
HEliOS: Huffman Coding Based Lightweight Encryption Scheme
for Data Transmission

Mazharul Islam
1
, Novia Nurain

2
, Mohammad Kaykobad

3
, Sriram Chellappan

4
, A. B. M. Alim Al

Islam
5

Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
1, 2, 3, 5

University of South Florida, FL, USA
4

{mazharul, novia}@cse.uiu.ac.bd
1, 2

, {kaykobad, alim_razi}@cse.buet.ac.bd
3, 5

, sriramc@usf.edu
4

Abstract
Demand for fast data sharing among smart devices is rapidly in-

creasing. This trend creates challenges towards ensuring essential

security for online shared data while maintaining the resource

usage at a reasonable level. Existing research studies attempt to

leverage compression based encryption for enabling such secure

and fast data transmission replacing the traditional resource-heavy

encryption schemes. Current compression-based encryption meth-

ods mainly focus on error insensitive digital data formats and prone

to be vulnerable to different attacks. Therefore, in this paper, we pro-

pose and implement a newHuffman compression based Encryption
scheme using lightweight dynamic Order Statistic tree (HEliOS)
for digital data transmission. The core idea of HEliOS involves

around finding a secure encoding method based on a novel notion

of Huffman coding, which compresses the given digital data using

a small sized “secret" (called as secret_intelligence in our study).

HEliOS does this in such a way that, without the possession of the

secret intelligence, an attacker will not be able to decode the en-

coded compressed data. Hence, by encrypting only the small-sized

intelligence, we can secure the whole compressed data. Moreover,

our rigorous real experimental evaluation for downloading and up-

loading digital data to and from a personal cloud storage Dropbox

server validates efficacy and lightweight nature of HEliOS.

CCS Concepts
• Security and privacy → Software and application security
; Web application security.

Keywords
compression, encryption, Huffman encoding, order statistic trees.

ACM Reference Format:
Mazharul Islam

1
, Novia Nurain

2
, MohammadKaykobad

3
, SriramChellappan

4
,

A. B. M. Alim Al Islam
5
. 2019.HEliOS: Huffman Coding Based Lightweight

Encryption Scheme for Data Transmission. In Proceedings of 16th EAI In-
ternational Conference on Mobile and Ubiquitous Systems: Computing, Net-
working and Services (MobiQuitous). ACM, Houston, TX, USA, 10 pages.

https://doi.org/10.1145/3360774.3360829

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MobiQuitous, November 12–14, 2019, Houston, TX, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7283-1/19/11. . . $15.00

https://doi.org/10.1145/3360774.3360829

1 Introduction

Recent proliferation in data connectivity along with low pricing of

hardware devices have enabled smart devices with many applica-

tions. These applications tend to stay coherently synced to a cloud

server, and enable sharing a diverse range of multimedia and textual

data covering audio, video, emails, sensor data (from environment

and infrastructure such as rail lines), health data (such as heart rate,

body movements, sleep-wake time and body temperature) etc. Most

digital data today are highly sensitive as well as confidential. These

applications demand fast and energy efficient security mechanisms

to protect their data.

In order to implement security mechanisms for shared data,

we generally need to apply encryption to the transmitted data.

However, encryption is often a resource-expensive task, which con-

sumes a lot of CPU cycles and valuable resources. In this realm,

existing studies [1, 5, 25] have come up with lightweight crypto-

graphic schemes to ensure secure communication without demand-

ing substantial time and resource usage to secure the data before

transmission. However, the level of security gets sacrificed with

these lightweight schemes in most of the cases. Moreover, with the

growing demand of fast connectivity for these devices, surprisingly

manufacturers have taken a retroactive step by trading off security

to meet the demands of fast connectivity. Do et al., [11] have re-

cently presented a case study on Samsung Gear Live smart-watch

showing that recent smart devices store and transmit a wide range

of unsecured sensitive data, which are vulnerable to attacks and

exfiltration.

In this regard, designing compression based encryption schemes

can appear as a promising approach solution [14, 16, 20, 24, 26,

29, 30, 37, 38]. Here, by combining compression and encryption

techniques, we can achieve security, computational and energy

savings in two steps as shown on Fig. 1. Firstly, we can apply encod-

ing to compress to the data using a small-sized secret_intelligence.
We introduce the secret_intelligence in such a way that it becomes

impossible (or extremely difficult) for an attacker to decode the

compressed encoded data without knowing the secret_intelligence.
Secondly, we secure the encoded compressed data simply by en-

crypting the small-sized secret_intelligence, which is used in the

encoding mechanism. From a cryptographer’s point of view, we

can relate the secret_intelligence to the notion of key used in tra-

ditional encryption standards. Just like without the key we can

not decrypt the encrypted data in traditional encryption standards,

without the secret_intelligence we cannot decompress (nor restore)

the compressed data in our case. Therefore, by securing only the

secret_intelligence that is required for decompressing the data, we

can make the whole compressed data as meaningless as encrypted

data would appear to attackers. Existing encoding schemes that

https://doi.org/10.1145/3360774.3360829
https://doi.org/10.1145/3360774.3360829
secret_intelligence
key
key

MobiQuitous, November 12–14, 2019, Houston, TX, USA Islam, et al.

can be used to compress the data in this regard are either error

insensitive (e.g., Compressive Sensing [4]), vulnerable to attacks

(e.g., Multiple Huffman Tree [37] and Swapped Huffman Tree [20]),

or suffer from poor scalability (e.g., Chaotic Huffman Tree [16]).

To this extent, in this paper, we propose and implement a new

Huffman compression based Encryption scheme using lightweight
dynamic Order Statistics trees (HEliOS) for data transmission. HE-

liOS builds a dynamic order statistic tree using a secret_intelligence

and uses this dynamic order statistic tree to encode and compress

plain text data. For secured and fast data transmission, HEliOS en-

crypts only the secret_intelligence using receiver’s public key and

sends the encoded compressed data along with it. The receiver,

then, can first decrypt the secret_intelligence with his/her pri-

vate key to build the same dynamic order statistic tree using the

secret_intelligence. Subsequently, the receiver can decode the en-

coded data using the built dynamic order statistic tree. Form an

attacker’s point of view, without the possession of the receiver’s

private key, the attacker can not figure out the secret intelligence

and build the order statistic tree. Without the order statistic tree,

the encoded data remains non-decodable and safe from the attacker.

Based on our study, we make the following key contributions in

this paper:

• We present a novel compression based encryption scheme

HEliOS, which can be used as a new encryption standard for

data sharing. HEliOS can meet the demand of fast online file

sharing in a secured way.

• We present theoretical analysis on security and performance

of HEliOS through several lemmas and their proofs.

• We implement HEliOS in two different real experimental

scenarios. One of them covers mobile and laptop clients con-

nected to a personal cloud storage Dropbox server. The other

one covers sharing files in a wired P2P network compris-

ing several machines. Our experimental results demonstrate

that HEliOS achieves significantly faster transmission and

reception of data in a secured manner for a range of digital

benchmark data formats (i.e., audio, video, emails, ebooks,

and office files) compared to other traditional methods. Ad-

ditionally, HEliOS when implemented on mobile devices

demonstrates energy efficiency.

2 Background on Compression Based
Encryption Techniques

In this section, we will discuss two types of existing compression

based encryption schemes, namely Compressive Sensing and Huff-

man encoding which combine compression and encryption.

