Features
Classifier Features
Almost common in all classifiers Iloc, µt , µp, µaccz2+x2 , µaccy2+z2 ,

ρacczx
Common in multiple classifiers µaccx2 , µaccy2 , µgyroR , ρacczx , µaccy2 ,

µaccz2 ,
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5.1 Context-based Classifier Selection

Selecting a classifier which suits the overall context well is
very important. In this paper, we leverage the fact that that
human activities are generally sequential in nature and exhibit
spatial-temporal properties. An activity performed at any given
time instance is highly influenced by those performed in
previous time instances. For example, a person walking at
moment at a particular location is most likely to continue
to walk in the very next second as well. By considering
this context carefully we selected (and adapted) the idea of
Condition Random Fields (CRF) algorithms for our problem
scope, because unlike other supervised learning algorithms,
CRF models make predictions based on not only current ob-
servation but also on past observations and future predictions.
Details of the CRF algorithm are described next.

5.2 Conditional Random Fields

CRFs are a class of statistical modeling methods used for
structured learning and prediction [31]. It is a discrimina-
tive counterpart model for generative Hidden Markov Model
(HMM) algorithm. While HMM leverages the sequential na-
ture of data, CRF does the same but with more general
assumptions compared to HMM. Moreover HMM defines
dependency between each state and “only” corresponding ob-
servations, whereas CRF models the dependence between each
state and the entire observation sequence. The HuMAn system
utilizes this feature by developing a structured classification
approach for complex activity recognition. In our version,
the notion of CRFs is leveraged via an undirected graphical
model based design in order to label sequences of fine-grained
activity data. It allows seamless integration of varied features
from multi-modal sensor data into the graphical model.

The CRF model is formally defined as follows. Let x
= (xt−2, xt−1, xt, xt+1, xt+2) be a sequence of input feature
vectors, where xt represents the feature vector extracted
from raw multi-modal sensor data at time t. Let y =

(yt−2, yt−1, yt, yt+1, yt+2) represent the corresponding sequence
of activities performed. Let L be the length of the sequence.
The goal of CRF is to learn a good mapping from x to y
given a training set of N training samples. To do so, the CRF
computes the conditional probability

P(y|x) =
1

Z(x)
exp

L∑
j=1

ω · Φ j(yt, yt−1 | x). (1)

Here, ω is a weight vector trained by the training data with
the objective to maximize P(y|x), and Φ j(yt, yt−1 |x) is a feature
mapping function which defines the dependency between input
and output vectors. The graphical representation of feature
mapping function is described in the next section. Z(x) is a
partition function which acts as a global normalizer so that Eq
(1) yields a valid probability. It is given by,

Z(x) =
∑

y

(
exp

L∑
j=1

ω · Φ j(yt, yt−1 | x)
)
. (2)

Fig. 5. CRF graphical structure. The thick edges represent
the pairwise edges for the template setting of (010304)
for hidden state node yt. We use a slightly different CRF
template naming convention than the one in [53].

5.3 Graphical Structure

The CRF model captures the temporal relationships in sequen-
tial activity data. The graph structure used in the CRF model
is illustrated in Figure 5. It shows the observation sequence x
(obtained from the multi-modal sensor feature extraction phase
in the HuMAn system), hidden states y (activity states) of
class probability assignments, and the edges E between hidden
states that represents pairwise relationships. As in Figure 5, the
different scales or lengths of edges (e.g., that run from yt to
yt−1, yt+1, yt−3, yt+3, yt−4, yt+4) enable the flow of contextual
information in the whole network. When we say the feature
function template is “010304”, we mean that in order to detect
the activity in current time window, the model not only relies
on the current input time window but also on the output and
input of the immediately prior and next (in this case, 1st,
3rd and 4th) data windows. This relationship template enables
the model to be more informed and considers the temporal
relationship between the activities more effectively. For the
implementation of CRF model, we have used and modified
the standard CRFSharp toolkit [14].

