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A framework based on deep neural 
networks to extract anatomy 
of mosquitoes from images
Mona Minakshi1*, Pratool Bharti2, Tanvir Bhuiyan1, Sherzod Kariev1 & Sriram Chellappan1

We design a framework based on Mask Region-based Convolutional Neural Network to automatically 
detect and separately extract anatomical components of mosquitoes-thorax, wings, abdomen and 
legs from images. Our training dataset consisted of 1500 smartphone images of nine mosquito species 
trapped in Florida. In the proposed technique, the first step is to detect anatomical components 
within a mosquito image. Then, we localize and classify the extracted anatomical components, while 
simultaneously adding a branch in the neural network architecture to segment pixels containing only 
the anatomical components. Evaluation results are favorable. To evaluate generality, we test our 
architecture trained only with mosquito images on bumblebee images. We again reveal favorable 
results, particularly in extracting wings. Our techniques in this paper have practical applications in 
public health, taxonomy and citizen-science efforts.

Mosquito-borne diseases are still major public health concerns. Across the world today, surveillance of mosquito 
vectors is still a manual process. Steps include trap placement, collection of specimens, and identifying each 
specimen one by one under a microscope to determine the genus and species. Unfortunately, this process is 
cognitively demanding and takes hours to complete. This is because, mosquitoes that fall into traps include both 
vectors, and also many that are not vectors. Recently, AI approaches are being designed to automate classifica-
tion of mosquitoes. Works like1-4 design machine learning models based on hand-crafted features from image 
data that are generated from either smartphones or digital cameras. Two recent 2020 papers design deep neural 
network techniques (that do not need hand-crafted features) to classify mosquitoes from image data generated 
via smartphones5,6. Other works process sounds of mosquito flight for classification, based on the notion that 
wing-beat frequencies are unique across mosquito species7-10.

In this paper, we demonstrate novel applications for mosquito images when processed using AI techniques 
Since, the most descriptive anatomical components of mosquitoes are the thorax, abdomen, wings and legs, we 
present a technique in this paper that extracts just the pixels comprising of these specific anatomical components 
from any mosquito image. Our technique is based on Mask Region-based Convolutional Neural Network11. Here, 
we first extract feature maps from our training dataset of 1500 smartphone images of 200 mosquito specimens 
spread across nine species trapped in Florida. Our network to extract feature maps is ResNet-101 with a Feature 
Pyramid Network12 (an architecture that can handle images at multiple scales, and one well suited for our prob-
lem). Subsequently, we detect and localize anatomical components only (denoted as foreground) in the images 
in the form of rectangular anchors. Once the foreground is detected, the next step is to segment the foreground 
pixels by adding a branch to mask (i.e., extract pixels of) each component present in the foreground. This is done 
in parallel with two other branches to classify the extracted rectangular anchors and to tighten them to improve 
accuracy. Evaluation of our technique reveals favorable results. We see that the thorax, wings, abdomen and legs 
are extracted with high Precision (i.e., very low False Positives). For legs though, False Negatives are high, since 
the number of background pixels overwhelm the number of leg pixels in the image. Nevertheless, we see that 
enough descriptive features within the leg of a mosquito are indeed extracted out, since mosquito legs are long, 
and the descriptive features do repeat across the leg.

We believe that extracting images of mosquito anatomy has impact towards (a) faster classification of mosqui-
toes in the wild; (b) new digital-based, larger-scale and low-cost training programs for taxonomists; (c) new and 
engaging tools to stimulate broader participation in citizen-science efforts and more. Also, to evaluate generality, 
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we tested our architecture trained on mosquito images with images of bumblebees (which are important pollina-
tors). We see excellent accuracy in extracting the wings, and to a certain extent, the thorax, hence demonstrating 
the generality of our technique for many classes of insects.