2.1 Compressive Sensing Based Encryptions
Compressive Sensing (CS) [4] has attracted a lot of attention among

researchers in the search for energy efficient secure encryption

schemes. CS uses a sensing matrix to compress the data and without

the presence of the sensing matrix the attacker can not decompress

the data with low error. Hence, this sensing matrix can be easily

used as the secret intelligence. Given vectorx ∈ Rn , we can compute

its representation θ ∈ Rn in a basis Ψ ∈ Rn×n by solving the Eqn

x = Ψθ . We can say x is m − compressible if in θ there are m
elements with significant coefficients and n − m elements with

almost zero magnitude. CS is applicable tom − compressible data
only when the value ofm is small enough. We encrypt x by using

2

1
Plain text

Figure 1: Block diagram of a compression based encryption scheme.

the Eqn. y = Φx + z which is to multiply x with the projection

matrix Φ ∈ Rm×n
under the condition that x ism −compressible in

some basis Ψ. While decompressing, we can get an estimated x̂ from

x̂ = Ψ ˆθ where we find the optimized
ˆθ subjected to minimizing

| |y − ΦΨ ˆθ | |. The reconstruction error | |x̂ − x | | depends on how

largem is in Φ. and which basis Ψ is chosen. These two terms are

expressed in terms of sensing matrix A = ΨΦ. One key point to

note here is that CS is lossy compression sacrificing a small amount

of reconstruction error while decompressing the compressed data

on the receiver’s side even with the correct sensing matrix A. As
a result, CS as a means for encryption standard can only work

for data that is not accuracy sensitive, but will fail when smart

devices need to communicate on accuracy sensitive data (e.g., text,

physiological signals etc.) where we cannot accept any error. Hence

CS based encryption schemes proposed in [14, 24, 26, 29, 30, 38]

are not suitable for error sensitive data.

2.2 Huffman Based Encryption Schemes
The classical Huffman compression coding [17] assigns prefix bi-

nary strings of 0’s and 1’s to represent each symbol in the com-

pressed data. The assignment of binary strings is optimal in the

sense the symbols with the highest frequencies, are assigned the

binary string having lowest lengths and hence the plain text is

compressed. Fig. 2 illustrates one such classical Huffman tree for

the plain text "aabcacbddbaaa". The symbol ‘a’ which has the fre-

quency 6 is assigned the lowest length binary encoding string “0”.

In the same way, the next higher frequency symbols ‘b’, ‘c’, ‘d’ (with

frequencies 3, 2, 2) are assigned encoding strings “10”, “110”, “1111”

respectively. More specifically, Huffman compression keeps the

0 1

'c'

'b'

0

0

1

1

1

'd'

'a'

Figure 2: A classical Huffman tree of four symbols ‘a’, ‘b’, ‘c’, ‘d’.

coding rules in a small-sized Huffman tree. Without the small sized

Huffman tree, decompressing the compressed data completely is

near to impossible (NP-Hard) [15]. Hence we can treat this clas-

sical Huffman tree as the secret_intelligence. This motivated the

study in [21] to use Huffman compression to store a large textual

compressed database on a CD-ROM securely. Moreover, existing

research work which have tried to use this concept of the com-

pressed data being breakable in the absence of Huffman tree are

Multiple Huffman Tree (MHT) [37], Chaotic Huffman Tree (CHT)

[16], Swapped Huffman Tree (SHT) [20] for the purpose of storing

large multimedia data securely and in a resource efficient way. How-

ever, these schemes have classical vulnerabilities that are elaborated

upon in the next section in detail.

secret_intelligence
secret_intelligence
secret_intelligence
secret_intelligence
secret_intelligence

HEliOS: Huffman Coding Based Lightweight Encryption Scheme for Data Transmission MobiQuitous, November 12–14, 2019, Houston, TX, USA

2.3 Lightweight Attribute-based Encryption
Schemes

There are other works that have tried to address the above problem

using lightweight attribute based encryption schemes [1, 25, 33, 34].

However, for the purpose of end to end data transmission, attribute

based encryption techniques inherently suffer from less flexibility,

scalability, and generality [39].

3 Design Issues
In this section, we will discuss the challenges in designing a com-

bined compression and encryption methods to use it as a compre-

hensive encryption standard. Following that, we will highlight why

existing solutions are not suitable for secure, fast transmission of

data files in a resource efficient way.

3.1 Challenges
An ideal compression based encryption scheme should have the fol-

lowing properties in order to use it as a comprehensive encryption

standard.

• Randomness property: Making the compressed data as ran-

dom as an encrypted data would appear to an attacker.

• Sensitivity: Making the compressed data sensitive to small

changes in key and plain text.

• Key space. The key space should be large enough to resist

brute-force attack.

3.2 Threat Models
We enumerate four classical types of attacks from the hardest to

easiest as follows:

• Cipher text only: the attacker only can eavesdrop a large or

small volume of cipher texts.

• Known plain text: the attacker process the plain texts and

their corresponding cipher texts.

• Chosen plain text: In this case, we consider, the attacker has

temporary access to the encryption machinery. Hence s/he

can choose a plain text and construct the corresponding

cipher text.

• Chosen cipher text: The attacker has temporary access to the

decryption machinery. Hence s/he can choose a cipher text

and construct the corresponding plain text.

In each of the attacks, the goal of the attacker is to figure out

any secret information (such as the secret intelligence or partial

recovery of the encrypted data) [18]. The resistance of any compres-

sion based encryption scheme against these classical four types of

attacks largely depends on how well these two properties (i.e., ran-

domness and sensitivity) are maintained. Any compression based

encryption scheme which does not preserve these two properties

while encoding the data can be vulnerable against these four classi-

cal attacks. Therefore, the challenge for us is to design a scheme

that introduces randomness, and to insert sensitivity in the en-

coded data during compression, while ensuring resource efficiency

simultaneously.

3.3 Why not Existing Compression Based
Encryption Schemes?

Although without the Huffman tree, an attacker can not decode

the Huffman encoded data fully, with some luck on the attacker’s

side, partial partial recovery of the plain text is certainly possible

exploiting prior knowledge of average frequency of the symbols by

analyzing the existing natural texts [19]. For example, the proba-

bility of more frequent symbols (i.e., a, e, i, o, etc.) being assigned

small length binary encoding strings is higher compared to others

less frequent occurring symbols (i.e., z, j, q, x, etc.). Moreover, in

this case, Huffman encoded data is not sensitive to small changes

in the plain text. In addition to that, each symbol is represented by

the same binary encoding string. As a result, the Huffman encoded

data may not appear as random as it should be to an attacker. This

lack of sensitivity and randomnessmakes the Huffman encoded data

vulnerable even without the presence of classical Huffman tree.

Firstly, Multiple Huffman Tree (MHT) was proposed in [37]

which keeps four public Huffman trees as well as a secret ordering

(i.e., secret intelligence) to decide on which Huffman tree among

the four should be used while encoding. Any adversary can not

decode the encoded compressed data since the secret ordering is

unknown. However, MHT fails to achieve the expected level of ran-
domness required for securing the data. By exploiting this lack of

randomness of MHT, Zhou et al., [40] proposed a known plain text

attack of complexity O(3 |number_of _symbols_in_data |) and later

proposed another simple known plain text attack where only 10

blocks of plain text is required to know the secret order and break

MHT easily. The study in [18] proposed a more sophisticated known
plain text attack of complexity 2

32
and offered Chaotic Huffman

Tree (CHT) as a solution. CHT tries to achieve the expected level of

randomness by mutating the Huffman tree with the help of chaos

theory. However, CHT mutates the Huffman tree using a newly

generated chaotic sequence for each symbol of the data. As a re-

sult of this, mutation operation for a symbol in the data makes

CHT substantially computational expensive. Swapped Huffman

tree (SHT) was proposed to achieve the same level of randomness

as CHT while still generating lower computational overhead. How-

ever, both SHT and CHT use ‘mutation‘ operation to introduce

randomness in the encoding process, which can reveal the secret

key by a novel known plain text attack presented as follows.