6 Multi-positional Decision Selection
This process is indicated in Point 4 under Step 3 of Algorithm
1. Note that each of the wearable devices in our HuMAn sys-
tem will independently classify the activity performed. While
in most cases, we expect coherence in the activities classified,
in some cases, the same activity may not be classified by all of
the wearables. When this happens, the confusion needs to be
resolved. We propose a simple approach to fix this issue based
on fundamental insights on human activity (that were gleaned
from discussion with experts on human kinesiology). In our
approach, we assign a simple relevance index for each activity
against the position of the wearable. For example, cleaning
utensils has relevance to the wearable on the wrist and thigh;
lay on sofa has relevance to the wearable on the waist, back
and the thigh; while standing has relevance to the wearable
on the thigh. In our system, when discrepancies happen, the
final activity A f s is chosen from the set

⋃
k∈{1...21}{(Ak, i)} by

considering only the pairs (Ak, i) where activity Ak is relevant
to i-th wearable’s position on the body as assigned previously.
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In the rare case of ties, Aik is chosen randomly from the equally
probable choices1.

7 Experimental Evaluation and Analysis
In this section we present the experimental evaluation and
performance validation of our proposed the HuMAn system.

Fig. 6. Smartphone app HuMAn (on left) developed for multi-
sensor data collection. Smartphone app HuMAn Ground
Truth (on right) developed for ground truth data logging by
external observer.

7.1 Experiment Setup

We have tested activity recognition performance of HuMAn
system with a total of 40 datasets from 10 adult (3 female and
7 male) subjects aged between 20 and 25. To minimize loca-
tion biases, the experimental data for 4 subjects were collected
from one home, and for 6 subjects from another home. Both
experimental locations are duplex apartments with bedrooms,
kitchen, washrooms, stairs etc. There are four datasets col-
lected concurrently from each user as they perform activities.
That is, one dataset from each of the four smartphones worn at
the waist, back, wrist and thigh. Each phone senses data from
all three categories of sensors: activity, ambiance and location.
For the HuMAn system deployment, we have used Samsung
Galaxy S4 [44] smartphones and onboard sensors (for proof of
concept), along with Bluetooth beacons from Gimbal Inc. [18]
deployed in the external infrastructure. Note that smartphones
are used only as a “minimum viable product (MVP)” for multi-
sensor data collection platform in this paper. Our algorithms
are agnostic to the actual wearable device placed on the body.

We developed an Android application for the HuMAn sys-
tem which senses data from selected onboard sensors in the
phone, and receives Bluetooth signals from beacons installed
in different rooms of the home. The data are locally stored
on the smartphone with proper timestamps. We developed

1. Considering the complexity of our problem scope from the number
of complex activities, sensor modalities, and their emplacements in various
positions of the body, we opted for this approach to resolve discrepancies.
Investigating this issue more thoroughly from the kinesiology perspective is
part of our future work.

another Android application HuMAn Ground Truth for col-
lecting ground truth with proper timestamps. Screenshots of
these apps are shown in Figure 6. The HuMAn application
was installed on the 4 phones worn by the subject, while
the Human Ground Truth application was installed on an
external observer’s smartphone for recording the ground truth.
To do so, the observer taps the buttons corresponding to every
activity to record the start time and end time for each of those
activities. Both applications use time synchronization from the
Network Time Protocol (NTP) [35] server for finer accuracy
with timestamps. All the users were instructed to naturally
perform the set of activities in any order and duration of their
choice. The timestamps of activities as logged by the observer,
and the timestamped sensor logs in the 4 smartphones were
merged to prepare the training dataset.

