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ABSTRACT
Mosquito borne diseases continue to pose grave dangers to global
health. An important step in combating their spread in any area
is to identify the type of species prevalent there. To do so, trained
personnel lay local mosquito traps, and after collecting trapped
specimens, they visually inspect each specimen to identify the
species type and log their counts. This process takes hours and is
cognitively very demanding. In this paper, we design a smart-phone
based system that allows anyone to take images of a still mosquito
that is either alive or dead (but still retaining its physical form)
and automatically classifies the species type. Our system integrates
image processing, feature selection, unsupervised clustering, and
an SVM based machine learning algorithm for classification. Results
with a total of 101 mosquito specimens spread across nine different
vector carrying species (that were captured from a real outdoor trap
in Tampa, Florida) demonstrate high accuracy in species identifica-
tion. When implemented as a smart-phone application, the latency
and energy consumption were minimal. With our system, the cur-
rently manual process of species identification and recording can
be sped up, while also minimizing the ensuing cognitive workload
of personnel. Secondly, ordinary citizens can use our system in
their own homes for self-awareness and information sharing with
public health agencies.

CCS CONCEPTS
• Computing methodologies → Machine learning; Computer
vision; •Human-centered computing→ Smartphones; •Applied
computing → Health care information systems;
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1 INTRODUCTION
Mosquito borne diseases (e.g., Malaria, Dengue, West Nile Fever,
and most recently Zika Fever) are amongst the biggest health care
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concerns across the globe today. To mitigate the spread of mosquito-
borne diseases, it is vital to combat the spread of mosquitoes. Of
critical importance in this mission is the identification of species
prevalent in an area of interest. This is important, because there
are close to 3, 500 different species of mosquitoes present in the
world today [1], and with increasing globalization and warming,
they are spreading to newer locations, with most of them acting as
vectors for several diseases. In any given location, multiple species
are usually found at the same time. However, the process of species
identification is not at all easy. We present details below.

1.1 Current Trends in Species Identification
As of today, to derive populations of mosquitoes in any area, trained
professionals lay traps, and pick them soon after to sort trapped
specimens. Sometimes, hundreds of mosquitoes can be trapped in
a single day. Then, to identify each specimen trapped, it is placed
under a microscope, and visually identified, which takes hours each
day for all specimens. Depending on location and time of year, this
process can repeat multiple times in a single week, and is cognitively
demanding. We also point out that such kinds of mosquito control
facilities are expensive to manage, and they are very few even in
advanced countries. In low economy countries, where mosquitoes
pose a greater danger, such facilities are even more scarce. With
rising temperatures and population migrations, mosquitoes are
believed to be invading newer areas across the world, and detecting
them early is a huge challenge today.

1.2 The Lack of a Citizen-Science Approach
Experts at mosquito control facilities acknowledge that, depending
on location and time of the year, they can receive hundreds of
calls each day from concerned citizens about mosquitoes in their
neighborhoods. Due to limited resources, knowledge of mosquito
species types can play a vital role in prioritizing schedules for
trap placement and spraying repellents during peak times, since
different mosquito species are vectors for different diseases. Sadly,
despite citizens willing to assist in this process, there is no way to
enable that now. One practice recommended by experts is to ask
citizens to collect a few mosquitoes (after spraying on them), and
store them in a transparent bag for the experts to identify them
later. But this process is cumbersome, and the need for technology
based solutions to empower citizens in this effort became clear.

1.3 Our Contributions
Based on the facts mentioned above, and coupled with the increas-
ing global spread of mosquito-borne diseases, public health experts



we spoke to during this study were highly receptive to any technol-
ogy based solution formosquito species identification and recording
that is accurate, comfortable and fast, so that a) human resources
in public health can utilized more effectively, and b) citizens can
be better informed and hence better served. Towards this extent,
in this paper, we design a smart-phone based system that enables
anyone to take images of a still mosquito that is alive or dead (after
possibly spraying or trapping), but still retaining its physical form,
and then processes the captured images for species identification.
Our specific contributions are listed below.

a). A Database of 303 mosquito images spread across nine
different species: In Fall 2016 and Spring 2017, we visited the
mosquito control board in Hillsborough County, Florida to collect
specimens of female vector carrying mosquitoes that were captured
in outdoor traps. When a trap is set, specimens of dead mosquitoes
are collected the next day to prevent their decaying (that will com-
plicate visual identification). Then, the personnel there helped us
visually identify the species type of 101 mosquito specimens that
were evenly distributed across nine different species, details of
which are presented in Table 1. We immediately took one image of
each specimen using a Samsung Galaxy S5 Smart-phone in three
visually distinct backgrounds (with a different camera orientation
for each background). As such, we obtained a total of 303 mosquito
image samples for model development. To the best of our knowl-
edge, this is the first instance of a dataset containing tagged images
of mosquito species taken via a smart-phone camera (which we will
publicly release soon, and is also available upon request). In Figure
1, we present one representative smart-phone image for each of the
nine species we attempt to classify in this paper.