Results
We trained a Mask Region-based Convolutional Neural Network (Mask R-CNN) to automatically detect and 
separately extract anatomical components of mosquitoes-thorax, wings, abdomen and legs from images. For this 
study, we utilized 23 specimens of Aedes aegypti and Aedes infirmatus, and 22 specimens of Aedes taeniorhynchus, 
Anopheles crucians, Anopheles quadrimaculatus, Anopheles stephensi, Culex coronator, Culex nigripalpus and Culex 
salinarius. After imaging the specimens via multiple smartphones, our dataset was 1600 mosquito images. These 
were split into 1500 images for training the neural network, and 100 images for validation. Together, this dataset 
yielded 1600 images of thorax, 1600 images of abdomen, 3109 images of wings and 6223 images of legs. We 
trained our architecture illustrated in Fig. 1 on an Nvidia graphic processing unit (GPU) cluster of four GeForce 
GTX TITAN X cards having 3,583 cores and 12 GB memory each. It took 48 h to train and validate the architec-
ture. For testing, we trapped and imaged (via smartphones) another set of 27 mosquitoes, i.e., three per species. 
The testing data set consisted of 27 images of thorax and abdomen, 48 images of wings and 105 images of legs.

First, we visually present results of our technique to extract anatomical components of a mosquito in Fig. 2 
for one sample image among the nine species in our testing dataset. This figure is representative of all other 
images tested. We see that the anatomical components are indeed coming out clearly from image data. Next, 
we quantify performance for our entire dataset using four standard metrics: Precision, Recall, Intersection over 
Union (IoU) and Mean Average Precision (mAP). Precision is basically the fraction of relevant instances (here, 
pixels) among those instances (again, pixels) that are retrieved. Recall is the fraction of the relevant instances 
that were actually retrieved. IoU is a metric that assesses the ratio of areas of the intersection and the union 
among the predicted pixels and the ground truth. A higher IoU means more overlap between predictions and 
the ground-truth, and so better classification. To define our final metric, the Mean Average Precision (mAP), 
we define another metric, Average precision (AP), which is the average of all the Precision values for a range of 
Recall (0 to 100 for our problem) at a certain preset IoU threshold for a particular class among the four for our 
problem (i.e., wings, thorax, legs and abdomen). This metric essentially balances both Precision and Recall for 
a particular value of IoU for one class. Finally, the Mean Average Precision (mAP) is the average of AP values 
among all our four classes.

The Precision and Recall values for the validation and testing datasets are presented in Tables 1 and 2 respec-
tively for various values of IoU. We see that the performance metrics in the validation dataset during training 
match the metrics during testing (i.e., unseen images) post training across all IoUs. This convinces us that our 
architecture is robust and not overfitted. Precision for all classes is high, which means that false positives are low. 
Recall is also high for the thorax, abdomen and wings, indicating low false negatives for these classes. However, 
Recall for legs class is relatively poor. It turns out that a non-trivial portion of the leg pixels are classified as the 

Figure 1.   The workflow of our architecture based on Mask R-CNN.
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background in our architecture. While this may seem a bit discouraging, we once again direct readers to Fig. 2, 
wherein we can see that a very good portion of the legs are still identified and extracted correctly by our archi-
tecture (due to the high Precision). As such, the goal of gleaning the morphological markers from all anatomical 
components is still enabled. Finally, the mean Average Precision is presented in Table 3 for all classes. The lower 
numbers in Table 3, are due to poorer performance for classifying legs, as compared to thorax, abdomen and 
wings.

Figure 2.   Results of extracting anatomical components for one sample image among the nine mosquito species 
in our dataset.
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Results from a small experiment with bumblebee images We subsequently verified how our AI architecture 
that was trained only with mosquito images, performs, when tested with images of bumblebees. Bumblebees 
(Genus: Bombus) are important pollinators, and detecting them in nature is vital. Figure 3 presents our results 
for one representative image among three species of bumblebees, although our results are representative of more 
than 100 bumblebee images we tested. Our image source for bumblebees was Smithsonian National Museum of 
Natural History in Washington, D.C. Images can be found here13. As we see in Figure 3, our technique is robust 
in detecting and extracting wings. While the thorax is mostly extracted correctly, the ability to extract out the 
abdomen and legs is relatively poor. With these results, we are confident that our architecture in its present form, 
could be used to extract wings of many insects. With appropriate ground-truth data, only minimal tweaks to our 
architecture will be needed to ensure robust extraction of all anatomical components for a wide range of insects.