Note that, while the observer tagged the 21 activities cor-
rectly as they are performed by a subject, each subject also
did one or more ‘other’ activities between the end time and
start time of certain consecutive activities among the 21 of
interest. This is natural, as it represents uniqueness of each
individual transitioning between the 21 activities of interest.
These ‘other’ activities were diverse across users (male and fe-
male). However, the most common ones were ‘adjusting hair’,
‘opening and closing kitchen cabinets’, ‘adjusting spectacles’,
‘washing hands in faucet’, and ‘drinking water’. The observer
carefully tagged all such activities outside the 21 of interest
as ‘other’, as they were being performed by subjects in our
experiments. Our classifier is trained to classify such activities
simply as ‘other’ for overall completeness.

For illustration, only the sequence of the 21 activities of
interest performed by two arbitrary users are presented in
Figures 7, and 8. Each user’s duration to perform all activities
took an average of 45 minutes. To summarize, we report that
from all users and smartphones, we collected a total of about
28 million data points from various sensors in our dataset.

Fig. 7. Ground truth activity sequence performed by User-1.

7.2 Classifier Design

Let us now describe the parameter and configuration setup
of the activity classifier proposed in HuMAn. For the feature
extraction from raw sensor data, we have used the sliding
window approach where the window size is varied from 1
second to 10 seconds with different amounts of overlap. After
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Fig. 8. Ground truth activity sequence performed by User-2.

observations, we chose a sliding window size of 2 seconds
with 50% overlap. For every sliding window, the system
calculates the best 12 features from raw sensor data of 7
sensors, as discussed in Section 4.

We have also optimized the configuration in the CRF
classifier graph structure. CRF allows to build a relationship
function from current sample data point to the previous and
next data points in time to produce contextually better classifi-
cation models. This procedure is mostly problem specific and
is standard in CRF based designs. We have evaluated HuMAn
with different edge configurations of the graph and found out
that the best configuration is for the case where the feature
function is generated by considering the 1st, 4th, 9th and 19th
data samples – both preceding and succeeding in the graph
structure, which is used throughout in this paper. In our design,
during training, we use our dataset to find the precision of
each wearable (placed on different body positions) to correctly
detect an activity. During classification, instead of selecting
the best activity based on CRF execution from each wearable,
we select the corresponding top 3 activities, and multiply
their probabilities with the precision derived during training
to choose one final activity from each wearable. Finally, the
activity with a probability greater than 0.5 gets labeled as
the final one for corresponding window from the respective
wearable. In case none of the activities have a probability
greater than 0.5, the final activity was labeled as ‘other’
appropriately. In this way, the system is a little more complete,
since any activity outside of the 21 of interest will simply
be classified as ‘other’ as discussed earlier in Section 7.1.
Note that, unless otherwise stated, the classification results are
presented only for the implementation of the multi-positional
approach in Section 6 by considering results from the four
wearables in all of the four body positions. In the next three
sections, three different evaluation strategies and their results
are presented for HuMAn system. For each evaluation strategy,
Precision, Recall and F1-measure scores have been plotted
for each activity. Low precision for any activity means the
classifier predicts too many false positive results for that
particular activity, whereas low recall for any activity means
that the classifier predicts too many false negative results for
that activity. The F1-measure combines both of them, and
calculates the harmonic mean of precision and recall.

7.3 Same-user 10-fold Cross-validation Evaluation

In this evaluation strategy, the dataset from each subject is
independently trained and tested. Here, the dataset belonging
to each subject is split into 10 sections of data randomly.
Each of the 9 sections of data is used to train the model
and the remaining one section is used for evaluation. Finally,
the results from all 10 sections were averaged to evaluate
the final Precision, Recall and F1-Measure of classification
for each subject. We also show the confusion matrix [45],
which indicates the error distribution in classification across
21 activities. For each matrix element, the corresponding row
indicates the actual class (i.e., the ground truth activity) while
the corresponding column indicates the predicted class or ac-
tivity with the classification accuracy in percentage (indicated
by the value of the matrix element). Higher values along the
diagonal entries indicate better accuracy.