b). Feature Extraction, Dimensionality Reduction, Clus-
tering and Classification: Our proposed technique for species
identification incurs multiple steps. First, we reduce the image size
from around 2988 × 5322 pixels per image to 256 × 256 pixels for
faster processing, followed by employing median filters to remove
noise. Second, we employ contour segmentation and Gaussian mix-
tures to carefully extract only the mosquito portion from each
image and segmenting out the background. Third, we then con-
vert each pixel into Lab color space, and extract 39 features based
on Local Binary Patterns [12], and Haralick Texture Features [15],
both of which preserve textural patterns (which are distinct across
mosquito species) better. Fourth, we apply Linear Discriminant
Analysis (LDA) to further reduce the number of features to just 8,
that are subsequently used for classification. Towards the end, we
design a 2-step process that involves unsupervised clustering, and
a support vector machine algorithm for species identification 1.

c). Results: Our performance evaluations yielded an overall
accuracy of around 80% in species identificationwith good precision
and recall. The latency consumed during classification when the
entire system is implemented as a smart-phone app on a Samsung
Galaxy S5 phone was less than 2 seconds. Towards the end of the
paper, we also present important practical impacts of our system.

1Perspectives on difficulties in applying Deep and Transfer Learning Techniques for
our classification problem are presented in Section 5 towards the end of the paper.

2 RELATEDWORK
We briefly present important related work on technology based
solutions (image and others) to identify mosquitoes, while also
clarifying the significance of our system proposed in this paper.

a). Image based Techniques using Digital Cameras: In [10],
a solution is proposed to detectAedes aeдypti species using images
taken from a 500x optical zoom camera, and a support vector ma-
chine classification algorithm. Using a sample of 40 images, seven
textural features, and a support vector machine classification al-
gorithm, an accuracy of 92.5% was demonstrated in classifying
Aedes aeдypti species from others. This solution though is expen-
sive, and addresses a binary classification problem only.

Work in [14] and [13] discuss machine learning techniques to
classify mosquitoes from insects like flies and bees using images
taken from digital cameras. The problem addressed in these papers
is too generic though. In a recent paper [32], the authors address
a problem similar to ours, but sufficiently different. Specifically,
12 adult mosquito specimens from 3 genera (Aedes , Anopheles and
Culex) were collected, and the right wing of each specimen was
photographed using a sophisticated digital camera coupled with a
microscope. Then, using coordinates at intersections of wing veins
as a feature, followed by a Neighbor Joining Tree classification
method, the accuracy in genus identification (among three) was
90%. This technique again is expensive and requires expertise.

b). Using Techniques other than Imaging: In [8], the authors
attempt to use optical (rather than acoustic) sensors to record
the “sound" of insect flight from a small distance, and then de-
sign a Bayesian classifier to identify four species of mosquitoes
(Aedes aeдypti , Culex quinque f asciatus , Culex stiдmatosoma,
and Culex tarsalis), and achieve an accuracy of 96%. Similarly,
the work in [23] also leverages smart-phone microphones to cap-
ture and process acoustics of mosquito flight, along with loca-
tion and time of observation. The claim is that these features are
unique to classify mosquito species. More innovative techniques
like hydrogel-based low-cost microfluidic chips, baited with odor-
ants to capture saliva droplets of mosquitoes are being designed by
Dr. Manu Prakash at Stanford University in order to serve as a test
for vector species and pathogens. All of these techniques require
“live” and “mobile" mosquitoes, with sensing devices placed close
to them. They are not suited for ubiquitous and in-home use by
common citizens.

c). Other Related Work: A survey on imaging techniques to
classify insects is presented in [19]. However, mosquitoes are not
classified there. In [26], the authors ask citizens to use smart-phones
for imaging and reporting about mosquitoes they encounter, but
species classification is not discussed. In [24], Munoz et.al. propose
a deep learning framework to classify larvae of mosquitoes from
larvae of other insects, with smart-phone images. In [5], intensity of
red blood cells computed from thin blood smear images were used
to identify the presence of malarial (plasmodium) parasites in blood
samples. Microsoft’s “Project Premonition" is an ambitious effort to
use drones and DNA sequencing techniques to identify mosquito
species in hot-spots [4]. Like we do in this paper, these recent works
highlight important, but orthogonal tech-based solutions to combat
mosquito-borne diseases, but ubiquitous and easy to use solutions
for identifying mosquitoes species are not yet there.
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Table 1: Relevant Details on our Dataset of Mosquito Species