The ‘mutation‘ operation involves swapping the 0 and 1 la-

bels of the two edges of an internal node if the corresponding

bit in the secret key is 1. More specifically, if the secret key is

(k1,k2,k3, · · · ,kn), then for each internal node si its edge labels will
be swapped if ki is 1. The mutated tree will now encode the symbols

(s1, s2, s3, · · · , sn) differently from cinit ial = (c1, c2, c3, · · · , cn) to
cmutated = (c1, c2, c3, · · · , cn). Moreover, since the mutation op-

eration only swaps the two edges of a node, for each symbol si ,

lenдth(ci) = lenдth(ci) is maintained always. This causes the com-

pression ratio to remain optimal even after mutation applying op-

eration on the classical Huffman tree. Fig. 3 shows a ‘mutation‘

operation. Our key observation is that for any symbol (say si) if
the attacker knows the binary encoding string before and after the

mutation, that is both ci and ci , from the value of c0 ⊕ c0, then the

attacker can find out which internal nodes edge labels have been

swapped. Consequently, this will enable the attacker to figure out

the bit values of the secret key corresponding to the internal nodes,

which are in the path from the root to the leaf of the symbol. For

example, as shown on Fig. 3 the path from root to the leaf s1 are
the internal nodes 1○ and 2○. Since c0 ⊕ c0 = 01 (Table. 1), the at-

tacker can conclude that the edge labels of node 1○ are not swapped

MobiQuitous, November 12–14, 2019, Houston, TX, USA Islam, et al.

Symbol ci ci ci ⊕ ci
s1 00 01 01

s2 01 00 01

s3 10 11 01

s4 110 100 010

s5 111 101 010

Table 1: Encoding strings before and after the mutation operation.

0 1

s1
s2 s3

s4

0 0 11

s5

0 1

0 1

s1 s2 s3

s4

0 0

s5

0 1

1 1

Secret key = 0110

1

2 3

1

Figure 3: Mutation operation using a secret key
.

whereas, the other node 2○’s edge label are swapped. Hence the

attacker can conclude that the secret key should be “01xx”. To find

the 3
rd

and 4
th

bit, the attacker can do the same for other sym-

bols. Hence the attacker can guess the all possible binary encoding

strings for a symbol ci (there are 2
l
of them for a particular length

l) and place them in the plain text. By observing the corresponding

binary encoding string in the cipher text ci , from the values of

ci ⊕ ci the attacker finds some bit positions of the secret key. To

figure out the full data, the complexity of the above mentioned

chosen plain text attack would beO(n · 2l) where n is the number of

symbols in the data and l is the average length of binary encoding

strings. Fortunately for the attacker the value of l is bounded by

the entropy (H) in the data which is H ≤ l ≤ H + 1 [9].

4 Our Compression Based Encryption Method
To overcome the above challenges and limitations of existing encod-

ing schemes, we propose and implement a new compression based

encryption scheme. We named our method Huffman Compression

based Encryption using lightweight dynamic Order Statistic Tree
(HEliOS). In this section, we will first discuss the design of HEliOS

such as the building blocks of HEliOS, how HEliOS secures the

data by encoding and the receiver retrieves the secured data by

decoding. Then we will wrap up this section with some key lemmas

regarding security and performance analysis of HEliOS.

4.1 HEliOS Design
4.1.1 Building Blocks of HEliOS: HEliOS modifies the traditional

Huffman encoding by introducing variable coding and inserting

sensitivity while encoding the data. To achieve sensitivity, HEliOS

uses the pseudorandom behavior of chaotic maps and introduces

variable encoding by using a dynamic order statistic tree.

Dynamic Order Statistic Tree: Dynamic Order statistic tree

is a kind of binary search tree which in addition to providing tradi-

tional insertion, lookup and deletion, also supports the following

two additional queries [7] in the binary search tree.

• Select(i) finds the ith smallest element.

• Rank(x) finds the rank of xth node.

When a balanced binary tree is used to implement dynamic order

statistic tree, both of these queries can be answered in O(loд(n)).

HEliOS associates two properties with each symbol which decides

the rank of symbol based on Algo. 1

• Current frequency: which keeps a count of the number of

times a symbol appears in the plain text as we read the plain

text while compressing. The frequencies are initialized to

zero before the start of the reading.

• Chaotic weight: A weight which is generated from a chaotic

sequence.

HEliOS uses dynamic order statistic tree to assign variable encoding

for each symbol. HEliOS achieves this by updating the rank of

symbols in the dynamic order statistic tree. The rank of each symbol

decides which binary encoding string should be used to encode the

symbol. Initially, each symbol has zero current frequency.

As we read the symbols and increase the current frequencies

one by one, the rank of the symbols also gets changed since the

current frequencies have precedence over chaotic weights while

considering the rank (Algo. 1). These rank updates, in return, change

which binary encoding string is used to encode the symbol.

Algorithm 1: Compare The function decides the rank of the

symbols in dynamic order statistic tree

Input: Two symbols to compare s1 and s2

Output: Returns the symbol which has higher rank

1 if s1.currentFrequency , s2.currentFrequency then
2 if s1.currentFrequency ≥ s2.currentFrequency then
3 return s1

4 else
5 return s2

6 else
7 if s1.chaoticWeight ≥ s2.chaoticWeight then
8 return s1

9 else
10 return s2

Chaotic Sequences: The chaotic weights of the symbols are

drawn from a chaotic sequence. These chaotic weights are im-

portant too because they decide the rank of the symbol when

the current frequencies are equal, especially, when at the start of

compression when all symbols have zero current frequencies. The

chaotic sequences are characterized by their sensitive dependence

on initial seed and random like behaviour [22]. There are many

chaotic systems which produce finite, pseudorandom sequences

such as Bernoulli shift chaotic sequences, piece-wise linear chaotic

sequences , spatial chaotic sequences, etc. HEliOS uses Chebyshev

chaotic system [23] to generate psudorandom weights for the sym-

bols. The Chebyshev system takesw and c0 as the initial random
seed and generates a chaotic sequence recursively based on the Eqn

1 and 2 below,

ck+1 =

{
cos(w · arccosck) if k > 0

c0 if k = 0,
(1)

where, c0 ∈ [−1, 1] andw ≥ 2.00. (2)

HEliOS: Huffman Coding Based Lightweight Encryption Scheme for Data Transmission MobiQuitous, November 12–14, 2019, Houston, TX, USA

dataPlain text

Figure 4: Mechanism of securing data by encoding and encrypting
the secret intelligence as followed in HEliOS.

Even when we perturb the initial random seed (c0,w) by a small

fraction, the generated Chebyshev chaotic sequences change com-

pletely. As a result, the initial rank of symbols gets significantly

changed. This sensitivity of the initial rank with respect to changes

in the initial seed is a blessing for cryptographers. This is because

the encoding process is extremely sensitive to the initial ranks of

the symbols (as explained in Lemma 4.2). Moreover, the Chebyshev

chaotic sequence is simple and has low resource requirements.

4.1.2 Securing data: As shown in Algo. 4 and on Fig. 4, we divide

the securing the data process into three tasks.

(1) Building Order Statistic Tree:We initialize an empty or-

der statistic tree. Each symbol from the classical Huffman

tree is inserted in the empty order statistic. The Chebyshev

chaotic sequences (Algo 2) are used to assign weights to each

symbol.

(2) HEliOS Encoding: Using the built order statistic tree, we

encode the symbols from the data one by one. For each sym-

bol, we find the symbol’s rank in the dynamic order statistic

tree (say k) and use the kth smallest length binary encoding

string to encode it. Then we increase the current frequency

of the symbol by one. Because of changing the frequencies

of the symbols, the symbol’s rank gets dynamically updated.

Therefore, the updated symbols will use a different binary

encoding string when they appear next in the plain text

(Algo. 3).