Discussion
We now present discussions on the significance of contributions in this paper.

(a) Faster classification of trapped mosquitoes Across the world, where mosquito-borne diseases are prob-
lematic, it is standard practice to lay traps, and then come next day to pick up specimens, freeze them and bring 
them to a facility, where expert taxonomists identify each specimen one-by-one under a microscope to classify 
the genus and species. This process takes hours each day, and is cognitively demanding. During rainy seasons 
and outbreaks, hundreds of mosquitoes get trapped, and it may take an entire day to process a batch from one 
trap alone. Based on technologies we design in this paper, we expect mobile cameras can assist in taking high 
quality pictures of trapped mosquito specimens, and the extracted anatomies can be used for classification by 
experts by looking at a digital monitor rather than peer through a microscope. This will result in lower cognitive 
stress for taxonomists and also speed up surveillance efforts. For interested readers, Table 4 presents details on 
morphological markers that taxonomists look for to identify mosquitoes used in our study14.

(b). AI and Cloud Support Education for Training Next-generation Taxonomists The process of training tax-
onomists today across the world consists of very few training institutes, which store a few frozen samples of local 
and non-local mosquitoes. Trainees interested in these programs are not only professional taxonomists, but also 
hobbyists. The associated costs to store frozen mosquitoes are not trivial (especially in low economy countries), 
which severely limit entry into these programs, and also make these programs expensive to enroll. With tech-
nologies like the ones we propose in this paper, digital support for trainees is enabled. Benefits include, potential 
for remote education, reduced operational costs of institutes, reduced costs of enrollment, and opportunities to 

Table 1.   Precision and Recall for different IoU thresholds on validation set.

Anatomy

IoU ratio=0.30 IoU ratio=0.50 IoU ratio=0.70

Precision (%) Recall (%) Precision (%)
Recall 
(%)

Precision 
(%) Recall (%)

Thorax 94.57 95.15 99.32 89.69 99.09 66.67

Abdomen 95.27 90.96 96.37 85.80 99.17 77.41

Wing 98.17 91.49 98.53 85.50 97.82 76.59

Leg 99.35 37.85 100 25.60 100 21.50

Table 2.   Precision and Recall for different IoU thresholds on testing set.

Anatomy

IoU ratio=0.30 IoU ratio=0.50 IoU ratio=0.70

Precision 
(%)

Recall 
(%)

Precision 
(%)

Recall 
(%)

Precision 
(%)

Recall 
(%)

Thorax 96 96 100 87.50 100 52

Abdomen 95.23 95.23 100 85.71 100 61.90

Wing 100 88.36 100 81.81 100 61.36

Leg 95.46 35.76 100 21.40 100 19.25

Table 3.   mAP scores for masking.

IoU ratio
Validation 
set (%)

Testing set 
(%)

0.30 62.50 53.49

0.50 60 52.38

0.70 51 41.20
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enroll more trainees. These benefits when enabled in practice will have positive impact to taxonomy, entomol-
ogy, public health and more.