Species No. of Specimens No. of Image
Samples (3 per

Specimen)

Disease Spread Geographical Location

Aedes aeдypti 11 33 Zika fever, Dengue,
Chikungunya

South America , North
America, Asia and Africa

Aedes inf irmatus 10 30 Eastern equine encephalitis
(EEE)

South America and North
America

Aedes taeniorhynchus 8 24 West Nile Virus South America and North
America

Anopheles crucians 15 45 Malaria South America , North
America and Africa

Coquillettidia perturbans 14 42 West Nile Virus South America and North
America

Culex niдripalpus 10 30 West Nile virus South America , North
America and Africa

Mansonia titillans 11 33 Venezuelan equine
encephalitis (VEE)

South America , North
America and Africa

Psorophora columbiae 11 33 Venezuelan equine
encephalitis (VEE)

South America , North
America and Africa

Psorophora f erox 11 33 West Nile Virus South America , North
America and Africa

a). Aedes aeдypti b). Aedes inf irmatus c). Aedes taeniorhynchus

d). Anopheles crucians e). Coquillettidia perturbans f). Culex niдripalpus

g).Mansonia titillans h). Psorophora columbiae i). Psorophora f erox

Figure 1: One Representative Sample in our Dataset for Each Species Classified. This Figure is best viewed in Color.
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d). Our Prior Work on Identifying Mosquito Species from
Smart-phone Images: In our prior work in [22], we leverage
smart-phone images to identify a total of 7 mosquito species. How-
ever the technique in [22] had limitations stemming from poorer
accuracy, inability to handle images taken in different backgrounds,
and is also computationally very expensive to process on a smart-
phone (due to the processing of many features). In our improved
system proposed here, the number of species identified is 9; our im-
proved system includes background segmentation that compensates
for images taken in differing backgrounds; and is computationally
much more efficient to enable processing on a smart-phone.

e). Summarizing Related Work: To summarize, tech-based
solutions to combat the spread of mosquito-borne diseases is an
important need of the hour. However, there is no system yet that
enables common citizens participate inmosquito identification. This
paper fills the gap by designing a smart-phone based system that
enables anyone to take images of a still mosquito that is alive or dead
(after possibly spraying or trapping), but still retaining its physical
form, and then processes the images for species identification. Our
system is cheap, ubiquitous, and easily expandable to include more
mosquito species beyond the current nine classified in this paper.

On a related note, we are aware of smart-phone apps to identify
types of plants, flowers and certain types of insects as well. How-
ever, algorithms used in these apps are not publicly available. We
believe though that the problem of identifying mosquito species
from images is much harder than the ones above, since there are no
obvious (and un-aided) visually discernible markers across species
types to the naked eye. We witnessed public health workers with
decades of experience still needing a microscope and careful anal-
ysis to identify the species type of a mosquito specimen, hence
demonstrating the complexity of our problem attempted here.

3 DATA COLLECTION
In the Hillsborough County where we collected our specimens from,
there is a dedicated mosquito control board for trapping, collecting,
and manually identifying mosquito species. In this county alone,
up to 40 species of mosquitoes are prevalent, not all of them at the
same time though. Every week, personnel lay traps for mosquitoes
in selected areas, and dead specimens are collected the next day,
brought to the lab, and each specimen is visually identified using a
microscope, and population results are logged. The early collection
of specimens is important because, once dead, they decay fast,
making visual identification harder if delayed.

During a couple of months between Fall 2016 and Spring 2017,
we participated in multiple such efforts and were given a total of 101
female mosquito specimens from a total of nine different mosquito
species, which were the ones most prevalent that time of the year
in that county. Each specimen was carefully identified and labeled
by experts in the board for us to get the ground truth data. Table 1
presents details on our data set. A Samsung Galaxy S5 phone was
then used to capture an image of each specimen under the same
indoor light conditions, with the camera located one feet above
each specimen without flash. Three images of each specimen were
captured in a different phone orientation, on top of one of three
backgrounds: a relatively white background, a yellow background
and a pink background. In total, 303 images were captured. Figures

1 (a) to (i) present one representative smart-phone image of each of
the nine species which we attempt to classify in this paper, when
captured in a relatively white background. Features of the smart-
phone camera used, are presented in Table 2.