(3) Encrypting the secret intelligence: We define secret_ in-
telligence as those components which are necessary to build

the order statistic tree. More specifically the classical Huff-

man tree and chaotic random seed together make up the

secret_intelligence. Therefore, we encrypt the small-sized

classical Huffman tree and chaotic random seed using the

receiver’s public key to safeguard them from attackers.

Without the secret intelligence (i.e., classical Huffman tree and

chaotic random seed) the attacker can not build the order statistic

tree and decode the encoded compressed data even partially. This

makes the encoded, compressed data secure. Hence we combine the

secured secret intelligence and encoded data and send this secure

data to the receiver.

4.1.3 Retrieving data: The receiver first extracts the encrypted

secrete intelligence (i.e., classical Huffman tree and initial randome

seed) from received data and then decrypts the secret intelligence

using his/her private key. Then the receiver builds an order statistic

Algorithm 2: Building order statistic tree This function

builds a order statistic tree from the initial seed and classical

Huffman tree.

Input: initial seed (c0,w), classical Huffman tree

Output: An order statistic tree

1 Generate a Chebyshev chaotic sequence c1, c2, c3, · · · , cN
from the initial seed (c0,w)

2 Create an empty orderStatisticTree

3 foreach symbol ∈ classical Huffman tree do
4 symbol .currentFrequency = 0

5 symbol .chaoticWeiдht = ci
6 orderStatisticTree .insert(symbol)

7 return orderStatisticTree

Algorithm 3: Encoding This function encodes the data using

dynamic order statistic tree.

Input: data, orderStatisticTree
Output: encodedData

1 encodedData = ϕ

2 foreach symbol ∈ data do
3 k = orderStatisticTree .Rank(symbol)

4 encodedData.append(kth smallest encoding string)

5 symbol .currentFrequency+ = 1

6 return encodedData

Algorithm 4: Securing data. This algorithm secures the data

before sending

Input: data
Output: SecuredData

1 Generate a random_seed [c0,w]

2 Constract a classical_Hu f fman_tree from data

3 orderStatisticTree = BuildOrderStatisticTree

(random_seed, classical_Hu f fman_tree)

4 encodedData = Encoding(data,orderStatisticTree)
5 Secret_Intelliдence =

random_seed + classical_Hu f fman_tree

6 Encrypted_Secret_Intelliдence = Encryption

(Secret_Intelliдence , PUr eceiver)

7 securedData = Encrypted_Secret_Intelliдence+encodedData

8 return securedData

tree, the same way the sender does in Algo. 2. With this tree, the

receiver decodes the compressed text using Algo. 5.

4.2 Security and Performance Analysis
HEliOS secures the variable and sensitively encoded data by en-

crypting the small-sized secret_intelligence. Attackers cannot decode
the encoded data without the secret_intelligence. Related work has

shown that without the presence of Huffman tree, guessing the

plain text of encoded data is NP-hard [13], and our HELiOS tech-

nique only makes the decoding harder due to introduction of more

randomness in the ciphertext. As such, our technique is secure.

MobiQuitous, November 12–14, 2019, Houston, TX, USA Islam, et al.

Algorithm 5: Retrieving data This algorithm retrieves the

secured data received from the sender

Input: securedData
Output: retrievedData

1 [classical_hu f fman_tree, random_seed(c0,w)] =

Decryption (Encrypted_secret_intelliдence, PRr eceiver)

2 orderStatisticTree = BuildOrderStatisticTree

(random_seed, classical_Hu f fman_tree)

3 retrievedData = Decoding (orderStatisticTree, encodedData)

4 return retrievedData

Algorithm 6: Decoding. This function decompresses the com-

pressed file using the order statistic tree.

Input: orderStatisticTree, encodedData
Output: retrievedData

1 retrievedData = ϕ

2 binaryCodinдStrinд = ϕ

3 currentNode = classical_Hu f fman_tree− > root

4 foreach bit ∈ encodedData do
5 if currentNode is leaf then
6 k = binaryCodinдStrinд is kth smallest

7 Symbol = orderStatisticTree .Select(k)

8 retrievedData = retrievedData + S

9 Symbol .currentFrequency+ = 1

10 binaryCodinдStrinд = ϕ

11 currentNode = classical_Hu f fman_tree− > root

12 else
13 binaryCodinдStrinд+ = bit

14 if bit = 0 then
15 currentNode = currentNode− > le f t

16 else
17 currentNode = currentNode− > riдht

18 return retrievedData

Now, we know that encryption is a time and resource hungry task

and in our proposed mechanism, HEliOS only applies encryption

to small-sized secret intelligence instead of encrypting the full data.

The savings are immense in communication and computation time

and energy, while still providing a very high degree of security.

Lemmas 4.1 and 4.2 below present the proofs regarding variable

encoding and sensitivity respectively. We present two more Lem-

mas (4.3 and 4.4) and their proofs about the compression ratio of

HEliOS encoded data and scalability of encoding time respectively.

Lemma 4.1. HEliOS uses variable binary encoding strings to encode
the same symbol.

Proof. HEliOS uses the rank of a symbol in the order statistic

tree to encode a symbol. If the rank of a symbol is k , then HE-

liOS uses kth smallest length binary encoding string to encode

the symbol (as shown in Algo. 3). To see this, suppose the plain

text is "abbaaa" and we assign weights ca , cb to symbols a and b
respectively where ca < cb . At the same time, assume the encoding

Symbol Rank Encoded String Updated order statistic tree

- - - (b, 0, cb) (a, 0, ca)
a 2 011 (a, 1, ca) (b, 0, cb)
b 2 011 (b, 1, cb) (a, 1, ca)
b 1 01 (b, 2, cb) (a, 1, ca)
a 2 011 (b, 2, ca) (a, 2, ca)
a 2 011 (a, 3, ca) (b, 2, cb)
a 1 01 (a, 4, ca) (b, 2, cb)

Final encoded string= (011)(011)(01)(011)(011)(01)

Table 2: Simulation of HEliOS variable encoding when ca < cb
Symbol Rank Encoded String Updated order statistic tree

- - - (a, 0, ca) (b, 0, cb)
a 1 01 (a, 1, ca) (b, 0, cb)
b 2 011 (a, 1, ca) (b, 0, cb)
b 2 011 (b, 2, cb) (a, 1, ca)
a 2 011 (a, 2, ca) (b, 2, cb)
a 1 01 (a, 3, ca) (b, 2, cb)
a 1 01 (a, 4, ca) (b, 2, cb)

Final encoded string= (011)(011)(01)(011)(011)(01)

Table 3: Simulation of HEliOS variable encoding when ca > cb

binary strings (from the classical Huffman tree) are (“10”, “011”)

which means we will use encoding string “10” when the rank of

symbol is 1 and use “011” when the rank is two. As we can see from

Table. 2 the final encoded string is (011)(011)(01)(011)(011)(01).

Here, a is represented by “011” three times and by “01” one time. In

the same way b is represented by “011” and by “01” one time. The

optimal encoding using classical Huffman tree would have been

(01)(011)(011)(01)(01)(01) where a and b are encoded by 01 and 011

respectively each time. □

Lemma 4.2. HEliOS compressed text is sensitive to small changes
in initial random seed used in secret intelligence.

Proof. The initial weights set by the chaotic sequences decides

the initial rank of the symbols in order statistic tree. A small change

in the initial random seed (c0,w) induces a large change in the

chaotic sequences. This large change in the chaotic sequences re-

flects a large change in the ranks of the symbols when the order

statistic tree is built initially. Moreover, the initial ranks of the sym-

bols, bring a significant amount of change in the way plain text

is compressed. To see this, we once again encode the same string

"abbaaa" by keeping every other parameter unchanged as shown

in the Table. 2, except for the assumption that ca < cb . This time

we assume ca > cb , to see how changing the value of the chaotic

sequences affects the encoding string. As shown in Table. 3, this

time the encoded final string is (01)(011)(011)(011)(01)(01)which is

has a hamming distance of around 40% percent from the previously

encoded final string in Table. 2. □

Lemma 4.3. HEliOS encoding maintains near to optimal compres-
sion ratio.