(c). Digital Preservation of Insect Anatomies under Extinction Threats: Recently, there are concerning reports 
that insects are disappearing at rapid rates. We believe that digital preservation of their morphologies could 
itself aid preservation, as more and more citizen-scientists explore nature and share data to identify species 

Figure 3.   Results of extracting anatomical components for bumblebees.31–33

Table 4.   Anatomical components and markers aiding mosquito classification.26-30

Species Thorax Abdomen Wing Leg

Aedes aegypti Dark with white lyre-shaped pattern 
and patches of white scales Dark with narrow white basal bands Dark Dark with white basal bands

Aedes infirmatus Brown with patches of white scales Dark with basal triangular patches 
of white scales dark dark

Aedes taeniorhynchus Dark with patches of white scales Dark with white basal bands Dark Dark with white basal bands

Anopheles crucians Gray-black Dark
Light and dark scales; dark costa; 
white wing tip; 3 dark spots on 
sixth vein

dark with pale ‘knee’ spots

Anopheles quadrimaculatus Gray-black Dark Light and dark scales; 4 distinct 
darker spots Dark with pale ‘knee’ spots

Anopheles stephensi Broad bands of white scales Four dark spots on costa extending 
to first vein

speckling; narrow white band on 
fifth tarsomere

Culex coronator Dark with white scales on the apical 
and third segments

Sterna without dark triangles; 
mostly pale scaled

Distinct basal and apical bands on 
hind tarsomeres

Culex nigripalpus Brown copper color; white scales Dark with lateral white patches Dark Dark

Culex salinarius Copper; sometimes distinctly red; 
patches of white scales

Dark with golden basal bands; 
golden color on seventh segment Dark Dark
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under immediate threat. Preservation of insect images many also help educate future scientists across a diverse 
spectrum.

Conclusions
In this paper, we design a Deep Neural Network Framework to extract anatomical components-thorax, wings, 
abdomen and legs from mosquito images. Our technique is based on the notion of Mask R-CNN, wherein we 
learn feature maps from images, emplace anchors around foreground components, followed by classification and 
segmenting pixels corresponding to the anatomical components within anchors. Our results are favorable, when 
interpreted in the context of being able to glean descriptive morphological markers for classifying mosquitoes. 
We believe that our work in this paper has broader impact in public health, entomology, taxonomy education, 
and newer incentives to engage citizens in participatory sensing.

Methods
Generation of Image Dataset and Preprocessing.  In Summer 2019, we partnered with Hillsborough 
county mosquito control district in Florida to lay outdoor mosquito traps over multiple days. Each morning 
after laying traps, we collected all captured mosquitoes, froze them in a portable container and took them to the 
county lab, where taxonomists identified them for us. For this study, we utilized 23 specimens of Aedes aegypti 
and Aedes infirmatus, and 22 specimens of Aedes taeniorhynchus, Anopheles crucians, Anopheles quadrimacula-
tus, Anopheles stephensi, Culex coronator, Culex nigripalpus and Culex salinarius. We point out that specimens of 
eight species were trapped in the wild. The An. stephensi specimens alone were lab-raised whose ancestors were 
originally trapped in India.

Each specimen was then emplaced on a plain flat surface, and then imaged using one smartphone (among 
iPhone 8, 8 Plus, and Samsung Galaxy S8, S10) in normal indoor light conditions. To take images, the smartphone 
was attached to a movable platform 4 to 5 inches above the mosquito specimen, and three photos at different 
angles were taken. One directly above, and two at 45◦ angles to the specimen opposite from each other. As a 
result of these procedures, we generated a total of 600 images. Then, 500 of these images were preprocessed to 
generate the training dataset, and the remaining 100 images were separated out for validation. For preprocess-
ing, the images were scaled down to 1024× 1024 pixels for faster training (which did not lower accuracy). The 
images were augmented by adding Gaussian blur and randomly flipping them from left to right. These methods 
are standard in image processing, which better account for variances during run-time execution. After this 
procedure, our training dataset increased to 1500 images.

Note here that all mosquitoes used in this study are vectors. Among these, Aedes aegypti is particularly 
dangerous, since it spreads Zika fever, dengue, chikungunya and yellow fever. This mosquito is also globally 
distributed now.