a). Utility of Images Captured: Upon seeing the images gen-
erated, our colleagues at the Mosquito Control Board indicated that
they were sufficiently rich for a trained expert to visually identify
the species from the images. We were thus motivated to achieve
the same via learning techniques, that could be implemented on a
smart-phone so that common citizens can do the same.

b). A Note on Gender of Specimens in our Dataset: Note
here that all the 101 mosquito specimens we collected were female.
Among mosquitoes, only females engage in a blood meal (to pro-
vide nutrients for egg production), while males only feed on plant
nectar. As such, only female species can carry disease vectors. In
the traps that were laid for our experiments, CO2 was used as a bait,
which is typical. The presence of CO2 tricks a female mosquito into
believing that there is a blood meal present, and hence gets trapped
[20]. Capturing male mosquitoes would have require separate traps
with ‘nectar’ baits, that was beyond our scope. Nevertheless, it is
generally true that external morphological characteristics of both
males and females for any particular mosquito species are visually
similar (with males consistently having a feather like proboscis
[18]), and hence we are confident that our proposed techniques can
be easily adapted to detect both species and genders, and is part of
our future efforts, with more experiments.

Table 2: Samsung Galaxy S5 Camera Features

Camera Details Specification
Sensor Resolution 16 MP
Aperture size F2.2
Focal length 31mm

Shooting Mode High Dynamic Range mode
Camera Light Source Daylight

Background White, Yellow & Pink

4 OUR TECHNICAL APPROACH
In this section, we present our technical approach to classifymosquito
species from smart-phone images. There are a sequence of steps in
our approach - image resizing, noise removal, background segmen-
tation, feature extraction, dimensionality reduction, unsupervised
clustering and classification.

4.1 Image Resizing
In our case, a single smart-phone image contains 2988× 5322 pixels.
This is large, and will computationally be prohibitive for the phone
during image processing and features extraction, and even more
so when there are multiple images. For practicality, we resize each
image captured to a size of 256× 256 pixels. This reduced the image
size from around 3MB to 16KB, making processing much more
practical and fast during model development and also run-time
execution, without compromising accuracy.

4.2 Noise Removal
In our paper, we implemented a median filter to reduce noise. Me-
dian filter [17] is a nonlinear technique, where each pixel value
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a). Aedes
aeдypti

b). Aedes
taeniorhynchus

c). Coquillettidia
perturbans

d). Psorophora
columbiae

Figure 2: Edge Contrast in Legs of Different Species. This Figure is best viewed in Color.

a). Aedes
aeдypti

b). Aedes
taeniorhynchus

c). Coquillettidia
perturbans

d). Psorophora
columbiae

Figure 3: Color Contrast in Wings of Different Species. This Figure is best viewed in Color.

in a window of size n × n pixels is replaced by the median of all
pixel values in that window. In our case, we choose n = 3. In other
filtering techniques like mean filter, pixels are replaced by mean
values in a window, and in some cases, the mean value computed
is not one that is actually there in the image, resulting in poorer
retention of image fidelity, which also compromises edge and color
preservation. Median filters avoid this problem, since median values
of pixels are computed and retained during noise removal.

For our problem, edge and color preservation are crucial since
textural patterns of a mosquito that make up the edges (e.g., legs and
wings), and their colors, aid in classification. For example, from Fig-
ure 2, we see that the legs ofAedes aeдypti and Psorophora columbiae
have a combination of black andwhite color patterns; and the legs of
Aedes taeniorhynchus andCoquillettidia perturbans have yellow-
ish and black patterns. But the white and black patches in the case
of Psorophora columbiae are thinner than that of Aedes aeдypti .
Similarly from observation of Figure 3, we see that the wings of
Aedes aeдypti are slightly whiter compared to others; the wings of
Psorophora columbiae are slightly blacker than others; and those
of Aedes taeniorhynchus and Coquillettidia perturbans are more
brown 2. There are distinct color/ textural patterns even in the
scales and shapes of wings of various species, hence demonstrating
the importance of edge and color preservation, and the importance
for median filters to remove noise.

4.3 Background Segmentation
The next step is background segmentation. Since, we anticipate
mosquito images to be captured in a variety of backgrounds, com-
pensating for differing backgrounds is vital. The technical challenge
here is automatically segmenting out all of the background informa-
tion, while retaining only the region of interest (i.e., the mosquito).