Proof. According to Algo. 1, the rank of each symbol is depen-

dant on two properties a) current frequency of the symbol b) chaotic

weights assigned form the Chebyshev chaotic random sequences.

Since we use the kth smallest encoding string to encode a symbol

which has k rank, in an ideal case to achieve high compression

ratio, a symbol which has high frequency in the data file, should

have higher rank. In HEliOS, before the start of encoding when we

insert the symbols in the dynamic order statistic tree (in Algo. 2),

at that time the symbol’s rank is only dependent on the chaotic

weights of the symbols since each have an initial current frequency

HEliOS: Huffman Coding Based Lightweight Encryption Scheme for Data Transmission MobiQuitous, November 12–14, 2019, Houston, TX, USA

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pi.txt world192.txt bible.txt E.coli
File names

E
n
c
o
d
e
d
 d

a
ta

 c
o
m

p
re

s
s
io

n
 r

a
ti
o

Classical Huffman

HEliOS

Chaotic Huffman Tree (CHT)

(a)

0

2

4

6

8

10

12

pi.txt E.coli world192.txt bible.txt
File names

E
n
c
o
d
in

g
 t
im

e
 (

s
)

Classical Huffman

HEliOS

Chaotic Huffman Tree (CHT)

(b)

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11

File size (MB)

E
n
c
o
d
in

g
 t
im

e
 (

s
)

classical Huffman

HEliOS

Chaotic Huffman Tree (CHT)

(c)
Figure 5: Comparison of (a) encoded data compression ratio and (b) encoding time of the standard files from large corpus [6]. (c) exhibits that
CHT is not scalable as the files sizes increase.

of zero. Therefore the initial encoding may not be optimal. More

specifically, a symbol which has higher frequency may have a lower

rank because it has been assigned a low chaotic weight. For this

low rank, the high frequency symbol will use encoding strings of

larger length compared to the other less frequent symbols deviating

from the ideal case of using encoded strings of small size. How-

ever, as the encoding process starts, the value of current frequency

of the symbols is likely to increase more often than the symbols

which have less frequency. As a result, symbols which have higher

frequency get higher ranks even if they have been assigned lower

ranks before because of low chaotic weight. This is because the

current frequency property has preference over the chaotic weight

property while comparing the rank of the two symbols (as shown

in Algo. 1).

Therefore, we infer that eventually HEliOS will achieve near

to optimal compression ratio even though initially it sacrifices

optimal symbols to binary encoding assignment. Encouragingly,

our experimental results from the Canterbury Corpus [6] (which

provides standard large files to compare compression ratios) shown

in Fig. 5(a) is in agreement with our inference. It shows that HEliOS

encoded data achieves almost the same compression ratio compared

to two other optimal encoding techniques namely classical Huffman

tree and CHT. □

Lemma 4.4. HEliOS encoding is more scalable than CHT.

Proof. CHT mutates the classical Huffman tree for each time a

symbol in data. The number of changes in the classical Huffman

tree, is proportional to the number of symbols n in it. Hence the

complexity ofmutating the classical Huffman tree isO(n). Therefore
in order to achieve variable encoding, the total running timing time

of CHT is bounded by O(n) · size(data). On the other hand, to

achieve variable encoding, HEliOS updates the symbol’s rank in the

order statistic tree by increasing the symbol’s current frequency (as

shown in Algo. 3). Updating a symbol in a dynamic order statistic

tree is O(loдn) when an underlying height-balanced binary tree (in

our case AVL-Tree) is used to implement the order statistic tree

[7]. Therefore the running timing time of HEliOS is bounded by

O(loдn) ·size(data). We have experimented with the large files from

Canterbury corpus which are described in [2] to demonstrate the

scalability of HEliOS as shown on Fig. 5(b) and (c). As we can see,

the compression time of HEliOS increase by a factor of Oloд(n)
when file sizes increases, whereas CHT increases by a factor of

O(n). Classical Huffman encoding has the lowest compression time

without adding any security (i.e., variable encoding and sensitivity)

to the encoded data. □

We summarize the efficacy of our method with other encoding

methods in Table. 4

Method name Variable encoding sensitivity Scalability

Multiple Huffman Tree[37]

Chaotic Huffman Tree[16]

Swapped Huffman Tree[20]

Our method (HEliOS)

Table 4: Comparisons among classical Huffman based compression
schemes (= Yes; = Partially Yes; = No)

5 Experimental Evaluation
To evaluate how HEliOS holds up to the challenge of secure fast

data transmission, we deploy HEliOS in different experimental real-

life scenarios. In this section, we will first explain the experimental

scenario setups. Then we summarize our implementation details.

We conclude this section by analyzing our experimental results.

5.1 Experimental Scenario Setup
5.1.1 Online Personal Cloud File Uploading and Downloading: Per-
sonalized cloud data storage is a special folder on the local storage

machine where any digital data placed inside that special folder

is being continuously synced to a remote cloud service. Digital

data kept inside the special folder is accessible from other devices

including laptops and smartphones by downloading them from

the remote cloud service. As connectivity is increasing so does the

tendency to keep all digital data on the cloud storage among users.

With this increasing tendency fast uploading and downloading

of the digital data in a secure way without significant resource

consumption is a compelling ask. Dropbox is one of the leading

market holders in the business of personalized cloud data storage

along with other big players such as Google-Drive, Sky-Drive, and

iCloud, etc. Our experimental results suggest HEliOS can provide

fast secure connectivity for uploading digital data to and download-

ing from Dropbox remote personalized cloud storage compared to

other traditional methods. HEliOS can achieve this fast and secure

connectivity while keeping memory and energy consumption at

moderate level. We upload and download the five types of digital

data (see Table 5) using HEliOS to and from Dropbox personalized

cloud server as shown on Fig. 6.

MobiQuitous, November 12–14, 2019, Houston, TX, USA Islam, et al.

Securing_digital_data

Retriving_digital_data

Sending_secured_data

Receiving_secured_data

Figure 6: Uploading and downloading digital data to and fromDrop-
box personal cloud server

Server

PC-1

PC-4

PC-3
PC-2

Figure 7: The network set up of four desktops connected to a server
in a wired LAN.

5.1.2 Secured File Sharing in a Real Testbed Wired Network: For
this experimental setup, we want to know howHEliOS will perform

when there are multiple flows for each communicating node in a

network. To achieve this, we set up a real test-bed wired network of

four desktops as shown on Fig. 7. The four desktops are connected

to each other by a server through CAT6 wires in a star topology.

All four desktops are running Ubuntu 18.04.02 LTS, 15.5 GiB RAM

having Intel Core i7 with 8 cores. The four desktops send and

receive digital data in a random order ping-pong fashion among

themselves.

5.2 Implementation Details
Device level details:We implement HEliOS on two client devices.

One of them is a laptop (Mac-book Pro running on High Sierra Intel

Core i5 2.3GHz) and the other one is a smartphone (Xiaomi Redmi

4X running Android-Nougat). Network level setup: For upload-
ing and downloading the digital data explained on Table 5 to and

from the Dropbox remote personalized cloud storage, we have used

DropboxAPI v2 [10]. Both clients are connected through a wireless

router (model TP_Link_6528) to an Internet connection which have

an uploading and download speed about 1.2 Mbps. Code level
details: We implement all components of HEliOS by modifying

the classical Huffman tree compression and decompression imple-

mentation of https://algs4.cs.princeton.edu/code/edu/princeton/cs/

algs4/Huffman.java. Our implementation roughly adds 660 LoC to

the above mentioned implementation. Securing the secret intelli-
gence:We need to use a strong encryption technique to encrypt the

secret intelligence, which should in return secure the whole com-

pressed data. In this regard among popular techniques, we prefer

Elliptic curve cryptography (ECC) over widely accepted alternative

encryption techniques in research community such as AES and RSA.