Our Deep Neural Network Framework based on Mask R‑CNN.  To address our goal of extracting 
anatomical components from a mosquito image, a straightforward approach is to try a mixture of Gaussian 
models to remove background from the image1,15. But this will only remove the background, without being able 
to extract anatomical components in the foreground separately. There are other recent approaches in the realm 
also. One technique is U-Net16, wherein semantic segmentation based on deep neural networks is proposed. 
However, this technique does not lend itself to instance segmentation (i.e., segmenting and labeling of pixels 
across multiple classes). Multi-task Network Cascade17 (MNC) is an instance segmentation technique, but it 
is prone to information loss, and is not suitable for images as complex as mosquitoes with multiple anatomical 
components. Fully Convolutional Instance-aware Semantic Segmentation18 (FCIS) is another instance segmen-
tation technique, but it is prone to systematic errors on overlapping instances and creates spurious edges, which 
are not desirable. DeepMask19 developed by Facebook, extracts masks (i.e., pixels) and then uses Fast R-CNN20 
technique to classify the pixels within the mask. This technique though is slow as it does not enable segmentation 
and classification in parallel. Furthermore, it uses selective search to find out regions of interest, which further 
adds to delays in training and inference.

In our problem, we have leveraged Mask R-CNN11 neural network architecture for extracting masks (i.e. 
pixels) comprising of objects of interest within an image which eliminates selective search, and also uses Regional 
Proposal Network (RPN)21 to learn correct regions of interest. This approach best suited for quicker training 
and inference. Apart from that, it uses superior alignment techniques for feature maps, which helps prevent 
information loss. The basic architecture is shown in Fig. 1. Adapting it for our problem requires a series of steps 
presented below.

•	 Annotation for Ground-truth First, we manually annotate our training and validation images using VGG 
Image Annotator (VIA) tool22. To do so, we manually (and carefully) emplace bounding polygons around each 
anatomical component in our training and validation images. The pixels within the polygons and associated 
labels (i.e., thorax, abdomen, wing or leg) serve as ground truth. One sample annotated image is shown in 
Fig. 4.

•	 Generate Feature Maps using CNN Then, we learn semantically rich features in the training image dataset to 
recognize the complex anatomical components of the mosquito. To do so, our neural network architecture 
is a combination of the popular Res-Net101 architecture with Feature Pyramid Networks (FPN)12. Very 
briefly, ResNet-10123 is a CNN with residual connections, and was specifically designed to remove vanishing 
gradients at later layers during training. It is relatively simple with 345 layers. Addition of a feature pyramid 
network to ResNet was attempted in another study, where the motivation was to leverage the naturally 
pyramidal shape of CNNs, and to also create a subsequent feature pyramid network that combines low 
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resolution semantically strong features with high resolution semantically weak features using a top-down 
pathway and lateral connections12. This resulting architecture is well suited to learn from images at different 
scales from only minimal input image scales. Ensuring scale-invariant learning is specifically important for 
our problem, since mosquito images can be generated at different scales during run-time, due to diversity in 
camera hardware and human induced variations.

•	 Emplacing anchors on anatomical components in the image In this step, we leverage the notion of Regional 
Proposal Network (RPN)21 and results from the previous two steps, to design a simpler CNN that will learn 
feature maps corresponding to ground-truthed anatomical components in the training images. The end goal 
is to emplace anchors (rectangular boxes) that enclose the detected anatomical components of interest in the 
image.

•	 Classification and pixel-level extraction Finally, we align the feature maps of the anchors (i.e., region of interest) 
learned from the above step into fixed sized feature maps which serve as input to three branches to: (a) label 
the anchors with the anatomical component; (b) extract only the pixels within the anchors that represents 
an anatomical component; and (c) tighten the anchors for improved accuracy. All three steps are done in 
parallel.

Loss functions.  For our problem, recall that there are three specific sub-problems: labeling the anchors as 
thorax, abdomen, wings or leg; masking the corresponding pixels within each anchor; and a regressor to tighten 
anchors. We elaborate now on the loss functions used for these three sub-problems. We do so because, loss 
functions are a critical component during training and validation of deep neural networks to improve learning 
accuracy and avoid overfitting.