In our technique, we employ a 2-step process. The first step is
to detect the edges of the mosquito in the image to find contours,
2Figures 2 and 3 are best viewed in color.

that actually encompass a significant part of the image [6]. Follow-
ing which, we identify portions within the image that need to be
categorized as background by comparing images before and after
contour detection. To do so, we implemented Sobel edge detection
algorithm for our problem, where the algorithm takes the derivative
of each pixel intensity (retrieved after converting image to gray
scale) with respect to its neighboring pixel [29]. The derivative of
the image is discrete as it consists of a 2D array and we need to take
it in two directions: x-axis andy-axis. For example, the derivative of
any arbitrary pixel in the x-axis will be calculated by taking the dif-
ference of pixel intensities between its left and right neighbor. The
same applies to compute the derivative in y-axis. Whenever there
is edge, there is a prominent change in pixel intensity. This will
cause significant change in derivative value. This significant change
denotes the presence of edge. In order to identify contours, we need
to know edge intensity and its direction. Direction of the edge, θ is
calculated as θ = tan−1 дx

дy
, where дx and дy are the derivatives of

each pixel intensity in x andy axis while edge intensity is calculated
as, Edдe_Intensity =

√
д2x + д

2
y .

After retrieving direction and intensity, we get many contours
enclosed within the edges. The significant contours encompass the
largest number of (x ,y) coordinates. Thenwe compare the locations
of each pixel of the significant contours with the locations of pixels
in the original image. The pixel intensity at locations which are not
in the significant contour are considered as background. While this
may look like it solves our problem, there is one issue. For those
portions of the background that are enclosed within identified edges
(e.g., within mosquito legs), those are not segmented out, and are
considered a part of the mosquito still. Such problems don’t exist in
regular image processing applications like face detection. However,
correcting this issue is accomplished in our next step.

Now that certain portions of the background are extracted, the
next step is to create a probabilistic model which assumes that
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Figure 4: Results of Background Segmentation: Original Image taken in Pink Background, Segmentation with Significant
Contours, Segmentation with Integration of Significant Contours and Gaussian Mixture Model

the background pixels are generated from a Gaussian mixture
[3][30][31]. In this step, we create different Gaussian mixtures for
known background pixels (RGB color space background pixels
retrieved from the first step). For accurately segmenting the back-
ground from the mosquito image, we introduce a threshold called
T . In our set-up, if the probability that the intensity of any pixel
belongs to the Gaussian mixture is higher than T , that pixel is con-
sidered as background and is segmented out. In case of images with
many background portions, only a few of them will be considered
as background if T is set too low, while if it is too high, then it will
treat portions of the foreground image as background. We initialize
T with a random number between 0 to 1, and with repeated trial
and error, we identify that setting T = 0.65 gives us best results.

In our problem, we expect a relatively uniform background, since
the smart-phone needs to be close to the mosquito during imaging,
and overall focus area is less. As such, we believe these parameter
settings are general across backgrounds. Note that, since the distri-
bution of pixels in the background is known apriori, shadows, and
other portions of the background enclosed within edges are also
removed in this technique. The effectiveness of our proposed 2-step
approach in segmenting the background from an Aedes aeдypti
mosquito image taken in a pink background from our dataset is
shown in Figure 4.

4.4 Feature Extraction
The next step in our system is feature extraction. Unfortunately,
the standard RGB color space did not us give good results since the
perceptible color differences across species is minimal there. We
then proceeded with the Lab color space [27], that also considers
lightness as a factor for determining color, and provides superior
color perception [2]. This color space has three dimensions where, L
represents lightness, and a and b represent the the color opponents
ranging from green−red and blue −yellow.

In order to extract features after transforming images to Lab
color space, we focused on textures. Recall from Figures 2 and 3 the
importance of textures (patterns and colors in legs and wings) in
aiding species identification. Furthermore, textural patterns do not
change much as the mosquito grows, and interacts with nature in
the wild. Essentially, in texture analysis, we derive the dependency
of intensity or variance across pixels in the image. This can be done
in two ways. One is structural that captures dependencies among
neighboring pixels, that enables superior perception of textures
as primitives (spots, edges, curves and edge ends). The other is
statistical, that computes local features by analyzing the spatial
distribution of gray values of an image [16].

Local Binary Patterns [12] is a popular approach that extracts a
combination of structural and statistical properties of an image. In

Figure 5: Local Binary Pattern Calculation for a Single
Pixel

this technique, textures are extracted on the basis of local patterns
formed by each pixel. To do so, each pixel is labeled by thresholding
the 3 × 3 neighborhood of each pixel with the center pixel value. In
other words, for each pixel of an image, we compare the pixel value
of their 8 neighbors either clockwise or counter-clockwise. If the
neighbor pixel value is greater than center’s pixel value, we replace
it with 1, otherwise with 0. This will give 8 binary digits, which are
converted to decimal values, which will replace the value in the
center pixel. The process repeats for all pixels in the image. The
range of decimal values lies from 0 to 255. In Figure 5, we show a
representative instance of determining Local Binary Patterns.