Results and confusion matrix for same-user evaluation are
shown in Figures 9 and 10. As we see, most activities are
correctly classified. Only the “Outdoor to Indoor” and “Indoor
to Outdoor” transition activities are less accurate and model
predictions are confused between these two. This is because
for these two activities the model heavily relies on information
from the environmental sensor, since the ambiance between
outdoors and indoors are different. But ambient sensors like
the temperature sensor have more sensing delays, which adds
noise, thus lowering the accuracy. Additionally, we observe
that in selected cases, there is minor confusion in closely
related activities, such as Walking Upstairs vs. Standing, and
Sitting on Floor vs. lay on Floor, which is understandable since
these activities are very closely related.

To summarize, for the same-user evaluation strategy, the
overall accuracy is 95.38%, while the accuracy ranges from
60.25% to 98.90% across various activities. But 17 of those
activities have accuracy higher than 90% and the median of
accuracies across all activities is 93.17%.
7.4 Cross-user 10-fold Cross-validation Evaluation

This is a stricter evaluation technique. Here, we combine data
from all users in a common dataset pool to apply cross-
validation (instead of separating datasets of each user). The
combined data is divided into 10 sections where each was
tested against the model of remaining 9 sections of training
data. Typically, such datasets have more noise since even the
same activity will be performed a little differently by different
people, which is more so for complex activities. Figure 11
shows that the overall activity classification accuracy for this
evaluation strategy is 92.29%. The error distribution can be
seen in the confusion matrix in Figure 12. From this figure, it
can be seen that for this evaluation strategy also, our model
performs very accurately and most confusion happens in such
activities as “Indoor to Outdoor” and “Outdoor to Indoor”. For
other activities, there is a degree of confusion, wherein many
motion activities are confused with the “Standing” activity.

7.5 Cross-user Leave-one-out Cross-validation Evalua-
tion

Cross-user leave-one-out cross-validation is the strictest eval-
uation strategy. Here, we separate the data of subjects used
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Fig. 9. Same-User 10-fold cross-validation performance evaluation for each activity from multi-positional data.

Fig. 10. Confusion matrix for same-user 10-fold cross-
validation evaluation.

for training from those for testing. Therefore, completely new
unseen data are tested against the model built with orthogonal
training data. The accuracy and Confusion matrix are shown in
Figures 13 and 14, respectively. The overall accuracy here is
74.49%. Specifically, four activities are less than 60% accurate
while 13 activities have more than 80% accuracy.

We can observe from Figure 13 that activities on the right
side of the figure have higher accuracies in classification com-
pared to the ones on the left. This is because activities on the
right hand side are mostly atomic in nature and hence can not
be broken into simpler activities. For such activities, the way
they are performed are similar across users, which leads to less
inter-subject variability and higher detection accuracy. On the
other hand, activities on the left of Figure 13 are more complex
and composed of multiple atomic activities, the presence of
which lead to gradually more inter-subject variabilities as they
are being performed. This is especially true for activities like
cleaning utensils, cooking, lay down (on floor vs. sofa vs. bed)
etc., leading to lower classification accuracies. Encouragingly
though, from the corresponding Confusion Matrix in Figure
14, we observe that these complex activities are confused
with similar atomic activities. For example, ‘cooking’ confuses
most with ‘standing’; ‘cleaning utensils’ confuses the most
with ‘standing’; and ‘sitting on sofa’ confuses with ‘lay on

sofa’ etc. These trends give us confidence that our system
is not too far off in classifying complex activities accurately.
With more subjects, and more diversity across them, we expect
significant performance improvement, which is part of our
future work.