Labeling (or classification) loss For classifying the anchors, we utilized the Categorical Cross Entropy loss 
function, and it worked well. For a single anchor j, the loss is given by,

where p is the model estimated probability for the ground truth class of the anchor.
Masking loss Masking is most challenging, considering the complexity in learning to detect only pixels com-

prising of anatomical components in an anchor. Initially, we experimented with the simple Binary Cross Entropy 
loss function. With this loss function, we noticed good accuracy for pixels corresponding to thorax, wings and 
abdomen. But, many pixels corresponding to legs were mis-classified as background. This is because of class 
imbalance highlighted in Fig. 5, wherein we see significantly larger number of background pixels, compared 
to number of foreground pixels for anchors (colored blue) emplaced around legs. This imbalance leads to poor 
learning for legs, because the binary class entropy loss function is biased towards the (much more, and easier to 
classify) background pixels.

To fix this shortcoming, we investigated another more recent loss function called focal loss24 which lowers 
the effect of well classified samples on the loss, and rather places more emphasis on the harder samples. This loss 
function hence prevents more commonly occurring background pixels from overwhelming the not so commonly 
occurring foreground pixels during learning, hence overcoming class imbalance problems. The focal loss for a 
pixel i is represented as,

where p is the model estimated probability for the ground truth class, and γ is a tunable parameter, which was 
set as 2 in our model. With these definitions, it is easy to see that when a pixel is mis-classified and p → 0 , then 
the modulating factor (1− p)γ tends to 1 and the loss (log(p)) is not affected. However, when a pixel is classified 

(1)CCEj = −log(p),

(2)FL(i) = −(1− p)γ log(p),

Figure 4.   Manual annotation of each anatomy (thorax, abdomen, wings, and legs) using VGG Image Annotator 
(VIA) tool.
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correctly and when p → 1 , the loss is down-weighted. In this manner, priority during training is emphasized 
more on the hard negative classifications, hence yielding superior classification performance in the case of 
unbalanced datsets. Utilizing the focal loss gave us superior classification results for all anatomical components.

Regressor loss To tighten the anchors and hence improve masking accuracy, the loss function we utilized is 
based on the summation of Smooth L1 functions computed across anchor, ground truth and predicted anchors. 
Let (x, y) denote the top-left coordinate of a predicted anchor. Let xa and x∗ denote the same for anchors gener-
ated by the RPN, and the manually generated ground-truth. The notations are the same for the y coordinate, 
width w and height h of an anchor. We define several terms first, following which the loss function Lreg used in 
our architecture is presented.

Hyperparameters.  For convenience, Table 5 lists values of critical hyperparameters in our finalized archi-
tecture.

(3)

t∗x =
(x∗−xa)

wa
, t∗y =

(y∗−ya)
ha

, t∗w = log(w
∗

wa
), t∗h = log( h

∗

ha
),

tx =
(x−xa)
wa

, ty =
(y−ya)
ha

, tw = log( w
wa
), th = log( h

ha
),

smoothL1 =

{

0.5x2, if |x| < 1
|x| − 0.5, otherwise

and

Lreg (ti , t
∗
i ) =

∑

iǫx,y,w,h smoothL1(t
∗
i − ti).

Figure 5.   After emplacement of anchors, we see significantly more background pixels than foreground pixels 
for anchors encompassing legs.

Table 5.   Values of critical hyperparameters in our architecture.

Hyperparameter Value

Number of layers 394

Learning rate

1e−3 for 1–100 epochs

5e−4 for 101–200 epochs

1e−5 for 201–400 epochs

1e−6 for 401–500 epochs

Optimizer SGD

Momentum 0.9

Weight decay 0.001

Number of epochs 500
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Data availability
The sample dataset is available at https​://githu​b.com/mmina​kshi/Mosqu​ito-Data/tree/maste​r/Data.

Code availability
We have leveraged Matterport Github repository for Mask RCNN implementation. The code is open source and 
publicly available25.

Received: 15 May 2020; Accepted: 21 July 2020
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