We then derive a histogram with 26 bins for the number of
decimal values in each pixel in the range of 0 to 9; 10 to 19 and so
on, up to 250 to 255. The number of values in each of the 26 bins
is a feature. Essentially, when the number of bins with non-zero
entries is less, it indicates fewer textural patterns, and when it is
more, it is an indicator of more textural patterns.

While Local Binary Patterns do yield structural and statistical
information on local textures, they cannot capture spatial depen-
dencies among textures, which contrast mosquito species (e.g., al-
ternating black and white patches in legs, variations in thickness of
patches etc.). To capture these on a global scale, we derive Haralick
textural features, which employ higher order statistics to capture
neighborhood properties of textures.

The basis of Haralick features [15] is a gray-level co-occurrence
matrix, where gray-level indicates the intensity of a pixel in two
dimensions. At the start, a square matrix of dimensionsG = Nд×Nд
is constructed, where Nд denotes the number of gray levels in an
image. An Element [i ,j] in the matrix is generated by counting the
number of times a pixel with value i is adjacent to a pixel with
value j, and then dividing the entire matrix by the total number
of such comparisons made. Each entry in the matrix is thus the
probability that a pixel with value i will be found adjacent to a pixel
of value j. Subsequently, using the pixel intensity dependencies
identified in MatrixG, we compute 13 Haralick features to capture
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spatial dependencies across textural patterns in the image. Table 3
presents these features, and how to compute them from the Matrix
G below, where p(i, j) is defined as the probability that a pixel with
value i will be found adjacent to a pixel of value j.

G =



p(1, 1) p(1, 2) p(1, 3) . . . p(1,Nд)
p(2, 1) p(2, 2) p(2, 3) . . . p(2,Nд)
...

...
...

. . .
...

p(Nд , 1) p(Nд , 2) p(Nд , 3) . . . p(Nд ,Nд)


.

4.5 Dimensionality Reduction
Recall now that we have extracted 39 features from each mosquito
image: 26 LBP and 13 Haralick Features. To make our solution
computationally efficient, we employed Linear Discriminant anal-
ysis [21] for dimensionality reduction, where the aim is to find a
linear combination of the 39 features by projecting them into a
lower dimensional sub-space to avoid computational cost and over
fitting, while the identified subspace maintains class variability
and reduced correlation among features. To do so, let us assume,
we have K classes and each having mean µi , and covariance

∑
,

where i = 1, 2, 3, . . . .K . Then, the scatter between class variability
is defined using sample covariance of the class means as:∑

b

=
1
K

K∑
i=1

(µi − µ)(µi − µ)T , (1)

where µ is the mean of the all class means. The separation of class

in a direction ®w , which is an eigenvector of
−1∑∑

b

, is computed as,

S =
®wT ∑

b ®w
®wT ∑ ®w

. (2)

If
−1∑∑

b

is diagonalizable, the variability between features will
be contained in the subspace spanned by the eigenvectors corre-
sponding to the K − 1 largest eigenvalues (since

∑
b

is of rank K − 1

at most). These K − 1 values will be our features for classification.
In our case, since we have nine classes of mosquito species, eight
final features are returned after LDA, that will be used for model
development.

4.6 Unsupervised Clustering
Our first attempt to classify mosquito species is to investigate the
efficacy of our eight features extracted as above, by checking to see
if an unsupervised learning algorithm can by itself cluster image
samples. To do so, we designed as Expectation-Maximization (EM)
algorithm [7] for clustering unlabeled mosquito images, where the
idea is to estimate the Maximum Likelihood (ML) parameters from
the observed samples. Assuming that each image is sampled from
a mixture of Gaussian distributions, the EM algorithm attempts to
find themodel parameters of each Gaussian distribution fromwhich
the sample most likely is observed, while increasing the likelihood
of the parameters in each iteration. It comprises of two steps in

Figure 6: Three Clusters Identified after EM Clustering

each iteration. In the expectation, or E-step, model parameters are
estimated based on observed samples. This is achieved using the
conditional expectation. In the M-step, the likelihood function of
model parameters is maximized under assumption that the observed
sample is sampled from the estimated parameter. The iteration goes
until convergence. Convergence is guaranteed since the algorithm
is bound to increase the likelihood function at each iteration.