This is because (1) ECC does not need a key to be shared unlike

symmetric key encryption techniques like AES. Sharing a symmet-

ric key before the initiation of communication between sender and

receiver in a secure way is itself a complicated problem to address.

Besides, ECC achieves the best of near-to- best performance in

terms of both time requirement and memory consumption resource

constrained devices compared to AES [36]. (2) ECC is more efficient

than the RSA technique. It can provide the same security as RSA,

however by consuming less computation power than RSA [28]. At

code level, to encrypt and decrypt the secret intelligence using ECC,

Data category Average file size (KB) # of files Corpus sources

Audio 4106 500 500 Greatest Songs of All Time [31]

Video 2870 62 Open Preservation Foundation [12]

Ebooks 118 50 Open Preservation Foundation [12]

Office 103 25 Open Preservation Foundation [12]

Emails 4 0.5M Enron email data set [32]

Table 5: Digital data sets used in our experimental evaluations.

we have taken the help of Bouncy Castle’s crypto package [3] for

the desktop. For the smartphone case, it is the Android repackage

Spongy Castle [35]. Data set details:We have used five types of

digital data as summarized in Table. 5. We do this to verify that our

HEliOS method performs better for a variety of digital data formats.

Methods in consideration: We have considered the following

four methods to validate our experimental results. 1) Traditional
way of using compression and encryption: In this method, the

sender secures the digital data by compressing and then encrypting

the compressed digital data to make it secure (Compression and

encryption). The receiver will decrypt the encrypted compressed

data and then decompress it to retrieve the data (Decryption and

decompression). 2) Full encryption-decryption: The sender en-
crypts the full data to secure the data (Encryption on full data) and

receiver applies full decryption on the encrypted data after receiv-

ing (Decryption on full data). 3) HEliOS: Our proposed way of

securing the data. HEliOS builds an order statistic tree from secret

intelligence (Algo. 2) and then encodes the data using the secretly

built order statistic tree. (Algo 3). The encoded compressed data

is secured by encrypting the small sized secret intelligence using

receiver’s public key. Only the receiver has the private key to de-

crypt the encrypted secret intelligence and using it the receiver can

decode and retrieve the secured encoded data. On the other hand,

without the correct secret intelligence the attacker cannot decode

(even partially) the HEliOS encoded data. 4) Chaotic Huffman
Tree (CHT):We have also experimented by replacing HEliOS with

CHT while encoding the digital data to see how CHT will perform.

We have not considered MHT and SHT. This because MHT encod-

ing is not secure [18, 40] and SHT is vulnerable to chosen plain
text attack (presented in Section 3.3). Note that, we only consider

the resources (i.e., time, energy, memory) usage on the client side

(i.e., laptop, mobile) to secure the digital data and then to send the

digital data to the Dropbox personal cloud server while uploading.

In the case of downloading, we only consider the resource usage

to receive the secured data and then to retrieve the secure data.

More specifically, we do not concern ourselves with the resources

taken by the remote Dropbox personal cloud server’s side. This is

because we can safely assume it is equipped with enough resource

and processing capacity.

5.3 Analysis of Results
We analyze the different experiment scenarios in terms of average

time, JVM (Java Virtual Machine) memory and energy consumption.

Time comparison: Our experimental results show that HEliOS

is significantly faster while securing the digital data. As we can

see from Fig. 8(a), 9(a) and 10(a), our method gives a much faster

average time to secure the digital data for laptop, mobile, and desk-

top clients respectively. The upload times of the secured digital

data are competitive among the first three methods (HEliOS, CHT,

Compression-encryption) as illustrated in Fig.9 (b), 9 (b) and 10

(b). This aligns with our expectation since the time to upload the

secured digital data depends on the size of secure data itself and the

https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/Huffman.java
https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/Huffman.java

HEliOS: Huffman Coding Based Lightweight Encryption Scheme for Data Transmission MobiQuitous, November 12–14, 2019, Houston, TX, USA

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

Audio Video Ebooks Office Emails

Digital data types

A
v
g

.
ti
m

e
 t

o
 s

e
c
u

re
 d

ig
it
a

l
d

a
ta

 (
s
)

 HEliOS

 Chaotic Huffman Tree (CHT)

 Compression and encryption

 Encryption on full data

(a)

0

5

10

15

20

25

30

35

40

Audio Video Ebooks Office Emails

Digital data types

A
v
g

.
ti
m

e
 t

o
 u

p
lo

a
d

 s
e

c
u

re
d

 d
a

ta
 (

s
)

 HEliOS

 Chaotic Huffman Tree (CHT)

 Compression and encryption

 Encryption on full data

(b)

0

5

10

15

20

25

30

35

Audio Video Ebooks Office Emails

Digital data types

A
v
g

.
ti
m

e
 t

o
 d

o
w

n
lo

a
d

 s
e

c
u

re
d

 d
a

ta
 (

s
)

 HEliOS

 Chaotic Huffman Tree (CHT)

 Decryption and decompression

 Decryption on full data

(c)

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

Audio Video Ebooks Office Emails

Digital data types

A
v
g

.
ti
m

e
 t

o
 r

e
tr

ie
ve

 s
e

c
u

re
d

d

a
ta

 (
s
)

 HEliOS

 Chaotic Huffman Tree (CHT)

 Decryption and decompression

 Decryption on full data

(d)
Figure 8: Comparisons of average time for laptop client to (a) secure the digital data, (b) upload the secured data to Dropbox personal cloud
server, (c) downloading the secured data from Dropbox personal cloud server, and (d) retrieving the secured downloaded data

0

100

200

300

400

500

600

700

Audio Video Ebooks Office Emails

Digitial data types

A
v
g

.
ti
m

e
 t

o
 s

e
c
u

re
 d

ig
it
a

l
d

a
ta

 (
s
)

 HEliOS

 Chaotic Huffman Tree (CHT)

 Compression and encryption

 Encrypyion on full data

(a)

0

20

40

60

80

100

120

Audio Video Ebooks Office Emails

Digitial data types

A
v
g

.
ti
m

e
 t

o
 u

p
lo

a
d

 s
e

c
u

re
d

 d
a

ta
 (

s
)

 HEliOS

 Chaotic Huffman Tree (CHT)

 Compression and encryption

 Encrypyion on full data

(b)

0

20

40

60

80

100

120

Audio Video Ebooks Office Emails

Digitial data types
A

v
g

.
ti
m

e
 t

o
 d

o
w

n
lo

a
d

 s
e

c
u

re
d

 d
a

ta
 (

s
)

 HEliOS

 Chaotic Huffman Tree (CHT)

 Decryption and decompression

 Decryption on full data

(c)

0

100

200

300

400

500

600

700

Audio Video Ebooks Office Emails

Digitial data types

A
v
g

.
ti
m

e
 t

o
 r

e
tr

ie
ve

 s
e

c
u

re
d

 d
a

ta
 (

s
)

 HEliOS

 Chaotic Huffman Tree (CHT)

 Decryption and decompression

 Decryption on full data

(d)
Figure 9: Comparisons of average time for mobile client to (a) secure the digital data, (b) upload the secured data to Dropbox personal cloud
server, (c) downloading the secured data from Dropbox personal cloud server, and (d) retrieving the secured downloaded data