7.6 Impact of Sensing Modality and Sensor Placement

We now show the impact of integrating multiple sensor modal-
ities, as well as the impact of sensor placements on multiple
body positions. Figure 15 demonstrates the performance by
evaluating classification accuracy with: (i) features from only
movement activity sensing (i.e., accelerometer and gyroscope)
denoted as “Activity”; (ii) features from movement sensing and
ambient sensing modes (i.e., addition of temperature, air pres-
sure and humidity sensors), denoted as “Activity + Ambiance”;
(iii) features from movement sensing and location based
sensing modes (i.e., from Bluetooth beacons in proximity),
denoted as “Activity + Location”; and (iv) integrating features
of above three contexts. From Figure 15, we can observe
that while adding features with more contextual information
improves accuracy, the best classification accuracies of 95%
for same-user and 75% for cross-user evaluation were achieved
when features from all three contexts are integrated, hence
validating our HuMAn system.

Finally, Figure 16 presents the impact of integrating infor-
mation from sensors placed in multiple body positions for clas-
sification. Here again, the highest accuracies in classification
were obtained when information is integrated from sensors
placed in multiple positions on the body, as opposed to the
classification accuracy obtained by leveraging sensor streams
from any single position on the body.

7.7 Sensor Energy Consumption and Algorithmic Time

The Samsung Galaxy S4 phone used in our experiments is
equipped with a 2600mAh battery rated at 3.8V which is
equivalent to 9.88Wh. In our experiments, we see that for
recording accelerometer and gyroscope readings at 100 Hz for
about 45 minutes of continuous activity, the average energy
expended was 6 ± 1% of the total energy in that phone. The
energy consumption is hence manageable.

We also present results on the time complexity of our CRF
algorithm. Note that the time complexity of standard training
for CRF is quadratic in the size of the output class, linear in
the number of features, and quadratic in the size of the training
sample. Similarly, the time complexity of inference for CRF
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Fig. 11. Cross-user 10-fold cross-validation performance evaluation from multi-positional data.

Fig. 12. Confusion matrix for cross-user 10-fold cross-
validation evaluation.

is quadratic in the size of the output class. We performed all
training and inference of the CRF algorithm on a server with
Intel CPU i7-5600U and 2.60Hz frequency. Typically it took a
little less than 12 minutes to train the model with 10 users data,
and 110 ms on an average for inferring a single input data unit.
Naturally, the total inferring time in the CRF is proportional to
the total number of classes in the model. Since the size of the
class is already fixed, inferring takes constant time for each
input unit. Implementing the CRF classification algorithm as
a smart-phone app is part of our ongoing efforts.

8 Conclusions and Discussions
In this paper, we designed HuMAn, a hybrid multi-modal
sensor based and body multi-positional wearable context based
complex activity recognition system. To, the best of our
knowledge, this paper is the first to design a system that
can classify 21 fine-grained complex at-home activities with
high accuracy. We leverage three different sensing contexts for
multi-modal sensing: body locomotion, ambient environment,
and location context. We exploit contextual information from
sensors in multiple body positions to further improve activity
classification. Experimental results demonstrate that for same-
user evaluation strategy, the average activity classification
accuracy is as high as 95%. For the case of 10-fold cross-

validation evaluation strategy, the average classification accu-
racy is 92%, and for the case of leave-one-out cross-validation
strategy, the average classification accuracy is 75%. We are
currently investigating if addition of more data with more
experiments across diverse users will help improve classifica-
tion accuracies. Investigating gender-specific and age-specific
models to extract novel features, and demonstrating improved
classification accuracy is also part of our ongoing work.

Currently, we are enhancing HuMAn to classify more activi-
ties, and enabling the entire system to execute as a smartphone
app with superior energy efficiency. We are also looking to
better understand the healthcare impacts of our work from the
perspective of activity recognition. To do so, we are actively
discussing with healthcare professionals in the domain of
dementia, cardiac care, and exercise therapy. Additionally, we
are attempting real-time integration of multi-modal sensor data
from multiple wearables and Bluetooth beacons at the same
time to enhance classification accuracies. The challenge is how
to handle wireless packet losses, compensating for network
delays, jitter etc.
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