With this clustering technique, we found very good performance
when the number of clusters selected were 3, and with top 2 LDA
features having highest variance. Figure 6 presents results, where
all samples belonging toAedes aeдypti and Psorophora columbiae
were each clustered separately using just 2 features. This is a very
interesting result from unsupervised clustering that justifies our
selection of features as representative. However, all samples in 7
other species were clustered separately. These species are identified
in Table 4.

4.7 Classification Method
With two of the three species already identified via clustering, we
present the final step of classifying the remaining 7 species. To do so,
we use Support Vector Machines [9], which is an established super-
vised classification and regression machine learning algorithm, and
requires minimal overhead to train and test. It gives fast and high
performance with very little tuning of parameters. The main aim in
SVM is to maximize the margin between classes to be identified by
determining training instances that are called as support vectors
which are used to define class boundaries. The middle of the margin
is the optimal separating hyperplane between two classes. While
testing, we calculate the probability of each sample belonging to
particular species and output the one that has highest probability.

Recall that, we are taking three smart-phone images of each
mosquito specimen in different orientations. As such, three images
will be given for classification in each instance. Since the number of
species to be identified is only seven (after Clustering), for features
from these samples alone, we reapply LDA to identify six features
for classification. When implementing the SVM algorithm for this
set (of 3 images each per specimen to be identified), we compute
the average probabilities of each species as identified from the SVM
algorithm for each of the 3 images, and output the one with the
highest average probability among all species classified.
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Table 3: Formulas for Haralick’s 13 features

Features Formula

Angular Second Moment
∑
i

∑
j
p(i, j)2, where p(i, j) is defined as the probability that a pixel with value i will be found

adjacent to a pixel of value j

Contrast
Nд−1∑
n=0

n2{
Nд∑
i=1

Nд∑
j=1

p(i, j)}, |i − j | = n

Correlation
∑
i
∑
j (i, j)p(i, j) − µx µy

σxσy
, where x and y are the row and column of an entry in co-occurrence

matrixG , and µx , µy ,σx ,σy are themeans and std. deviations ofpx ,py which is partial probability
density functions of pixel x and y respectively

Sum of Squares: Variance
∑
i

∑
j
(i − µ)2p(i, j)

Inverse Difference Moment
∑
i

∑
j

1
1 + (i − j)2

p(i, j)

Sum Average
2Nд∑
i=2

ipx+y (i), where px+y (i) is the probability of the co-occurrence matrix coordinates summing

to x + y

Sum Entropy
2Nд∑
i=2

px+y (i) log{px+y (i)} = fs

Sum Variance
2Nд∑
i=2

(i − fs )2px+y (i)

Entropy −
∑
i

∑
j
p(i, j) log(p(i, j))

Difference Variance
Nд−1∑
i=0

i2px−y (i)

Difference Entropy
Nд−1∑
i=0

px−y (i) log{px−y (i)}

Information Measure of Correlation 1 HXY − HXY1
max{HX ,HY } , where HXY = −

∑
i

∑
j
p(i, j),HX ,HY are the entropies of px ,py ,HXY1 =

−
∑
i

∑
j
p(i, j) log{px (i)py (j)}

Information Measure of Correlation 2 (1 − exp[−2(HXY2 − HXY )])1/2, where HXY2 =
∑
i

∑
j
py (j) log{px (i)py (j)}
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Table 4: Cluster Results

Cluster Species

1 Aedes inf irmatus , Aedes taeniorhynchus ,
Anopheles crucians ,

Coquillettidia perturbans ,Culex niдripalpus ,
Mansonia titillans , and Psorophora f erox

2 Psorophora columbiae

3 Aedes aeдypti

5 RESULTS
a). Overview of EvaluationMethods: Recall that for two species,
namely Aedes aeдypti and Psorophora columbiae , the classifica-
tion accuracy was 100% with Clustering alone. For the other seven
species, we evaluate the ability of our SVM algorithm for classifica-
tion under 10-fold cross validation technique, which is standard for
our problem scope.

b). Results and Interpretations: Figure 7 presents results in
terms of Precision, Recall and F1-Measure for seven species, wherein
for each specimen, the average classification probability for all 3
images of that specimen are computed, and the highest one is re-
turned. The accuracy in this case for these seven species is 71.07%.
Combined with 100% accuracy for two other species, the overall
accuracy of our system for all nine species is 77.5%.

For curiosity, we attempt to output two species which have the
top two highest classification probabilities from SVM, instead of
only the top most (as shown above in Figure 7). In other words, we
will consider our system accurate if the actual species is among the
top two species outputted from our algorithm. Figure 8 presents
results, and the accuracy naturally improves to 87.15% for the 7
species, resulting in an overall accuracy for nine species as 90.03%.