0

1

2

3

4

5

6

Audio Video Ebooks Office Emails

Digitial data types

A
v
g

.
ti
m

e
 t

o
 s

e
c
u

re
 d

ig
it
a

l
d

a
ta

 (
s
)

 HEliOS

 Chaotic Huffman Tree (CHT)

 Compression and encryption

 Encrypyion on full data

(a)

0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

Audio Video Ebooks Office Emails

Digitial data types

A
v
g

.
ti
m

e
 t

o
 u

p
lo

a
d

 s
e

c
u

re
d

 d
a

ta
 (

s
)

 HEliOS

 Chaotic Huffman Tree (CHT)

 Compression and encryption

 Encrypyion on full data

(b)

0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

Audio Video Ebooks Office Emails

Digitial data types

A
v
g

.
ti
m

e
 t

o
 d

o
w

n
lo

a
d

 s
e

c
u

re
d

 d
a

ta
 (

s
)

 HEliOS

 Chaotic Huffman Tree (CHT)

 Decryption and decompression

 Decryption on full data

(c)

0

1

2

3

4

5

6

Audio Video Ebooks Office Emails

Digitial data types

A
v
g

.
ti
m

e
 t

o
 r

e
tr

ie
ve

 s
e

c
u

re
d

 d
a

ta
 (

s
)

 HEliOS

 Chaotic Huffman Tree (CHT)

 Decryption and decompression

 Decryption on full data

(d)
Figure 10: Comparisons of average time for four desktops connected in a LAN to (a) secure the digital data, (b) send the secured data to other
connected desktops (c) receive the secured data from other connected desktops, and (d) retrieving the received secured data

first three methods produce secured digital data of almost the same

size. For the fourth method, applying full encryption to digital data

to make it secure increases the file size which adds to the slowness

while uploading the full encrypted secure data upload time. In the

same way, we show the time to download the secured digital data

for the same set of clients (laptop, desktop, and mobile) respectively

in Fig. 8 (c), 9 (c), and 10(c) respectively. As expected the secure data

download time, which is dependant on the size of the digital data

being downloaded follows the trend of secure data upload time. On

the other hand, HELiOS shows significantly better performance

time while retrieving the digital data from the downloaded secure

data is illustrated in Fig. 8(d), Fig. 9(d) and Fig. 10(d).

Energy and memory comparison:We also present the aver-

age JVM memory usage for laptop and energy consumption of

the mobile client. In order to measure the energy consumption on

mobile, we have used Trepn Profiler App [27] (available on Google-

play store), and to log the memory requirement of laptop we have

used an excellent Java class monitoring tool VisualVM [8]. Our

experimental results show that HEliOS consumes much less energy

than other methods for the mobile client as shown on Fig. 11(c) and

11(d). This result is encouraging because the mobile client is a re-

source constrained device and also needs fast connectivity, both of

which can be facilitated by HEliOS. The JVM memory requirement

for laptop is comparable among all methods as shown on Fig. 11(a)

and 11(b).

6 Conclusion and Future Work

In this paper, we design and implement HEliOS, a novel, fast and

secure data transmission mechanism for smart devices. Here, we

carefully integrate a novel notion of Huffman compression and

encryption by exploiting a synergy between unique properties of

both Huffman compression and dynamic order statistic trees. Ex-

tensive real experiments in diverse settings demonstrate efficacy

of our scheme in terms of multiple performance metrics such as

time and energy efficiency. In future, we intend to develop mathe-

matical models for our proposed scheme to enable analysis of its

performance in larger scale implementations.

MobiQuitous, November 12–14, 2019, Houston, TX, USA Islam, et al.

0

25

50

75

100

125

150

175

200

225

250

Audio Video Ebooks Office Emails
Digital data types

A
v
g

.
J
V

M
 m

e
m

o
ry

 u
s
a

g
e

 (
M

B
)

 HEliOS

 Chaotic Huffman Tree (CHT)

 Decryption and decompression

 Decryption on full data

(a)

0

25

50

75

100

125

150

175

200

225

250

Audio Video Ebooks Office Emails
Digital data types

A
v
g

.
J
V

M
 m

e
m

o
ry

 u
s
a

g
e

 (
M

B
)

 HEliOS

 Chaotic Huffman Tree (CHT)

 Decryption and decompression

 Decryption on full data

(b)

0

100

200

300

400

500

Audio Video Ebooks Office Emails

Digital data types

A
v
g

.
e

n
e

rg
y
 (

J
o

u
le

)

 HEliOS

 Chaotic Huffman Tree (CHT)

 Compression and Encryption

 Encryption on full data

(c)

0

100

200

300

400

500

Audio Video Ebooks Office Emails

Digital data types

A
v
g

.
e

n
e

rg
y
 (

J
o

u
le

)

 HEliOS

 Chaotic Huffman Tree (CHT)

 Decryption and Decompression

 Decryption on full data

(d)
Figure 11: Comparisons of average JVM memory and energy con-
sumption to secure and upload the secured data to Dropbox per-
sonal storage cloud server for (a) laptop (c) mobile client and to
download the secured data from Dropbox personal storage cloud
server and retrieving the secured downloaded data for (b) laptop (d)
mobile client.

7 Acknowledgements
This work was supported by the Information and Communication

Technology Division (ICT Division), Government of the People’s

Republic of Bangladesh. This work was also supported in part by

US National Science Foundation (Grant # 1718071). Any opinions,

findings and conclusions are those of the authors alone, and do not

reflect views of the funding agency.

References
[1] M. Ambrosin, A. Anzanpour, M. Conti, T. Dargahi, S. R. Moosavi, A. M. Rahmani,

and P. Liljeberg. 2016. On the Feasibility of Attribute-Based Encryption on

Internet of Things Devices. IEEE Micro 36, 6 (Nov 2016), 25–35.
[2] R. Arnold and T. Bell. 1997. A corpus for the evaluation of lossless compression

algorithms. In Proceedings DCC ’97. Data Compression Conference. 201–210.
[3] The Legion of the Bouncy Castle Inc. Australian Charity. Last accessed on

2018-09-30. Legion of the Bouncy Castle Java cryptography APIs. http:

//www.bouncycastle.org.

[4] R. G. Baraniuk. 2007. Compressive Sensing [Lecture Notes]. IEEE Signal Processing
Magazine 24, 4 (July 2007), 118–121.

[5] R. Beaulieu, S. Treatman-Clark, D. Shors, B. Weeks, J. Smith, and L. Wingers. 2015.

The SIMON and SPECK lightweight block ciphers. In 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC). 1–6.

[6] T. Bell. Last accessed on 2018-09-30. The Canterbury Corpus. http://corpus.

canterbury.ac.nz.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. 2009. Introduction to
Algorithms, Third Edition (3rd ed.). The MIT Press.

[8] Oracle Corporation and its affiliates. Last accessed on 2018-09-30. VisualVM:

All-in-One Java Troubleshooting Tool. https://visualvm.github.io.

[9] P. Cuff. Last accessed on 2018-09-30. Information, Entropy, and Coding. https:

//www.princeton.edu/~cuff/ele201/kulkarni_text/information.pdf.

[10] The Dropbox API developers. Last accessed on 2018-09-30. Dropbox API v2.

https://www.dropbox.com/developers/documentation/http.

[11] Q. Do, B. Martini, and K. Choo. 2017. Is the Data on YourWearable Device Secure?

An Android Wear Smartwatch Case Study. Softw. Pract. Exper. 47, 3 (March 2017),

391–403.

[12] Open Preservation Foundation. Last accessed on 2018-09-30. An openly-licensed

corpus of small example files. https://github.com/openpreserve/format-corpus.

[13] A. S. Fraenkel and S. T. Klein. 1994. Complexity aspects of guessing prefix codes.

Algorithmica 12, 4-5 (1994), 409–419.