Interestingly, if we aim to identify each image of each specimen
separately (without considering them as part of a set), the accuracy
is only 47.16%. We do not present figures in this paper due to space
limitations, but it reveals the importance of capturing images in
multiple orientations for enhanced accuracy to identify mosquito
species, which as we hope readers agree is quite practical for our
application scenario, where citizens engage in the imaging/ species
identification process. In fact, for visual identification under a mi-
croscope, usually one orientation is not sufficient, and multiple
orientations are needed for species identification even for experts.

c). Complexity of Execution: Training our EMClustering, and
Support Vector machine classification model were implemented
on a machine with Intel Core i7 CPU @2.6 GHz with 16 GB RAM
configuration. Training the model took less than a few minutes.

We implemented the entire process of classification (image pre-
processing, feature extraction, LDA, Clustering and Classification
algorithm) as an application on a Samsung Galaxy S5 Smart-phone.
The average time it took to classify a species was less than 2 seconds,
with negligible energy consumption. Total memory consumed by
the application in the phone was 23MB.

d). Difficulties in Designing Deep and Transfer Learning
Techniques to Identify Mosquito Species: We understand that
deep-learning is state-of-art in object recognition. However, for ef-
fective model development using deep learning, tens of thousands

Figure 7: Precision, Recall and F1-Measure for 10-fold Cross-
Validation Method for Seven Species

Figure 8: Accuracy of Top 2Results for 10-fold Cross-Validation
Method for Seven Species

of images are needed, since deep learning enables automatic feature
extraction from the dataset. Generating 303 images in this paper
was itself a challenge. Generating tens of thousands of mosquito
images requires much more resources. Data Augmentation in one
approach to create larger datasets via flipping, blurring, zooming
and rotating images [25]. But this was not effective for us, because
these are regularization techniques, that have applicability when
images classes are more diverse. But since there is minimal diver-
sity in the physical appearance (and hence images) among various
species of mosquitoes, this approach will likely introduce more
noise, resulting in poorer accuracies. Our attempt in generating a
dataset of 2000 mosquito images from the original 303, using aug-
mentation, followed by species classification yielded an accuracy of
only 55%. Enhancing our dataset size using open source images (e.g.,
Google Images) are not possible because there were not enough
images tagged with the name of species, and even then we cannot
guarantee that they were correctly tagged.

Another more recent technique is Transfer Learning, where the
idea is to extend an existingmodel already trained to identify certain
classes, in order to identify newer classes. Unfortunately, even the
most popular VGGNet model [28] trained to recognize 1000 classes
of images using the ImageNet database [11] fetched us only 47%
accuracy. Primarily, no class among the 1000 in ImageNet were
even remotely representative of mosquitoes, hence explaining low
accuracy in species classification using Transfer Learning.
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6 PRACTICAL IMPACT AND FUTUREWORK
In this paper, we design a system that allows any citizen to take
image(s) of a still mosquito that is either alive or dead (via spraying
or trapping), but still retaining its physical form, and subsequently
processes the image(s) to identify the species type in real time.

a). Practical Impact: At peak times, hundreds of requests come
daily from people complaining of mosquitoes in their neighbor-
hoods. Deciding where to divert resources for trap laying and spray-
ing is a constant problem for public health workers. In fact, in
Florida, during the Zika Virus scare in 2016, the lack of information
about species type during calls from concerned citizens was a huge
problem for public health workers we spoke to. With knowledge on
species type and density, reported by citizens themselves using our
system, urgent needs can be better prioritized. Furthermore, with
a system like ours in place available at mosquito control facilities,
the process of species identification and logging is much faster.
Expertise of public health workers can hence be shifted from the
cognitively demanding task of species identification via a micro-
scope, to more useful tasks in combating mosquitoes spread.

b). FutureWork:Weare now generating images ofmoremosquito
specimens (male and female) in the Hillsborough County. With
more species and specimens, and using more smart-phones for
imaging, we hope to demonstrate superior validity of our system.
The process of data collection though is very laborious, requiring
months of laying traps, and tagging/ imaging specimens. We are
now working with public health experts to design a user-friendly
smart-phone app that citizens can use for imaging, classification
and reporting of mosquitoes. After testing, we will release it for pub-
lic use in the Hillsborough county, and evaluate it. Images collected
and tagged in this manner will also be publicly shared. Expanding
our results to beyond Florida, and possibly beyond the US is also on
our agenda, but is very challenging - technically and logistically.
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