[14] H. Gan, S. Xiao, and Y. Zhao. 2018. A Novel Secure Data Transmission Scheme

Using Chaotic Compressed Sensing. IEEE Access 6 (2018), 4587–4598.
[15] D. W. Gillman, M. Mohtashemi, and R. L. Rivest. 1996. On breaking a Huffman

code. IEEE Transactions on Information Theory 42, 3 (May 1996), 972–976.

[16] H. Hermassi, R. Rhouma, and S. Belghith. 2010. Joint compression and encryption

using chaotically mutated Huffman trees. Communications in Nonlinear Science
and Numerical Simulation 15, 10 (2010), 2987 – 2999. http://www.sciencedirect.

com/science/article/pii/S1007570409006108

[17] D. A. Huffman. 1952. A Method for the Construction of Minimum-Redundancy

Codes. Proceedings of the IRE 40, 9 (Sep. 1952), 1098–1101.

[18] G. Jakimoski and K. P. Subbalakshmi. 2008. Cryptanalysis of Some Multimedia

Encryption Schemes. IEEE Transactions onMultimedia 10, 3 (April 2008), 330–338.
[19] K. James and T. Roberto. 2014. Secure Compression: Theory & Practice. IACR

Cryptology ePrint Archive 2014 (2014), 113.
[20] Y. S. Jang, M. R. Usman, M. A. Usman, and S. Y. Shin. 2016. Swapped Huffman

tree coding application for low-power wide-area network (LPWAN). In 2016
International Conference on Smart Green Technology in Electrical and Information
Systems (ICSGTEIS). 53–58.

[21] S. T. Klein, A. Bookstein, and S. Deerwester. 1989. Storing Text Retrieval Systems

on CD-ROM: Compression and Encryption Considerations. ACM Trans. Inf. Syst.
7, 3 (July 1989), 230–245.

[22] L. Kocarev. 2001. Chaos-based cryptography: a brief overview. IEEE Circuits and
Systems Magazine 1, 3 (2001), 6–21.

[23] X. Li, L. Bao, D. Zhao, D. Li, andW. He. 2011. The analyses of an improved 2-order

Chebyshev chaotic sequence. In Proceedings of 2011 International Conference on
Computer Science and Network Technology, Vol. 2. IEEE, 1224–1227.

[24] H. Liu and X. Wang. 2011. Color image encryption using spatial bit-level permu-

tation and high-dimension chaotic system. Optics Communications 284, 16-17
(2011), 3895–3903.

[25] N. Oualha and K. Nguyen. 2016. Lightweight attribute-based encryption for the

internet of things. In Computer Communication and Networks (ICCCN), 2016 25th
International Conference on. IEEE, 1–6.

[26] H. Peng, Y. Tian, J. Kurths, L. Li, Y. Yang, and D. Wang. 2017. Secure and energy-

efficient data transmission system based on chaotic compressive sensing in

body-to-body networks. IEEE transactions on biomedical circuits and systems 11,
3 (2017), 558–573.

[27] A product of Qualcomm Technologies Inc. Last accessed on 2018-09-30. Trepn

Power Profiler. https://developer.qualcomm.com/software/trepn-power-profiler.

[28] G. Raju and R. Akbani. 2003. Elliptic curve cryptosystem and its applications. In

SMC’03 Conference Proceedings. 2003 IEEE International Conference on Systems,
Man and Cybernetics. Conference Theme-System Security and Assurance (Cat. No.
03CH37483), Vol. 2. IEEE, 1540–1543.

[29] R. Rana, M. Yang, T. Wark, C. Chou, and W. Hu. 2014. Simpletrack: Adaptive

trajectory compression with deterministic projection matrix for mobile sensor

networks. IEEE Sensors Journal 15, 1 (2014), 365–373.
[30] E. Setyaningsih, R. Wardoyo, and A. K. Sari. 2018. New Compression-Encryption

Algorithm Using Chaos-Based Dynamic Session Key. International Journal on
Smart Sensing & Intelligent Systems 11, 1 (2018).

[31] E. Lustig T. de Clercq, D. Temperley and I. Ta. Last accessed on 2018-09-30. A

Corpus Study of Rock Music. http://rockcorpus.midside.com.

[32] CALO Project (A Cognitive Assistant that Learns and Organizes). Last accessed

on 2018-09-30. Enron Email Dataset. https://www.cs.cmu.edu/~./enron/.

[33] L. Touati and Y. Challal. 2015. Efficient cp-abe attribute/key management for iot

applications. In 2015 IEEE International Conference on Computer and Information
Technology; Ubiquitous Computing and Communications; Dependable, Autonomic
and Secure Computing; Pervasive Intelligence and Computing. IEEE, 343–350.

[34] L. Touati, Y. Challal, and A. Bouabdallah. 2014. C-cp-abe: Cooperative ciphertext

policy attribute-based encryption for the internet of things. In 2014 International
Conference on Advanced Networking Distributed Systems and Applications. IEEE,
64–69.

[35] R. Tyley. Last accessed on 2018-09-30. Spongy Castle, repackage of Bouncy Castle

for Android. https://rtyley.github.io/spongycastle/.

[36] A. S Wander, N. Gura, H. Eberle, V. Gupta, and S Shantz. 2005. Energy analysis of

public-key cryptography for wireless sensor networks. In Third IEEE international
conference on pervasive computing and communications. IEEE, 324–328.

[37] C. Wu and C. Kuo. 2005. Design of integrated multimedia compression and

encryption systems. IEEE Transactions on Multimedia 7, 5 (2005), 828–839.
[38] W. Xue, C. Luo, G. Lan, R. Rana, W. Hu, and A. Seneviratne. 2017. Kryptein:

A Compressive-sensing-based Encryption Scheme for the Internet of Things.

In Proceedings of the 16th ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN ’17). ACM, New York, NY, USA, 169–180.

[39] X. Yao, Z. Chen, and Y. Tian. 2015. A lightweight attribute-based encryption

scheme for the Internet of Things. Future Generation Computer Systems 49 (2015),
104–112.

[40] Q. Zhou, K. Wong, X. Liao, and Y. Hu. 2011. On the Security of Multiple Huffman

Table Based Encryption. Journal of Visual Communication and Image Representa-
tion 22, 1 (Jan. 2011), 85–92.

http://www.bouncycastle.org
http://www.bouncycastle.org
http://corpus.canterbury.ac.nz
http://corpus.canterbury.ac.nz
https://visualvm.github.io
https://www.princeton.edu/~cuff/ele201/kulkarni_text/information.pdf
https://www.princeton.edu/~cuff/ele201/kulkarni_text/information.pdf
https://www.dropbox.com/developers/documentation/http
https://github.com/openpreserve/format-corpus
http://www.sciencedirect.com/science/article/pii/S1007570409006108
http://www.sciencedirect.com/science/article/pii/S1007570409006108
https://developer.qualcomm.com/software/trepn-power-profiler
http://rockcorpus.midside.com
https://www.cs.cmu.edu/~./enron/
https://rtyley.github.io/spongycastle/

	Abstract
	1 Introduction
	2 Background on Compression Based Encryption Techniques
	2.1 Compressive Sensing Based Encryptions
	2.2 Huffman Based Encryption Schemes
	2.3 Lightweight Attribute-based Encryption Schemes

	3 Design Issues
	3.1 Challenges
	3.2 Threat Models
	3.3 Why not Existing Compression Based Encryption Schemes?

	4 Our Compression Based Encryption Method
	4.1 HEliOS Design
	4.2 Security and Performance Analysis

	5 Experimental Evaluation
	5.1 Experimental Scenario Setup
	5.2 Implementation Details
	5.3 Analysis of Results

	6 Conclusion and Future Work
	7 Acknowledgements
	References

